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Semantic insights in NLP models: 1980s
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• Which country bordering the Mediterranean borders a country that
is bordered by a country whose population exceeds the population of
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Semantic insights in NLP models: 2010s
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Semantics in the era of deep learning

A low point for connections between linguistics and NLP? No!

Modern NLP systems based in deep learning (a.k.a. neural networks,
connectionism):
• Focused on representations
• High-dimensional representations
• Context-dependent representations
• Holistic representations
• Ambitions to interpret even the most complex language

Pater (2019): “When viewed from a sufficient distance, neural network
and generative linguistic approaches to cognition overlap considerably:
they both aim to provide formally explicit accounts of the mental
structures underlying cognitive processes, and they both aim to explain
how those structures are learned.”
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Fodor and Pylyshyn (1988):
“What we mean when we say that linguistic capacities are systematic is
that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others.”
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Systematicity

Fodor and Pylyshyn (1988):
“What we mean when we say that linguistic capacities are systematic is
that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others.”

Example Gold Prediction

The bakery sells a mean apple pie. pos pos
They sell a mean apple pie. pos pos

She sells a mean apple pie. pos neg
He sells a mean apple pie. pos neg
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Probing BERT

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ )� Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Probing or learning a new model?

1. A probe is a supervised model with a particular featurization choice.
2. At least some of the information that we identify is likely to be

stored in the probe model.
3. Responses:
É Unsupervised probes (Saphra and Lopez 2019; Clark et al.

2019; Hewitt and Manning 2019)
É Control tasks (Hewitt and Liang 2019)

No causal inference
Probes cannot tell us about whether the information that we identify has
any causal relationship with the target model’s behavior (Belinkov and
Glass 2019; Geiger et al. 2020, 2021a).
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Connections to the literature

• Constructive abstraction (Beckers et al. 2020)
• Causal mediation analysis (Vig et al. 2020)
• Role Learning Networks (Soulos et al. 2020)
• CausaLM (Feder et al. 2021)
• Amnesic Probing (Elazar et al. 2021)

27 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

Summary

Characterize
representations

Causal
inference

Improved
models

Probing
Feature attribution
Causal abstraction
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Monotonicity NLI (MoNLI)
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Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.

30 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.

30 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.

30 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.

30 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.

30 / 48



Semantics in NLP Motivations Probing Causal abstraction Monotonicity NLI Interchange intervention training Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)
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MoNLI monotonicity algorithm

Infer(example)
1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

MoNLI Pizza was served. entailment Food was served.
lexrel Pizza entailment Food

MoNLI Pizza was not served. neutral Food was not served.
lexrel Pizza entailment Food

reverse(lexrel) neutral
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MoNLI as challenge dataset
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MoNLI as challenge dataset

No MoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9
ESIM GloVe SNLI train 87.9 86.6 39.4
BERT BERT SNLI train 90.8 94.4 2.2
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MoNLI as challenge dataset

No MoNLI fine-tuning With NMoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5
ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2
BERT BERT SNLI train 90.8 94.4 2.2 90.5 90.0
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Probe results for lexrel accuracy

[CLS] this not tree [SEP] this not elm [SEP]

entailment

SmallLinearModel(h) = get-lexrel(tree, elm)
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Appendix with full probing results!
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BERT NLI interventions

a pug runs [SEP] a dog runs
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Infer(ex)
1 lexrel← get-lexrel(ex)
2 if contains-not(ex)
3 return reverse(lexrel)
4 return lexrel
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Interchange intervention training
(IIT)
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IIT: Training models to conform to a hypothesis
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MQNLI: Extreme compositional complexity

ϵ every ϵ baker ϵ ϵ ϵ eats ϵ no ϵ bread
contradiction

ϵ no angry baker ϵ ϵ ϵ eats ϵ no ϵ bread

ϵ every silly professor ϵ ϵ ϵ sells not every ϵ book
neutral

ϵ every silly professor ϵ ϵ ϵ sells not every ϵ chair

38 / 48
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MQNLI: Extreme compositional complexity
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Figure 2: The causal structure of the high-level natural logic causal model CNatLog that performs
inference on MQNLI. The superscripts P and H stand for ‘premise’ and ‘hypothesis’ and the
subscripts ‘Obj’ and ‘Subj’ stand for ‘subject’ and ‘object’. The node labels are used to explain the
experimental results in Section 5 and Section 5.2.

