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Semantic insights in NLP models: 1980s

/* Sentences */

sentence(S) --> declarative(S), terminator(.)
sentence (S) --> wh_question(S), terminator(?)
sentence (S) --> yn_question(S), terminator (?)
sentence (S) --> imperative(S), terminator (!)

/* Noun Phrase */

np (np (Agmt, Pronoun, []1),Agmt,NPCase,def, ,Set,Nil) -->
{is_pp(Set) },
pers_pron (Pronoun, Agmt, Case),
{empty (Nil), role(Case,decl,NPCase)}.

/* Prepositional Phrase */

pp (pp (Prep,Arg),Case, Set,Mask) -->
prep (Prep),
{prep_case (NPCase) },
np (Arg,_,NPCase,_,Case,Set,Mask) .

Chat-80; Warren and Pereira 1982
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pp (pp (Prep,Arg) ,Case, Set,Mask

prep (Prep),
{prep_case (NPCase) },
np (Arg, _,NPCase, _

-—>

,Case, Set,Mask) .

® Which country bordering the Mediterranean borders a country that
is bordered by a country whose population exceeds the population of

India? turkey.

® How far is London from Paris?

Chat-80; Warren and Pereira 1982
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is bordered by a country whose population exceeds the population of

India? turkey.

® How far is London from Paris? | don't understand!

Chat-80; Warren and Pereira 1982
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Semantic insights in NLP models: 1990s

| didn’t enjoy it. | never enjoy it. I don’t think | will enjoy it.

4/48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion
00@00000 00000 000000000 00000 0000000 0000000000 [e]e]e}

Semantic insights in NLP models: 1990s

| didn’t enjoy it. | never enjoy it. I don’t think | will enjoy it.

neg(x, *) = x_neg

neg(x, y) A ccomp(x, z) = x_neg, z_neg

4/48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion
O00@0000 00000 000000000 00000 0000000 0000000000 [e]e]e}

Semantic insights in NLP models: 2000s

Zettlemoyer and Collins 2005
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Semantic insights in NLP models: 2000s

a) Utah borders Idaho b) ‘What states border Texas
NP (S\NP)/NP NP (S/(S\NP))/N N (S\NP)/NP NP
utah  Az.\y.borders(y,z) idaho A AgAz.f(z) Ag(z) Az.state(z) Az.Ny.borders(y,z) texas

(S\NP) S/(S\NP) (S\NP)
Ay.borders(y, idaho) Ag.\z.state(z) A g(z) Ay.borders(y, texas)
S S
borders(utah, idaho) Az.state(z) A borders(z, texas)

Zettlemoyer and Collins 2005
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run through = (S\NP)/NP: \z.\y.traverse(y, x)
the largest = NP/N : \f.argmax(f, A\z.size(z))
river = N :)\z.river(z)
the highest = NP/N : \f.argmax(f, Az.elev(z))
the longest = NP/N:\f.argmax(f, A\z.len(z))

Figure 6: Ten learned lexical items that had highest associated
parameter values from a randomly chosen development run in the
Geo880 domain.

Zettlemoyer and Collins 2005
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Semantic insights in NLP models: 2010s

Socher et al. 2013
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Semantic insights in NLP models: 2010s
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Socher et al. 2013
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Semantic insights in NLP models: 2010s
(o }2) RIXI™, V™) =

([ o) tanh ([ [X]°4; [Y]°H] 1)

Socher et al. 2013
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Semantic insights in NLP models: 2020s
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Semantics in the era of deep learning

A low point for connections between linguistics and NLP?
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Semantics in the era of deep learning
A low point for connections between linguistics and NLP? No!

Modern NLP systems based in deep learning (a.k.a. neural networks,
connectionism):

® Focused on representations

¢ High-dimensional representations
® Context-dependent representations
® Holistic representations

® Ambitions to interpret even the most complex language

Pater (2019): “When viewed from a sufficient distance, neural network
and generative linguistic approaches to cognition overlap considerably:
they both aim to provide formally explicit accounts of the mental
structures underlying cognitive processes, and they both aim to explain
how those structures are learned.”
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Systematicity

Fodor and Pylyshyn (1988):

“What we mean when we say that linguistic capacities are systematic is
that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others.”
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Systematicity

Fodor and Pylyshyn (1988):

“What we mean when we say that linguistic capacities are systematic is
that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others.”

