
0123456789();: 

Thirty years ago, sequencing a single 
individual’s genome was a substantial 
challenge. Today, scientists are launching 
projects that involve not only sequencing 
thousands of genomes, but also assaying 
other aspects of the genome, such as how 
genes are differentially expressed, which 
transcription factors are bound, or how 
chromatin is formed and organized1–3. These 
activities of the genome are studied with the 
aid of next- generation sequencing (NGS) 
under the umbrella of functional genomics1,2. 
Functional genomics experiments provide a 
wealth of information on genomic activities 
related to developmental stages or diseases, 
which is essential for personalized medicine3 
and can be medically actionable4. These 
studies use large- scale, high- throughput 
assays to quantify transcription (RNA 
sequencing (RNA- seq))5, epigenetic 
regulation (chromatin immunoprecipitation 
followed by high- throughput sequencing 
(ChIP–seq))6, chromatin accessibility 
(DNase digestion and high- throughput 
sequencing (DNase- seq) or assay for 
transposase- accessible chromatin using 
sequencing (ATAC- seq))7,8 or the 3D 
organization of the genome (Hi- C)9 under 
different conditions (for example, samples 
from patients and healthy individuals). In 
addition, the field is rapidly evolving, and 
new biochemical techniques based on NGS 

interaction matrices26. The private 
information that can be inferred from 
functional genomics data can be broadly 
categorized into two groups: information 
related to genetic variants and information 
not related to genetic variants. The first 
category includes noisy genotypes that can 
be directly observed from the reads16,27, 
similar to DNA sequencing data, and 
cryptic variant information hidden in 
the derived data17–19,28 (for example, gene 
expression quantifications or transcription 
factor binding enrichment). The second 
category comprises phenotypic information 
that can be inferred from genome activity 
(for example, differential gene expression 
associated with disease15) and characterizing 
information that can be observed from small 
amounts of exogenous reads29 (for example, 
the microbiome is a better predictor for 
disease phenotype30 than genotype and can 
even reveal the location of an individual31).

In this Perspective, we first introduce 
general privacy issues with genomic 
technologies, which are applicable to both 
DNA sequencing and functional genomics 
data. We then discuss privacy problems 
specific to functional genomics data. 
We consider the unique characteristics 
of functional genomics data and privacy 
issues related to the sharing of these data, 
and discuss how the response should differ 
from current sharing practices for DNA 
sequencing data. We describe the genotypic 
and phenotypic information leakage from 
various different functional genomics 
data types as well as from various data 
summarization steps. Lastly, we discuss 
various techniques that will enable the broad 
sharing and/or confidential analysis of 
functional genomics data.

Privacy and genomics
In the United States, one of the most 
important health privacy protections 
was established in the late 1990s with 
the enactment of the Health Insurance 
Portability and Accountability Act 
(HIPAA)32. HIPAA requires regulations 
on the privacy of medical health records, 
which includes the anonymization of 
‘genetic testing’. Because the technologies 
in genomics have improved tremendously, 
Congress passed the Genetic Information 
Nondiscrimination Act (GINA) in 2008 

or other technologies are continuously 
being developed10. Many consortia, such as 
the Genotype- Tissue Expression project11 
(GTEx), Encyclopedia of DNA Elements 
(ENCODE)12, gEUVADIS13 and The 
Cancer Genome Atlas (TCGA)14, generate 
large- scale functional genomics datasets 
for many individuals. Although mining 
these data is essential to understand human 
biology in health and disease3,15, these new 
modalities bring challenges in protecting 
the privacy of individuals that differ from 
those of traditional DNA sequencing data. 
Importantly, although there has been an 
increase in risk assessment methods and 
studies tackling the privacy issues related 
to gene expression data16–19, the privacy 
issues of other functional genomics data 
types have not been studied as widely. 
Moreover, the rapid increase in the number 
of functional genomics assays creates 
further privacy issues to be accommodated. 
Therefore, current privacy solutions need to 
account for the unique aspects of functional 
genomics data.

Inferring biological information 
from functional genomics experiments 
is a multistep procedure, in which data 
are progressively summarized from raw 
sequencing reads to gene expression 
quantifications20–22 (Fig. 1), transcription 
factor binding peaks23–25 or chromatin 
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to protect individuals from discrimination 
by insurance companies and employers 
based on their genomes33. The latest data 
sharing policy of the National Institutes of 
Health (NIH) highlights the importance 

of maintaining participant privacy and 
describes various approaches that provide 
privacy while meeting data- sharing 
expectations. Of note, the landscape of 
privacy rules surrounding genetic data 

differs globally; with the introduction of 
the European General Data Protection 
Regulation (GDPR) in 2016, the use of 
personal health and genetic data has been 
regulated substantially in Europe34.
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Genomics has emerged as a major focus 
of studies on privacy, not only among 
ethicists and legal scholars but also among 
geneticists and computer scientists35–47. 
This focus can be attributed primarily 
to the advancement of technologies for 
high- throughput data acquisition, which 
have led to a surge in datasets48,49. Owing 
to steep declines in sequencing costs, a 
growing number of companies now offer 
to collect, analyse and return genomic 
information directly to the public. In 
addition to commercial entities, several 
research organizations have harnessed 
technological developments to collect and 
process thousands of genomic datasets for 
research14,50–52.

Genomic information is the genetic 
variation within each genome, such as single 
nucleotide polymorphisms (SNPs), small 
insertions and deletions (indels) and other 
large- scale complex rearrangements such as 
structural variation (SV) data. In contrast 
to standard medical data, this information 
is inherently personally identifiable 
information. By its very definition, raw 
genomic data identify the owner, as 
illustrated by a number of high- profile cases 
reported in the news, for example, a case in 
which the DNA on a stamp was sufficient 
to charge an individual with a crime53. 
Moreover, genomic data are largely shared 
by close family members. Therefore, even for 
instances in which patients have provided 
broad consent for their genomic information 
to be accessed and used, care must be 
taken to preserve patient privacy as the data 
implicate not only the immediate owner of 
the genome sequence but many third- party 
relatives as well.