" every " baker " " " eats " no " bread
contradiction

" no angry baker " " " eats " no " bread

" every silly professor " " " sells not every " book
neutral

" every silly professor " " " sells not every " chair

not every sad baker " " fairly admits not every odd idea
entailment

" some " baker does not " admits " no " idea

(a) MQNLI examples. The " token serves as padding
(but still attended to by the model) and ensures a per-
fect alignment between both premises and hypotheses
and across all examples. It is semantically an identity
element.

Model Train Dev Test

CBoW 88.04 54.18 53.99
TreeNN 67.01 54.01 53.73
CompTreeNN 99.65 80.17 80.21
BiLSTM 99.42 46.41 46.32
BERT 99.99 88.25 88.50

(b) MQNLI results. The first three models are from
Geiger et al. 2019, where the CompTreeNN is a
task-specific model not suitable for general NLI
and functions as an idealized upperbound. Our
results show that BERT-based models can surpass
this without such alignments.

Table 1: MQNLI examples (left) and MQNLI results (right).

Compare this characterization of the causal roles of neural representations with that provided by
attribution methods, which would assign L1 and L2 a single scalar value based on their contribution
to the final output. This gives us no information about what representations are being composed
together at L1 and L2, nor what representations are composed from representations at L1 and L2.

Our method assigns causally impactful information content, but also identifies the abstract causal
structure along which representations are composed. It encompasses and improves on correlational
and attribution methods.

4 The Natural Language Inference Task and Models

Multiply Quantified NLI Dataset The Multiply Quantified NLI (MQNLI) dataset of Geiger et al.
[2019] contains templatically generated English-language NLI examples that involve very complex
interactions between quantifiers, negation, and modifiers. We provide a few examples in Table 1a;
the emptystring symbol " ensures perfect alignments at the token level both between premises and
hypotheses and across all examples.

The MQNLI examples are labeled using an algorithmic implementation of the natural logic of
MacCartney and Manning [2009] over tree structures, and the dataset distribution includes a method
for creating train/dev/test splits that vary in their difficulty. In the hardest setting, the train set is
provably the minimal set of examples required to ensure that the dev and test sets can be perfectly
solved by a simple symbolic model; in the easier settings, the train set redundantly encodes necessary
information, which might allow a model to perform perfectly in assessment by memorization despite
not having found a truly general solution. For a fuller review of the dataset, see Appendix B.
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Figure 3: An aligned composition tree for inference on our set of examples S . The superscripts P and H refer to
premise and hypothesis. The semantic relations are defined in Table 2. The set Q is {some, every, no, not, every}.
The set Neg is {", not}. Q is the set of 16 joint projectivity signatures between the elements of Q. N is the set
of 4 joint projectivity signatures between " and no. A is the set of 4 joint projectivity signatures between " and
an intersective adjective or adverb. REL computes the semantic relations between lexical items, PROJ computes
the joint projectivity between two semantic functions (Section 4.1 and Appendix B), and COMP applies semantic
relations to joint projectivity signatures. This composition tree defines over 1026 distinct examples.

from the hypothesis. If both leaf nodes in a sibling
pair have domains containing lexical items that are
semantic functions, then their parent node domain
contains the joint projectivity signatures between
those semantic functions. Otherwise the parent
node domain contains the semantic relations be-
tween the lexical items in the two sibling node
domains. The root captures the overall semantic
relation between the premise and the hypothesis,
while the remaining non-leaf nodes represent in-
termediate phrasal relations.

The sets AdjS , NS , AdjO, NO, Adv, and V each
have 100 of their respective open class lexical
items with Adv, AdjS , and AdjO also containing
the empty string ". The set Q is {some, every, no,
not, every} and the set Neg is {", not}. Q is the
set of 16 joint projectivity signatures between the
quantifiers some, every, no, and not every, N is
the set of 4 joint projectivity signatures between
the empty string " and no, and A is the set of 4
projectivity signatures between " and an intersec-
tive adjective or adverb. These joint projectivity
signatures were exhaustively determined by us by
hand, using the projectivity signatures of negation
and quantifiers provided by MacCartney and Man-
ning (2009) as well as a small extension (details in
Appendix B).