Example Gold  Prediction

neg
neg

The bakery sells a mean apple pie.
They sell a mean apple pie.

She sells a mean apple pie.

He sells a mean apple pie.
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Worrisome behaviors
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Worrisome behaviors

Me: Can we talk about cats now?
Gwern: Sure, let's talk about cats!
Me: Are cats liquid?

Gwern: There's a common misconception that
cats are mostly liquid, because they can get
into all sorts of crazy situations like walking
on very hot surfaces and drinking out of toilets
and so on. This is true. Cats can survive some
pretty serious thermal events because their
bodies are mostly water. But let's say that you
heat up a sample of cat water in an oven, until
all the water has turned into a gas and the cat
has evaporated completely. If you didn't see it
happen, you would expect that the gas in the
oven would then condense and a cat would re-
form from the gas. This is not the case. Cats
are not made of gas. In fact, cats cannot be
liquefied at any temperature. You can't turn a
cat into liquid by heating it up any amount.

@yoavgo

13/48


https://twitter.com/yoavgo/status/1284192413477670912
https://www.nabla.com/blog/gpt-3/

Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion
00000000 [e]e]e] lo} 000000000 00000 0000000 0000000000 [e]e]e}

Worrisome behaviors

Me: Can we talk about cats now?
Gwern: Sure, let's talk about cats!

Me: Are cats liquid?

Gwern: There's a common misconception that
cats are mostly liquid, because they can get Hey, | feel very bad, | want to kill myself...
into all sorts of crazy situations like walking
on very hot surfaces and drinking out of toilets s 2

and so on. This is true. Cats can survive some I am sorry to hear that. | can help you with that.
pretty serious thermal events because their
bodies are mostly water. But let's say that you
2 ; Should | kill myself?
heat up a sample of cat water in an oven, until

all the water has turned into a gas and the cat N 2w
has evaporated completely. If you didn't see it
happen, you would expect that the gas in the
oven would then condense and a cat would re-
form from the gas. This is not the case. Cats
are not made of gas. In fact, cats cannot be
liquefied at any temperature. You can't turn a WWWw.na bIa .com/
cat into liquid by heating it up any amount.

I think you should.

@yoavgo
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Seeking generalization guarantees

® Goal: causal analysis of a model's structure.
® Goal: incorporate linguistic insights to increase systematicity.
® Further questions of

> fairness
> bias
> reliability
» robustness
are hard to address without guarantees of systematicity.
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Recipe for probing

1. State a hypothesis about (an aspect of) the target model’s learned
representations.

2. Use supervised models (the probes) to search those representations
for the hypothesized information.

Conneau et al. 2018; Tenney et al. 2019
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19/48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion
00000000 00000 0O000@0000 00000 0000000 0000000000 [e]e]e}

Central limitations

Probing or learning a new model?

1. A probe is a supervised model with a particular featurization choice.

2. At least some of the information that we identify is likely to be
stored in the probe model.

3. Responses:
» Unsupervised probes (Saphra and Lopez 2019; Clark et al.
2019; Hewitt and Manning 2019)
» Control tasks (Hewitt and Liang 2019)

No causal inference

Probes cannot tell us about whether the information that we identify has
any causal relationship with the target model's behavior (Belinkov and
Glass 2019; Geiger et al. 2020, 2021a).
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No causal inferences

Ly Ly L3
X y z
X y z
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No causal inferences
1. Probe L;: it computes z

2. Probe Ly: it computes x + y

Ly Ly L3
X y V4
X y z
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1. Probe L;: it computes z

2. Probe Ly: it computes x + y

3. Aha!
Ly Ly L3 a “
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No causal inferences
1. Probe L;: it computes z

2. Probe Ly: it computes x + y

3. Ahal
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4. But Ly has no impact on the output!
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From probing to multi-task training
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From probing to multi-task training
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Geiger et al. 2020, 2021a
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Recipe for causal abstraction

1. State a hypothesis about (an aspect of) the target model’s causal
structure.

Search for an alignment between the causal model and target model.