There are also issues related to the 
privacy of groups, which is important from 
the perspective of disparities in health care 
and biomedical research54,55. For example, 
a vast amount of genomic data from 
individuals of European ancestry have been 
collected and broadly shared, rendering this 
population more prone to re- identification 
through forensic investigations conducted by 
law enforcement56. By contrast, owing to the 
scarcity of genomic data from Indigenous 
and Native American individuals, the broad 
sharing of functional genomics data derived 
from their biosamples will be more invasive 
to privacy as it is easier to find rare, and 
thus more informative, cryptic relationships 
between genomic and functional genomics 
data. These two competing issues need to be 
taken into account at the stages of informed 
consent, genomic data collection and 
sharing. When the NIH research programme 
All of Us was launched in 2008 with the 
aim of using health and DNA data collected 
from Native Americans to build a precision 
medicine database, this effort received heavy 
criticism from Indigenous geneticists for 
bypassing the consent of tribes54,57,58.

Several privacy issues in genomics are 
newly emerging. For example, human 
genome sequencing can result in reads 
that are sequenced from exogenous species 
potentially belonging to the microbiome 
of an individual, which can reveal disease 
conditions or phenotypes29,30,59. These 
exogenous sequences can be the result 
of functional genomics assays, such as 
RNA- seq or ChIP–seq, or can be obtained 
using other sequencing- based assays, such 
as whole- genome or exome sequencing. In 
addition, lower barriers to sequencing have 

enabled a wider range of people, including 
citizen scientists, to access genomic and 
functional genomic data. Easy- to- use and 
portable sequencing technologies, such 
as the Oxford Nanopore MinION (which 
is used for both genome sequencing and 
functional genomics assays), and access to 
large databases via programmes such as All 
of Us are fuelling the ‘do- it- yourself ’ science 
movement60.

Early genomic privacy studies focused on 
the identification of individuals in a mixture, 
such as in a genome- wide association  
study (GWAS) case– cohort, by using  
phenotype–genotype association8,61,62. 
These studies showed that private 
information of an individual, such as 
participation in a drug- abuse study, can 
be revealed by using properties of genetic 
data such as allele frequencies observed 
in GWAS summary statistics. Researchers 
have further quantified the privacy risk 
associated with de- identified genomes 
by showing that multiple datasets can be 
linked to infer sensitive information such 
as participants’ surnames63 or addresses64. 
Such cross- referencing is performed 
through linkage attacks (Box 1; Fig. 1c) 
and relies on quasi- identifiers, which are 
pieces of information that are not unique 
identifiers by themselves but correlate 
well with unique identifiers65. Multiple 
quasi- identifiers can be combined to 
obtain a unique identifier64.

Functional genomics data obtained 
through NGS, such as RNA- seq and ChIP–
seq data, bring about similar privacy issues 
in relation to the observation of private 
genetic variants of patients and research 
participants. Nonetheless, functional 
genomics data also differ from traditional 
genome sequencing data in two aspects: 
first, genetic variants are only a by- product 
of these experiments and are often not 
needed; second, potentially more invasive 
private information such as phenotypes and 
lifestyle can be gleaned from these data. 
Below, we focus on the private information 
leakage from functional genomics data; we 
refer readers to other reviews for more detail 
on the privacy of genetic data66,67 and general 
biomedical data68,69.

Privacy and functional genomics
Functional genomics data analysis starts 
with the generation of DNA or RNA 
sequencing reads that are stored in a file 
format called FASTQ70 (Fig. 1a). These files 
are then mapped to the human reference 
genome and stored as compressed binary 
file types called binary alignment maps 
(BAMs) and/or compressive alignment maps 

Fig. 1 | Private information leakage in functional genomics data. a | Different layers of data are 
produced from functional genomics experiments, as exemplified by the stepwise procedure from 
functional genomics reads to gene expression values in RNA sequencing (RNA- seq). The processing 
of RNA- seq data starts with aligning a sample’s raw reads obtained from the sequencer, which are 
stored as FASTQ files, to the reference genome. After the mapping, these reads reveal the genetic 
variants of the individual from whom the sample is taken. These are the data types that leak the great-
est amount of sensitive information, while also possessing the highest utility. Once the mapping is 
complete, a signal track is created by counting the reads at each location. The signal track reveals large 
deletions in the genome. Different signal levels from the signal track can then be averaged and turned 
into gene expression values in the case of RNA- seq or used to call peaks in chromatin immunoprecip-
itation followed by high- throughput sequencing (ChIP–seq) or assay for transposase- accessible chro-
matin using sequencing (ATAC- seq), for example. Moving downwards through the different stages, 
there is less privacy concern but largely reduced utility and amount of data. b | For expression quanti-
tative trait locus (eQTL) mapping, the gene expression matrix is composed of the expression values of 
all genes from a cohort of individuals. The genotype matrix comprises each individual’s single nucleo-
tide polymorphism (SNP) genotype in this cohort. An eQTL is observed by regressing the gene expres-
sion values of a gene across different genotypes for a given SNP. c | Schematic representation of a 
linkage attack using functional genomics data. Public gene expression values of a cohort of individuals, 
along with their phenotypes, can be combined with publicly available eQTL data to predict SNP geno-
types for these individuals (note that these predicted SNPs are noisy (denoted by grey values) and 
incomplete (denoted by question marks)). We can then overlap the genotypes of a known individual 
to link the individual to the gene expression cohort and hence to their phenotypes. BAM, binary  
alignment map; CRAM, compressive alignment map; SAM, sequence alignment map.