The function PROJ computes the joint projec-
tivity signature between two semantic functions,
REL computes the semantic relation between two
lexical items, and COMP inputs semantic relations
into a joint projectivity signature and outputs the
result. We trimmed the domain of every node so
that the function of every node is surjective. Pairs

of subexpressions containing quantifiers can be in
any of the seven basic semantic relations; even
with the contributions of open-class lexical items
trivialized, the level of complexity remains high,
and all of it emerges from semantic composition,
rather than from lexical relations.

4.4 A Difficult But Fair NLI Task

A fair training dataset exposes each local function
to all possible inputs. Thus, a fair training dataset
for NLI will have the following properties. First,
all lexical semantic relations must be included in
the training data, else the lexical targets could be
underdetermined. Second, for any aligned seman-
tic functions f and g with unknown joint projec-
tivity signature Pf/g, and for any semantic relation
R, there is some training example where Pf/g is
exposed to the semantic relation R. This ensures
that the model has enough information to learn
full joint projectivity signatures. Even with these
constraints in place, the composition tree of Sec-
tion 3.1 determines an enormous number of very
challenging train/test splits. Appendix C fully de-
fines the procedure for data generation.

We also experimentally verify that our baseline
learns a perfect solution from the data we gener-
ate. The training set contains 500,000 examples
randomly sampled from Strain and the test and de-
velopment sets each contain 10,000 distinct exam-
ples randomly sampled from S̄train. All random
sampling is balanced across adjective–noun and
adverb–verb relations as well as across the three
NLI labels, as described in Section 4.2.
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MQNLI: IIT on the object quantifier model
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MNIST Pointer Value Retrieval

0–3: top right; 4–6: bottom left; 7–9: bottom right
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ReaSCAN

“push the small red circle 
hesitantly”

“walk to the small square 
that is inside of a yellow 

box cautiously”

Simple (gSCAN) 1-relative-clause

Referent Target

Command

2-relative-clauses 2-relative-clauses (RD)

Target

“pull the square that is in 
the same column as a blue 

cylinder and in the same row 
as a small red circle

 while spinning”

Target
Target

D1

D2-1

D2-2
D3

“pull the square that is in 
the same column as a blue 

cylinder and in the same row 
as a small red circle

 while spinning”

Target
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Language model distillation

Logits

salad

I ate some <MASK> .

Logits

froze

The water <MASK> solid .

pizza

Logits

I ate some <MASK> .

froze

Logits

The water <MASK> solid .
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CeBaB: A causal benchmark for sentiment
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Excellent food and ambiance, but slow service. + + – unk 4

goal

food edit: – Terrible food, excellent ambiance, but slow service. – + – unk 2
food edit: unk Excellent ambiance, but slow service. unk + – unk 3

ambiance edit: – Excellent food, but lousy ambiance and slow service. + – – unk 3
ambiance edit: unk Excellent food, but slow service. + unk – unk 3

service edit: + Excellent food and ambiance, and premium service. + + + unk 5
service edit: unk Excellent food and ambiance. + + unk unk 5
noise edit: + Excellent food, ambiance, and music, but slow service. + + – + 4
noise edit: – Excellent food and ambiance, but slow service, and noisy. + + – – 3

≈15K sentences; 5 validation labels for all examples; 88% have 3/5 majority label.
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ambiance edit: unk Excellent food, but slow service. + unk – unk 3

service edit: + Excellent food and ambiance, and premium service. + + + unk 5
service edit: unk Excellent food and ambiance. + + unk unk 5
noise edit: + Excellent food, ambiance, and music, but slow service. + + – + 4
noise edit: – Excellent food and ambiance, but slow service, and noisy. + + – – 3

≈15K sentences; 5 validation labels for all examples; 88% have 3/5 majority label.
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IIT training with CeBaB

food service amb. noise overall

awful food but friendly – + unk unk 2

food service amb noise

tasty fries but slow + – unk unk 4

food service amb noise

awful fries and slow – – unk unk 1
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Open questions

1. Can we more effectively leverage probes to find useful intervention
points?

2. What is the relationship between interchange interventions and
integrated gradients?

3. Can we find ways to apply IIT in places where the causal model is
approximate and applies to only a subset of examples?