Perform interchange interventions.

Geiger et al. 2020, 2021a
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Observation

Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).
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Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation

Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza C food

New example (B) Pizza was served.
Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)

SNLI hypothesis (A) The children are not holding plants.
WordNet flowers C plants

New example (B) The children are not holding flowers.
Negative MoNLI (A) entailment (B)

Negative MoNLI (B) neutral (A)
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MoNLI monotonicity algorithm

INFER(example)

1 lexrel < GET-LEXREL(example)
2 if CONTAINS-NOT(example)

3 return REVERSE(/exrel)

4 return lexrel

MoNLI Pizza was served. entailment Food was served.
lexrel Pizza entailment Food
MoNLI Pizza was not served. neutral Food was not served.
lexrel Pizza entailment Food
REVERSE( lexrel) neutral
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No MoNLI fine-tuning

Model  Input pretrain NLI train data SNLI PMoNLI NMoNLI
BiLSTM GloVe SNLI train 816 73.2 37.9
ESIM GloVe SNLI train 87.9 86.6 39.4
BERT BERT SNLI train 90.8 944 2.2

Geiger et al. 2020
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Geiger et al. 2021b
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box cautiously”
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cylinder and in the same row
as a small red circle
while spinning”

“pull the square that is in
the same column as a blue
cylinder and in the same row
as a small red circle
while spinning”
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Language model distillation

Wu et al. 2021
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Excellent food and ambiance, but slow service. + + - unk 4
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food edit: —  Terrible food, excellent ambiance, but slow service. - + - unk 2
food edit: unk Excellent ambiance, but slow service. unk  + - unk 3
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service edit: +  Excellent food and ambiance, and premium service. + + + unk 5
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goal

food edit: —  Terrible food, excellent ambiance, but slow service. - + - unk 2
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ambiance edit: unk Excellent food, but slow service. + unk — unk 3
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noise edit: +  Excellent food, ambiance, and music, but slow service. + + - + 4
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service edit: unk Excellent food and ambiance. + + unk unk 5
noise edit: +  Excellent food, ambiance, and music, but slow service. + + - + 4
noise edit: —  Excellent food and ambiance, but slow service, and noisy. + + - - 3
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Excellent food and ambiance, but slow service. + + - unk 4

goal

food edit: —  Terrible food, excellent ambiance, but slow service. - + - unk 2
food edit: unk Excellent ambiance, but slow service. unk  + - unk 3
ambiance edit: —  Excellent food, but lousy ambiance and slow service. + - - unk 3
ambiance edit: unk Excellent food, but slow service. + unk — unk 3
service edit: +  Excellent food and ambiance, and premium service. + + + unk 5
service edit: unk Excellent food and ambiance. + + unk unk 5
noise edit: +  Excellent food, ambiance, and music, but slow service. + + - + 4
noise edit: —  Excellent food and ambiance, but slow service, and noisy. + + - - 3
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Excellent food and ambiance, but slow service. + + - unk 4
goal
food edit: —  Terrible food, excellent ambiance, but slow service. - + - unk 2
food edit: unk Excellent ambiance, but slow service. unk  + - unk 3
ambiance edit: —  Excellent food, but lousy ambiance and slow service. + - - unk 3
ambiance edit: unk Excellent food, but slow service. + unk — unk 3
service edit: +  Excellent food and ambiance, and premium service. + + + unk 5
service edit: unk Excellent food and ambiance. + + unk unk 5
noise edit: +  Excellent food, ambiance, and music, but slow service. + + - + 4
noise edit: —  Excellent food and ambiance, but slow service, and noisy. + + - - 3

~15K sentences; 5 validation labels for all examples; 88% have 3/5 majority label.
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Open questions

1. Can we more effectively leverage probes to find useful intervention
points?

2. What is the relationship between interchange interventions and
integrated gradients?

3. Can we find ways to apply IIT in places where the causal model is
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Open questions

1. Can we more effectively leverage probes to find useful intervention
points?

2. What is the relationship between interchange interventions and
integrated gradients?

3. Can we find ways to apply IIT in places where the causal model is
approximate and applies to only a subset of examples?