◀
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(CRAMs), which are derived from sequence 
alignment map (SAM) files in text format71. 
Further summarization of the mapped 
reads (such as signal profiles, which depict 
the cumulative number of reads mapping 
to a genomic region, or gene expression 
quantification) allows researchers to make 
accurate biological conclusions while 
providing an additional 20- fold reduction in 
data size. In particular, read alignment files 
(SAM, BAM or CRAM) are of great interest 
owing to their large amount of biological 
data, and these files constitute the most 
important input in most genome annotation 
pipelines. However, these files contain 
sequence information of individuals and 
therefore leak sensitive data.

To provide solutions for maintaining 
privacy while sharing functional genomics 
data, one must comprehensively quantify the 
amount of private information at every data 
summarization level of functional genomics 
data processing (Box 2). There are different 
ways in which private information can be 
leaked from functional genomics data, 
which can be categorized based on whether 
the data are related to genetic variants.

Leakage based on genetic variants
Direct genotyping from reads. The first 
and most obvious source of privacy leakage 
from functional genomics data is based on 
direct genotyping from reads (Fig. 1a). One 
must consider the following question: if we 
obtain raw functional genomics data from 

known individuals, can we recover their 
genotypes without using any other datasets? 
In contrast to DNA sequencing data, 
owing to the targeted nature of functional 
genomics assays (which focus on exons 
or transcription factor binding sites, for 
example), sequences present in functional 
genomics reads often cover only a small 
portion of the genome and are subject 
to various biases and base changes due to, 
for example, RNA editing or methylation. 
Therefore, genotypes inferred from an 
individual functional genomics dataset 
are noisy and incomplete and, hence, are 
typically not readily used for building 
personal genomes. However, sequencing 
from multiple functional genomics datasets 
can be combined to call more variants, as 
some assays target different regions in the 
genome (Fig. 2a). The called variants can be 
used further to impute, that is, statistically 
infer, genotypes for missing variants72,73; 
by combining assays and performing 
genotype imputation, we can infer almost 
as many genotypes as inferred from 30× 
whole- genome sequencing data (Fig. 2a). 
Although partial, the genotypes observed 
in raw reads can be used to identify 
individuals16 (Fig. 2b). If these reads are part 
of an anonymized database that contains 
phenotypic information, with the help of 
linkage attacks one can quantify the privacy 
risk by inferring phenotypes of a known 
individual with a known genome16. Using 
overall sequencing statistics (for example, 

read- depth distribution) and supervised 
learning, the number of genotypes, and 
hence the private information leakage, 
from functional genomics reads could be 
predicted before the release of such data74.

Cryptic genotyping from signal profiles 
and expression values. Another source 
of leakage is signal profiles in functional 
genomics data (Fig. 1a), in which small 
and large deletions can be inferred by 
linking signal profile data with SV data28. 
In this situation, if there is a deletion in an 
individual’s genome, no reads will map to 
the location of the deletion, which yields 
an absence of signal when the depth of 
sequencing is calculated. If these signal 
profiles are part of an anonymized database 
that contains phenotypic information, one 
can quantify the privacy risk via linkage 
attacks that can help infer phenotypes of 
a known individual with known genomic 
deletions. In more elaborate settings, one can 
predict possible genotypes of an individual 
from their gene expression profiles via 
expression quantitative trait loci (eQTLs)17,19 
(Fig. 1b,c). This privacy risk quantification is 
done by inverting the genotype–molecular 
phenotype relationship. Because eQTLs 
are determined by the slope of the gene 
expression versus genotype curve for a given 
SNP (Fig. 1b), one can predict the genotype 
for that SNP for an individual by comparing 
the individual’s gene expression level with 
those of a cohort. A set of SNP genotypes 

Box 1 | Linkage attacks

A linkage attack is a privacy breach that aims to de- anonymize an 
anonymized dataset. Such attacks are based on overlapping two datasets 
— one anonymized, one known — to learn sensitive information about an 
individual who is present in both datasets (see the figure). Consider two 
datasets A and B containing different kinds of information about the same 
group of people. Dataset A contains individuals’ names along with their 
date of birth, zip code, gender information and the genetic screening that 
was done at the time of birth. Dataset B contains some of this information, 

such as gender, date of birth and newborn screening along with a new, 
sensitive piece of information, such as household income. The sensitive 
information is supposedly ‘anonymized’; it is stored in dataset B without 
identifying information. However, an adversary interested in revealing 
sensitive information can simply link the information in dataset B, the 
‘quasi- identifiers’, to that in dataset A to find out the household income  
of the named individuals in dataset A. This breach of privacy can also be 
used to de- anonymize functional genomics datasets (Fig. 1c).

Gender information Newborn screeningDate of birthName

Phenylketonuria
Methylmalonic acidaemia
Tyrosinaemia
Sickle cell disease
Galactosaemia
Cystic fibrosis

Household income
$68,298
$105,378
$50,479
$155,928
$89,412
$209,980
$87,485
$5,378

Name
John
Anna
Ben
Jason
Connie
Jane
Linda
Karen

Gender information Newborn screening Household incomeDate of birth

Phenylketonuria
Methylmalonic acidaemia
Tyrosinaemia
Sickle cell disease
Galactosaemia
Cystic fibrosis

Linkage attack
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can then be accumulated by looking at 
SNPs that are found to be eQTLs, which 
are publicly available. These genotypes can 
easily be cross- referenced with the genetic 
variants of a known individual, which allows 
for linking of a known individual to their 
gene expression data. Since gene expression 
levels are often linked to a phenotype, this 
linking allows for inference of potentially 
sensitive and stigmatizing phenotypes of 
known individuals.