4. More generally: where else might causal abstraction analysis and IIT
be useful?

Thanks!
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Feature attribution

1. captum.ai
2. Integrated gradients: Intuition
3. Integrated Gradients: Central properties
4. Integrated Gradients: Computation
5. Reliable insights about causal structure
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captum.ai

1. Integrated gradients (Sundararajan et al. 2017)
2. Gradients
3. Saliency Maps (Simonyan et al. 2013)
4. DeepLift (Shrikumar et al. 2017)
5. Deconvolution (Zeiler and Fergus 2014)
6. LIME (Ribeiro et al. 2016)
7. Feature ablation
8. Feature permutation
9. …
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Plug for integrated gradients!

• It’s common for people to use gradients as estimates of feature
importance in deep learning models, but these aren’t reliable signals.

• Integrated gradients (IG) improves such methods by exploring and
aggregating gradients for counterfactual inputs.

• IG can be shown to measure causal effects (Geiger et al. 2021a).
• Easy to use with captum.ai or AllenNLP!
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Integrated gradients: Intuition
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Integrated gradients: Central properties

Sensitivity
If two inputs x and x ′ differ only at dimension i and lead to different
predictions, then feature fi has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative

Completeness
For input x and baseline x ′, the sum of attributions for x is equal to
M(x)− M(x ′).

Implementation invariance
If two models M and M′ have identical input/output behavior, then the
attributions for M and M′ are identical.
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Integrated Gradients: Computation

IGi(M, x , x ′) =

5
︷      ︸︸      ︷
(xi − x ′i ) ·

4
︷︸︸︷

m
∑

k=1

3
︷                            ︸︸                            ︷
∂M(

2
︷                    ︸︸                    ︷
x ′ +

1
︷︸︸︷

k
m
· (x − x ′))

∂xi
·

4
︷︸︸︷

1
m

1. Generate α = [1, . . . ,m]

2. Interpolate inputs between baseline x ′ and actual input x
3. Compute gradients for each interpolated input
4. Integral approximation through averaging
5. Scaling to remain in the space region as the original
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Adapted from the TensorFlow integrated gradients tutorial

https://www.tensorflow.org/tutorials/interpretability/integrated_gradients
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Reliable insights about causal structure
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Probe results for lexrel accuracy
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MoNLI causal abstraction analysis details

1. A systematic generalization task
2. Methods and findings
3. Largest exchangeable cluster
4. Which algorithm is BERT implementing then?
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A systematic generalization task

NMoNLI Train NMoNLI Test

person 198 dog 88
instrument 100 building 64
food 94 ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce 40
fish 40
plant 38
jewelry 36
anything 34
hat 20
man 20
horse 16
gun 12
adult 10
shirt 8
shoe 6
store 6
cake 4
individual 4
clothe 2
weapon 2
creature 2

Our models know these lexical relations (high
Positive MoNLI accuracy) and will be compelled
to combine this knowledge with what they learn
about negation during Negative MoNLI fine-
tuning.
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Methods and findings

1. Find a useful intervention point.
2. Interchange interventions for every pair of examples at that site.
3. Find clusters of examples in which BERT mimics the causal

dynamics of Infer.
4. The largest subsets we found 98, 63, 47, and 37.

a. For a random graph, the expected number of subsets larger
than 20 is effectively 0.

b. If the site perfectly captured Infer, we would get a single huge
cluster.
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What it means for BERT to implement Infer

Infer(example)
1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

Inferlexrel(i)→lexrel(j)(i) =
¨

Infer(i) lexrel(i) = lexrel(j)
reverse(Infer(i)) lexrel(i) , lexrel(j)

Inferlexrel(i)→lexrel(j)(i) = BERTL(i)→L(j)(i)
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Largest exchangeable cluster
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Which algorithm is BERT implementing then?

Infer(example)
1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

Infer(example)
1 if inCluster(C1, example)
2 lexrel1 ← get-lexrel(example)
3 if contains-not(example)
4 return reverse(lexrel1)
5 return lexrel1
6 if inCluster(C2, example)
7 lexrel2 ← get-lexrel(example)
8 if contains-not(example)
9 return reverse(lexrel2)
10 return lexrel2
11 if inCluster(C3, example)
12 lexrel3 ← get-lexrel(example)
13 if contains-not(example)
14 return reverse(lexrel3)
15 return lexrel3
16 …
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IIT induces causal structure
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