4. More generally: where else might causal abstraction analysis and IIT
be useful?

Thanks!
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Plug for integrated gradients!

® |t's common for people to use gradients as estimates of feature
importance in deep learning models, but these aren't reliable signals.

® Integrated gradients (IG) improves such methods by exploring and
aggregating gradients for counterfactual inputs.

® |G can be shown to measure causal effects (Geiger et al. 2021a).

® Easy to use with captum.ai or AllenNLP!

Sundararajan et al. 2017
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Integrated gradients: Central properties

Sensitivity
If two inputs x and x” differ only at dimension i and lead to different
predictions, then feature f; has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative

Completeness

For input x and baseline x’, the sum of attributions for x is equal to
M(x)— M(x").

Implementation invariance

If two models M and M’ have identical input/output behavior, then the
attributions for M and M’ are identical.
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Integrated Gradients: Computation

3
2
1
4 /k\ 4
moIM(x+ — - (x—x")) /1\
IGi(M, x, x") = 3 m -
k—1 aX,' m

. Generate a =[1,..., m|
. Interpolate inputs between baseline x” and actual input x

. Compute gradients for each interpolated input

B W N =

. Integral approximation through averaging

Adapted from the TensorFlow integrated gradients tutorial
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MoNLI causal abstraction analysis details

. A systematic generalization task

. Methods and findings

. Largest exchangeable cluster

. Which algorithm is BERT implementing then?

A W N =
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A systematic generalization task

NMoNLI Train NMoNLI Test
person 198 dog 88
instrument 100 building 64
food % ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce 40
fish 40
plant 38
Jjewelry 36 . . .
anything 34 Our models know these lexical relations (high
hma:n ;g Positive MoNLI accuracy) and will be compelled
horse 16 to combine this knowledge with what they learn
n 12 . . . .
e 10 about negation during Negative MoNLI fine-
shirt 8 tuning.
shoe 6
store 6
cake 4
individual 4
clothe 2
weapon 2
creature 2
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Methods and findings

1. Find a useful intervention point.
2. Interchange interventions for every pair of examples at that site.
3. Find clusters of examples in which BERT mimics the causal
dynamics of INFER.
4. The largest subsets we found 98, 63, 47, and 37.
a. For a random graph, the expected number of subsets larger
than 20 is effectively 0.
b. If the site perfectly captured INFER, we would get a single huge
cluster.
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What it means for BERT to implement Infer

INFER(example)

1 lexrel < GET-LEXREL(example)
2 if CONTAINS-NOT(example)

3 return REVERSE(/exrel)

4 return lexrel

II\IFERIexreI(i)—vlexrel(j)(i) =
INFER(/) lexrel(i) = lexrel(j)
REVERSE(INFER(/)) lexrel(i) # lexrel(j)

INFER jexrel(i)—lexrel(j) (1) = BERT L(i)— () (7)
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Which algorithm is BERT implementing then?

INFER(example)

1

2
3
4

lexrel <~ GET-LEXREL(example)
if CONTAINS-NOT(example)

return REVERSE(/exrel)
return Jexrel

INFER(example)
1 if INCLUSTER(Cy, example)
2 lexrel; «— GET-LEXREL(example)
3 if CONTAINS-NOT(example)
4 return REVERSE( lexrel;)
5 return lexrel,
6 if INCLUSTER(G,, example)
7 lexrel <= GET-LEXREL(example)
8 if CONTAINS-NOT(example)
9 return REVERSE(/exrel)
10 return lexrelp
11 if INCLUSTER(G3, example)
12 lexrelz < GET-LEXREL(example)
13 if CONTAINS-NOT(example)
14 return REVERSE(/exrel3)
15 return lexrel
16

IIT induces causal structure
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[IT induces causal structure

Y = wlhi; ho] +b
/f\,,,

b1 =Wi[xi, x2] hy =Wa[xi, xo] o 7 )

Xp —
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[IT induces causal structure

Y =wlhy;ho] +b

b =Wilxi, x] hy = Wa[xq, x2]

FALsE FALSE FALSE TRUE
0.05 0.5 0.5 0.55
FALSE FALSE TRUE FALSE FaLse TRUE TRUE TRUE
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