Similar approaches can potentially be 
applied by using chromatin accessibility 
QTLs or splicing QTLs to predict genotypes 
for an individual. Recent work has 
demonstrated that given access to a list of 
an individual’s allele- specific genes, the 
risk of private information leakage can be 
quantified by making inferences about the 
individual’s heterozygous variants; one can 
then link these variants to full genotypes or 
phenotypes18. The noisy, cryptic genotypic 
information present in summary- level data 
(gene expression or chromatin accessibility 
information) requires statistical analysis 
for privacy leakage quantification. Such 
quantification is typically performed via 
linkage attacks17 (Fig. 1c). For example, 
predicted eQTL genotypes can be 
overlapped with genotypes gathered from 
an illicitly obtained DNA sample, such as 

from a coffee cup, to connect the donor to a 
functional genomics data cohort involving 
the phenotype of the individual16,17. Note 
that, in this scenario, the anonymized 
functional genomics cohort contains 
information about the phenotypes of the 
samples. The genotypes from ‘coffee cups’ 
and functional genomics data are used as 
quasi- identifiers to connect the identity of 
an individual to a phenotype. In addition, 
it has been shown that summarized DNA 
methylation (whole- genome or array- based) 
data can leak identifying genotypes or 
private health information75,76.

Leakage without genetic variants
Direct phenotyping. The activities of 
genes and proteins often correlate highly 
with phenotypes of tissues or individuals. 
For instance, associations between the 
expression values of certain genes and the 
cancer status of patients can be derived using 
publicly available TCGA data77. The gene 
expression values of a known individual can 
then be compared with the expected values 
from a cancer type to infer the disease status 
of the individual; a diagnosis of leukaemia, 
for example, can be predicted on the basis 
of gene expression values derived from 
blood RNA- seq78. Moreover, genome- wide 
DNA methylation patterns can be used to 

infer age- related diseases79 (Fig. 3a), as sets of 
DNA methylation biomarkers can predict 
the biological age of any tissue during the 
human lifespan80–83. If methylation data 
were obtained from a biosample of a known 
individual, one could easily calculate a 
biological age that is older or younger than 
the chronological age of the individual 
(Fig. 3a). This information could be used 
by insurance companies or employers 
in a discriminatory way. Although the 
definition of genetic testing under GINA 
is the “analysis of human DNA, RNA, 
chromosomes, proteins, or metabolites 
that detect genotypes, mutations, or 
chromosomal changes”84, which technically 
covers functional genomics data, it is unclear 
whether summary- level functional genomics 
data for direct phenotyping is covered under 
GINA. The privacy risk of sharing DNA 
methylation data in terms of age prediction 
has yet to be studied.

Incidental phenotyping. In addition to 
recovering the genomes of individuals 
or inferring sensitive phenotypes via 
linkage attacks, functional genomic data 
can potentially be even more intrusive, as 
they can reflect privately held life choices, 
for example, diet and residence, based on 
microbiome inferences.

Box 2 | Private information leakage during summarization of functional genomics data

To demonstrate the extent of the genetic variant leakage in functional 
genomics data, we reviewed all known sources of genetic variants at 
different stages of the data summarization process (see the table).  
variants in the 1000 Genomes project panel52 were overlapped with  
exons to calculate the number of potential leaking variants. The number  
of variants that can be genotyped from a typical rNA sequencing  
(rNA- seq) experiment was calculated as the number of accessible variants. 
multiplying the number of accessible variants with the average leakage  
per variant quantifies the total amount of leakage. This procedure was 
repeated to calculate the leakage from other sources such as signal  
profiles and gene expression quantifications.

The most obvious leakage occurs directly from the reads and can be 
largely avoided by converting alignment files into privacy- preserving 
counterparts16. The next source of leakage is from the signal profiles28. 
Additional leakage can come from further summarization of the signal 
profiles, such as the quantification of gene expression values17 in rNA-  
seq or peak calling in other assays such as chromatin immunoprecipitation 
followed by high- throughput sequencing (Chip–seq) and assay for 
transposase- accessible chromatin using sequencing (ATAC- seq).

At the read level, we can potentially observe all single nucleotide variants 
(SNvs) on the exons; however, only a fraction are accessible through 
rNA- seq depending on which gene is expressed in which cell line or type.  

This level applies to other next- generation sequencing (NGS)- based 
functional genomics data types such as Chip–seq or ATAC- seq.

At the signal profile level, we can potentially observe deletions on the 
exons. However, only a fraction are accessible to the experiment depending 
on the expressed transcripts in the given cell line or type. Here, we show  
the number of accessible deletions that can be genotyped using the signal 
profile of the poly(A) rNA- seq experiment of individual NA12878, one of 
the individuals sequenced as part of the 1000 Genomes project16,28. This 
level applies to other NGS- based one- dimensional functional genomics 
data types such as Chip–seq or ATAC- seq. it is also equivalent to interaction 
matrices in two- dimensional functional genomics data types such as Hi- C 
or Hi- Chip28. one potential countermeasure is to create pseudo- signals 
that follow the signal distribution of the data28.

At the gene expression quantification level, the potential number of 
variants that can be observed are all expression quantitative trait loci 
(eQTls) connected to the genes. We show the number of accessible variants 
through gene expression quantification as the average number of eQTls 
per individual16,17. Although the privacy issues related to summary- level 
data of other functional genomics data have not yet been studied, this  
level corresponds to binding peaks in Chip–seq, accessible elements in 
ATAC- seq or DNase- seq, and topologically associating domains in Hi- C  
or Hi- Chip data.

Leakage source Leaking variants Number of 
potential 
variants

Average 
leakage per 
variant (bits)

Maximum 
leakage per 
variant (bits)

Number of 
accessible 
variants

Total leakage 
(bits)

Mapped reads Exonic variants 2,772,064 0.10 ± 0.28 9.88 ± 2.12 221,293 22,129

Signal profiles Exonic deletions 51,408 0.28 ± 0.45 7.97 ± 2.42 1,067 299

Gene expression quantification 
(summary- level data)

eQTLs 3,175 1.19 ± 0.36 4.00 ± 1.92 158 188
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Recent studies have shown a strong 
connection between the microbiome 
ecosystem of an individual and their 
phenotypes and behaviour30,31. These 
findings suggest that knowledge of the 
microbial communities of a person can 
help make predictions about their disease 
status, which can be stigmatizing in certain 
situations (for example, in the case of 
sexually transmitted viruses or bacteria). 
The non- human reads present in collected 
data can be analysed to calculate the 
abundance of microbial species (Fig. 3b). 
Evidence in the literature may suggest 
associations between these species and 
disease phenotypes, smoking status or even 
previous whereabouts of an individual85. 
Although not as extensively studied as 
genomic variants, the privacy risk of 
sharing the abundances of various microbial 
species and strains has been quantified 
for re- identification and characterization 
purposes86.

Although functional genomics 
experiments are not intended to collect 
information from the microbiome of a 
tissue, research has shown that a small 
amount of exogenous reads might be 
collected by virtue of the experimental 
techniques59. This was especially studied 
in RNA- seq data, in which the fragments 
of RNA from the microbiome were used as 
a proxy to calculate the abundances of the 
species29. However, as the amounts of these 
reads are probably less than that of  
a typical microbiome sequencing assay, 
it might be difficult to perform a linkage 
attack with these abundances. That is, 
such microbial inference from functional 
genomics data can be used to characterize an 
individual but may not be as readily used for 
re- identification purposes.

Secure sharing of functional genomics 
data
With the availability of more advanced 
techniques, such as single- cell RNA- seq 
and ATAC- seq, we can now assay millions 
of cells87–89. This increased resolution is 
bringing a surge of new data from large 
cohorts of individuals, which will surpass 
the number of available sequenced genomes. 
We can sequence the DNA of an individual 
once, but numerous functional genomics 
assays can be performed on a single sample. 
When considering the privacy of DNA 
sequencing data, we deal with one data file 
per individual; when considering the privacy 
of functional genomics data, we must deal 
with many more data files per individual. 
This difference will soon create substantial 
hurdles in terms of movement and 
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Fig. 2 | Genetic characterization of an individual through functional genomics. a | Different func-
tional genomics assays target different locations in the genome; therefore, next- generation sequenc-
ing (NGS) reads from different assays can be combined to boost genotyping power. For example, the 
genetic variants observed by combining all chromatin immunoprecipitation followed by sequencing 
(ChIP–seq) and RNA sequencing (RNA- seq) reads of the individual NA12878 can be used for genotype 
imputation (see graph). Functional genomics datasets used in this calculation can be accessed from 
the ENCODE12 data portal using the experiment matrix in this link: https://www.encodeproject.org/
matrix/?type=Experiment&control_type%21=%2A&status=released&biosample_ontology.term_
name=GM12878&assay_title=Histone+ChIP- seq&assay_title=polyA+plus+RNA- seq&assay_title=-
total+RNA- seq. Genotyping based on whole- genome sequencing (WGS) data was obtained from the 
1000 Genomes Project52 (https://www.internationalgenome.org/data- portal/sample/NA12878).  
The total number of genotypes obtained by combining different functional genomics assays and  
performing imputation almost approximates to the total number of genotypes obtained from a 
high- depth WGS assay. b | Characterizing an individual by investigating genome- wide association 
study (GWAS) single nucleotide polymorphisms (SNPs) in functional genomics data. We identified 
GWAS variants that characterize phenotypes in Hi- C, RNA- seq and ChIP–seq data of NA12878 before 
and after geno type imputation. That is, owing to different coverage of different functional genomics 
data, one can look for GWAS variants associated with individual characterizing information in the 
genotypes inferred from functional genomics data.
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storage of these private data in centralized 
controlled- access servers (Fig. 4).

Traditional data- sharing models, 
such as controlled- access models, can be 
challenging: access to private data requires 
complex, often overly bureaucratic, user 
agreements90,91 (Fig. 4a). Unfortunately, 
the amount of broadly shared functional 
genomics data is much smaller than 
that stored behind controlled access 
(Fig. 4b), which affects the utility of these 
data. Therefore, funding agencies are 
increasingly supporting new means of 
broad data sharing and new requirements 
for making data publicly available while 
preserving participants’ privacy92. It is 
important to find ways to honour privacy 
protection without losing practical data 
utility, as large- scale mining of functional 
genomics data will allow researchers to 
genetically and environmentally characterize 
disease states and susceptibility in detail. 
Moreover, there is an increasing push 
towards moving genomic analysis and 
data sharing to cloud computing platforms 
because of cost- effectiveness. This creates 
further privacy issues related to sharing 
private data with third- party cloud service 
providers. It also challenges the current 
controlled- access data- sharing protocols 
by moving computation on sensitive data 
from local computers to third- party cloud 
services. Although the utility of functional 
genomics data is different from the utility 
of DNA sequencing data, currently, raw 
functional genomics data are shared by 
following protocols based on traditional 
DNA sequencing data, that is, raw reads 
are shared using controlled access, whereas 
summary- level data are shared broadly.

DNA sequencing seeks to determine 
the genetic variants of individuals; by 
contrast, genetic variants are not the focus 
of functional genomics assays. When 
pipelines proceed from sequencing reads to 
final quantifications, the genetic variants in 
these reads are not used in key calculations 
such as gene expression quantification 
or transcription factor binding peak 
enrichment. However, other features in the 
reference genome mapped reads, such as 
the location in the genome to which they 
are mapped, read length and mapping 
quality of the reads, are important quantities. 
Hence, although raw reads are an important 
component in functional genomics data 
processing, the genetic variants in these data 
are irrelevant in most of the calculations. 
If one can disseminate data without the 
variants in the reads, the data can still be 
largely used by the community, although 
we note that cryptic variant information 

still potentially exists in summary- level 
data. Nevertheless, they require a different 
mode of data sharing that must shift away 
from traditional controlled access for better 
practical utility93.

Solutions to data sharing due to privacy 
concerns cannot be separated from data 
utility. Unlike privacy, it is often difficult to 
formally define utility, as a single dataset 
can be used in different ways depending 
on the situation. Moreover, future use cases 
could arise that may change the definition 
of data utility in a manner that we cannot 
anticipate. Therefore, utility can be divided 

into two categories: practical utility and 
rigorous (mathematical) utility with 
theoretical guarantees. For example, the 
practical utility of data is often measured 
by the number of citations or downloads 
of a dataset, whereas the mathematical 
utility of data can be based on whether a 
defined function can be precisely calculated 
using the data. Of note, defining a unified 
utility metric for functional genomics 
data sharing may not be mathematically 
possible. Because different functional data 
types from the data summarization steps 
are used for different purposes, the utility 
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of functional genomics data generally falls 
under practical utility, whereas the utility 
for a defined function can be categorized 
as mathematical utility. For example, 
sharing raw functional genomics data in a 
privacy- preserving manner provides general 
practical utility for biomedical research 
for multiple different use cases. However, 
if we want to define mathematical utility 
of the privacy- preserving form of the data, 
we can often specifically identify a purpose 
for the data, for example, gene expression 
quantification or eQTL inference, and 
define the mathematical utility for this 
specific purpose. For example, the general 
purpose of RNA- seq is to quantify gene 
expression levels; therefore, one can define 
the mathematical utility of raw RNA- seq 
data as the accuracy of the resulting gene 
expression values. The mathematical utility 
of transcription factor ChIP–seq data can be 
formalized as the accuracy of the inference 
of binding peaks.

Redacted BAMs
Open sharing of raw functional genomics 
data is particularly important for developing 
analysis methods and discovering novel 
mechanisms related to the human genome. 
Privacy- preserving BAMs (pBAMs) were 
recently proposed as an alternative to 
the current controlled- access functional 
genomics data- sharing mechanism16. 
pBAMs were developed to allow the public 
sharing of read alignments of functional 
genomics experiments while protecting 
sensitive information and minimizing the 
amount of private data that requires special 
access and storage. This aim is achieved by 
differentiating the public components of 
the data, that is, the genetic variants that are 
often unnecessary for most downstream 
calculations, and storing the data in small, 
binarized ‘.diff ’ files. This differentiation 
is performed in a systematic way such 
that, first, the utility loss due to removal of 
the private component can be quantified 

in advance, and secondly, original BAM 
files can be recovered by combining 
the ‘.diff ’, pBAM and human reference 
genome sequence files. The privacy of 
the pBAM is provided by masking the 
information from BAM attributes that 
might be indicative of the presence of 
genetic variants (Fig. 4d).

Studies have shown that the utility loss 
from pBAM conversion is less than the 
difference between two biological replicates 
of a functional genomics sample16. The 
pBAM has also been shown to work with 
single- cell functional genomics data16. 
pBAMs currently provide support for 
commonly generated functional genomics 
data types, including single- cell and bulk 
RNA- seq, ChIP–seq and ATAC- seq. 
The pBAM file format is based on the 
existing file format system (SAM, BAM 
or CRAM). This allows users to use the 
existing functional genomics pipelines with 
pBAMs as input, without exposing sensitive 
genotype information. Users can also treat 
pBAM files as BAMs and use existing tools 
to parse and analyse pBAMs. Download 
statistics of ENCODE data to determine 
whether researchers prefer working with 
these pBAMs when the original BAMs are 
not accessible clearly reveal community 
interest in pBAMs (Fig. 4c).

Cryptographic approaches
Traditional cryptography offers a solution 
for open sharing by allowing private data to 
be encrypted and uploaded inexpensively on 
public clouds, where only privileged users 
with a private decryption key can access 
the data after downloading. However, this 
approach still requires large operating costs, 
as data must be transferred to, decrypted and 
computed on local systems to ensure privacy. 
Owing to these challenges, the genomic 
privacy field is moving towards developing 
efficient and scalable newer cryptographic 
solutions that can be used in the genomic 
ecosystem, that is, allowing computations 

on private data in the cloud94,95. Instead 
of creating secure ways of sharing data, 
these methods instead allow confidential 
computing on the data, which can be an 
alternative solution to the data- sharing 
problem.

There are a variety of privacy- enhancing 
techniques developed by the cryptography 
community, each of which is suitable for 
a different problem (Fig. 5). For example, 
homomorphic encryption96,97 and trusted 
execution environments, such as software 
guard extension (SGX)98, are usually 
deployed to tackle the problem of the 
confidentiality of input and output data, 
whereas secure multiparty computation 
(SMC)99 and federated learning100 can be 
used when private data are distributed 
across different sites. (Note, however, that 
multi- key homomorphic encryption can also 
be used for private data that are distributed 
across different sites by allowing the usage 
of multiple secret keys101. Similarly, SGX can 
also be used for distributed data).

Of note, functional genomics data 
analysis has not been the focus of recent 
cryptographic studies. However, the privacy 
of gene expression data has previously been 
addressed with various techniques102–104. 
Indeed, the NIH- funded iDASH secure 
genome analysis competition94,95,105–108 
has been incorporating challenges related 
to the privacy of gene expression data 
solved with cryptographic techniques. 
Moreover, federated techniques for 
privacy preservation have been applied to 
differential gene expression analysis when 
the gene expression data are distributed 
across different sites103. Researchers 
have proposed a blockchain- based 
privacy- preserving machine learning 
model, called swarm learning, to predict 
disease types using transcriptomics data 
as features109. We can envision similar 
techniques being used to solve problems 
related to other types of functional genomics 
data processing in the future.

In general, all cryptographic technologies 
require specific technical knowledge, 
rendering the use of these technologies 
difficult for most genome scientists. Misuse 
of these technologies, whether intentional 
or not, can lead to privacy leakages. 
In addition to reducing the performance 
overhead, simpler software libraries, generic 
protocols and established guidelines may 
be necessary before widespread adoption 
can occur. Below, we provide high- level 
explanations for these techniques, with 
specific examples in Fig. 5. Note that these 
examples are somewhat aspirational based 
on the recent developments in cryptographic 

Fig. 4 | Challenges in accessing private functional genomics data and potential solutions from 
data sanitization. a | The steps and approximate amount of time required to upload and download a 
controlled- access dataset to/from the database of Genotypes and Phenotypes (dbGaP). b | The amount 
of functional genomics data from Encyclopedia of DNA Elements (ENCODE)12, gEUVADIS13, 
Genotype- Tissue Expression project (GTEx)11, PsychENCODE145 and The Cancer Genome Atlas 
(TCGA)14 that is behind controlled access (dark grey) and that is broadly shared (light grey) on top;  
the total number of unique individuals in these datasets is shown at the bottom. c | Comparison of the 
download frequency between redacted and normal binary alignment map (BAM) files for histone chro-
matin immunoprecipitation followed by sequencing (ChIP–seq) experiments on ENCODE (from  
29 March 2019 to 31 December 2020). Redacted BAM files are those labelled as ‘redacted alignments’  
or ‘redacted unfiltered alignments’. Each data point is the average download frequency of all files for one  
biosample type. We found that redacted BAMs have a higher number of downloads from the ENCODE 
data portal than BAMs for comparable datasets. Most likely, users could not find these datasets in the 
Gene Expression Omnibus (GEO), because these data were in the dbGaP, therefore were downloaded 
from the ENCODE data portal. d | A schematic depiction of reads in normal and redacted BAM files.
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solutions for genomic data analysis, such 
as privacy- preserving GWAS110–112, and 
are included to give an idea of how these 
techniques could be used for functional 
genomics data.

Homomorphic encryption. Homomorphic 
encryption is useful when the data need to 
be protected while in use (Fig. 5a). It enables 
direct computation on encrypted data within 
the public cloud113–116. The computed results 
are also encrypted and can be downloaded 
and decrypted via a private key. In some 
cases, two or more groups wish to contribute 
data on the same project and compute the 
pooled data jointly, while keeping their 
individual inputs private117. There are 
several classes of homomorphic encryption, 
designated as partially, somewhat or fully 
homomorphic, which make various trade- 
offs in accuracy, performance and the 
number of operations that they handle. 
Thus far, homomorphic encryption is 
only suited for arithmetical tasks that 
involve addition and multiplication and 
cannot be extended to more complex 
algorithms. Additionally, both the storage 
size of the encrypted plaintexts, known as 
ciphertexts, and the computation times 
for homomorphic encryption are several 
orders of magnitude greater than those for 
the original plaintexts. Because of these 
challenges, homomorphic encryption has 
yet to be adopted for large- scale functional 
genomics data analysis.

Trusted execution environments. Hardware- 
based technologies reduce the computational 
overhead by basing trust in the processing 
unit. Notably, one example is Intel SGX, 
which isolates the parts of a user application 
containing private data and code within a 
protected unit inside the central processing 
unit (CPU) called an enclave. The enclave 
has its own cache that stores private code 
and encrypts or decrypts data as they are 
transferred in and out, protecting the data 
from the non- private parts of the application 
as well as any other processes (Fig. 5b). In this 
way, Intel SGX allows secure computation 
with much lower computational complexity 
and thus better performance compared 
with homomorphic encryption. However, 
the small enclave cache size can be limiting, 
requiring developers to partition their data 
into workable chunks111,118.

Secure multiparty computation. SMC 
techniques have been developed to solve the 
issue of exchanging private data between 
sites without relying on another mutually 
trusted party110,119 (Fig. 5c); however, these 
techniques have some disadvantages. On top 
of the additional computational overhead, 
SMC incurs a heavy network overhead for 
the cost of communication between parties. 
Thus, this approach is impractical for raw 
sequencing data from functional genomics 
experiments, as transfer of and computation 
on large datasets cannot be performed in a 
reasonable amount of time.

Federated learning. In machine learning, 
when access to data that are stored at 
different sites is prohibited owing to privacy 
issues, federated learning can be applied. 
In federated learning, different sites train 
their own model locally and merge the 
predictive models at a third site120 (Fig. 5d). 
Note that this approach does not involve 
a cryptographic solution and raises issues 
related to privacy leakages from the model. 
Therefore, in privacy- preserving settings, 
federated learning is often coupled with 
techniques such as differential privacy121,122. 
Previous work has shown that federated 
learning is useful for biomedical data 
privacy123.

Differential privacy. Differential privacy is 
useful when summary- level information 
about a dataset is shared without 
compromising the privacy of the data points 
in the dataset124. In summary, an algorithm 
is considered differentially private if the 
output cannot differentiate the dataset with 
and without a data point. This is achieved 
by adding a principled noise to the dataset. 
One of the uses of differential privacy in 
functional genomics is as an addition to 
federated learning. If a machine learning 
model is developed using, for example, 
transcriptomics data from multiple 
sites, then the model parameters can be 
exchanged in a differentially private manner 
such that the privacy of the transcriptomic 
data can be preserved.

Blockchain. Recently, there has been 
increasing interest in blockchain technology 
for use in genome privacy and security125–137 
and recently for the use of transcriptomic 
data in artificial intelligence (AI) models109. 
Blockchain has several key properties, 
including a decentralized, distributed 
architecture and cryptographic protocols 
that yield immutability, that is, data integrity 
and security138. It is important to note 
that the security and integrity of the data, 
although related, are different from the 
privacy of the data. Integrity ensures  
the reliability and accuracy of the data in its 
entire life cycle; security protects the data 
from unwanted actions and unauthorized 
users; and privacy guarantees the proper 
handling of the sensitive data. Of note, there 
are applications of the blockchains that can 
be beneficial for the security and potentially 
the privacy of functional genomics data. For 
example, functional genomics data access by 
authorized users can be logged and stored in 
a blockchain125–127,135. This allows reliable and 
immutable auditing of the users accessing 
sensitive data and early prevention of 

Fig. 5 | Cryptographic techniques to perform confidential eQTL mapping. This figure outlines a 
hypothetical scenario for the use of functional genomics data and the various cryptographic tech-
niques that can be used. Note that all solutions discussed here are hypothetical and may not scale with 
real- world requirements. Let us assume that we want to take single nucleotide polymorphism (SNP) 
genotypes and gene expression values from a cohort of individuals and map the expression quantita-
tive trait loci (eQTLs)146–148. a | eQTL mapping using trusted executive environments, such as Intel SGX 
(software guard extensions). The user- encrypted data are uploaded to a computer server with 
SGX- enabled hardware. The user application creates an enclave, with which the user can establish a 
secure channel and exchange keys. In the enclave, the data are decrypted, computed and the resulting 
eQTLs are re- encrypted to be sent back to the user. Of note, SGX has memory limitations, so one must 
devise an algorithm that can work on pieces of the data. b | eQTL mapping using homomorphic 
encryption (HE). Similar to the first scenario, eQTL mapping is outsourced to cloud services without 
decrypting the data. We accomplish this using HE, which allows computation on ciphertexts. The data 
owner encrypts the data with their public key and uploads the data to the Cloud, where it is computed, 
and they receive encrypted results, which can then be decrypted with the data owner’s private key.  
c | eQTL mapping with secure multiparty computation (SMC). In this scenario, eQTLs are mapped 
collectively for data residing at two separate institutions. Using SMC, the institutions can share a 
transformed version of their data with a third- party compute node, where these inputs are combined. 
The transformations are done such that the real inputs are not visible, but when combined they result 
in the correct output. Note that the addition of the third server in this figure is optional in SMC.  
d | eQTL mapping with federated learning. Similar to part c, this approach is used when data are 
located at different sites that are not allowed to share data with each other. One can think of an eQTL 
mapping problem as a classical regression problem, in which the gene expression of each gene is 
regressed across each SNP genotype in the cohort. A traditional regression model can work iteratively 
without the need for data sharing; each site can create a mini model using private SNP data and 
exchange the model parameters back and forth until it converges to a model that represents data at 
all sites. Here, we added another step, that is, the addition of noise to the exchanged parameters for 
differential privacy, to prevent possible snooping into training data via model parameters.

◀

  volume 23 | April 2022 | 255NATure revieWS | GeNeTiCs

P e r S P e c t i v e S



0123456789();: 

mishandling of sensitive data. Already today, 
there are multiple personalized medicine 
start- ups that aim to use blockchain to 
improve genomic data storage138. Similar 
to other cryptography- based solutions, 
blockchain comes with its own overhead, 
and the field is currently in its infancy. 
As we obtain more personalized multiomics 
data and as computing resources expand, 
blockchain technology might be adopted for 
resolving security and privacy issues related 
to functional genomics data.

Genomic data- sharing beacons
The Global Alliance for Genomics and 
Health (GA4GH) launched the Beacon 
Project to enable genomic and clinical data 
sharing across federated networks in a 
privacy- preserving manner139. A genomic 
data- sharing beacon is a framework 
for public web servers that respond to 
queries about genomic data collection. 
With this framework, a query (‘Does any 
individual in this project have a SNP in 
this location of the genome?’) receives a 
binary response (‘yes’ or ‘no’) to protect the 
privacy of the research participants of the 
project. Although beacons were originally 
designed to query specific alleles from a 
genomic data collection, an extension called 
MBeacon for functional genomics data, 
specifically for DNA methylation data, has 
been implemented140. Since the original 
beacons for genomics data have been shown 
extensively to be vulnerable to privacy 
attacks36,141–143, MBeacon incorporates 
a novel differential privacy mechanism 
called SVT2 that can successfully mitigate 
privacy attacks without harming the utility 
of the data.

Conclusions
Advances in sequencing technologies and 
laboratory techniques have enabled the 
development of many assays to probe the 
epigenetic and transcriptomic states of 
the cell by measuring gene expression or 
DNA- binding protein levels. Although 
functional genomics data are generated 
to elucidate the activities of nucleic acids 
and proteins and are not obtained for 
the purpose of genotyping, they can 
potentially be intrusive because, by virtue 
of the data generation technology, the 
data include snippets of DNA sequences 
containing genetic variants in addition to 
other metadata such as pre- determinable 
conditions, traits, sex and race. With 
increases in different omics techniques, 
genomic privacy studies have shifted in 
focus and have shown that new privacy 
breaches are possible for mining obvious 
and cryptic information about individuals. 
Herein, we outline the types of information 
that can be gleaned from functional 
genomics data and discuss mitigation 
strategies grounded in privacy and utility.

What will the privacy of functional 
genomics data look like in the future? On 
one hand, the size of genomic databases 
will increase and this will make it difficult 
to re- identify individuals with the noisy 
genotypes inferred from functional 
genomics datasets (Fig. 6). On the other 
hand, there are multiple trends that are 
in contrast to this statement. As more 
epigenetics data, even in a summarized form 
such as gene expression values, are collected 
and shared, more associations between 
diseases and genomic activities will likely 
be found, which could lead to the inference 

of patient phenotypes. That is, with the 
increase in technologies that characterize 
the activities of the genome, the risk of 
inferring characteristic and potentially 
private information of a single individual 
will increase. In addition, more functional 
genomics data from a single individual 
will lead to better direct genotyping and 
also greater inference of more cryptic 
genotypes through eQTLs and chromatin 
QTLs (Fig. 6). Moreover, longitudinal 
assaying of functional genomic features may 
become part of clinical routine in precision 
medicine or even part of daily life, similar 
to monitoring simple physiological markers 
such as heart rate. It has indeed been 
shown that personal omics profiling can 
elucidate important molecular and medical 
phenotypes144. This will increase the amount 
of characterizing data about an individual. 
However, it also underscores the fact that 
functional genomics data, especially in 
summarized form, are transient compared 
with the genome. Whereas the genome is 
characteristic and identifying for a person’s 
entire life cycle, functional genomics can 
characterize a moment in time, and the risk 
to privacy can deteriorate as time passes 
from the time biosamples were collected.

Given these trends, we reiterate the 
importance of proactively developing 
appropriate data- sharing modes for 
functional genomics data instead of  
relying on traditional DNA sequencing 
data- sharing modes.
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