Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Boston+Middlesex
Based on data through October 9, 2020
Outline of Slides

- Basic data from Johns Hopkins CSSE (raw and smoothed)
- Brief summary of the model
- Baseline results \(\delta = 1.0\%, \ \gamma = 0.2, \ \theta = 0.1 \)
- Simulation of re-opening – possibilities for raising \(R_0 \)
- Results with alternative parameter values:
 - Lower mortality rate, \(\delta = 0.8\% \)
 - Higher mortality rate, \(\delta = 1.2\% \)
 - Infections last longer, \(\gamma = 0.15 \)
 - Cases resolve more quickly, \(\theta = 0.2 \)
 - Cases resolve more slowly, \(\theta = 0.07 \)
- Data underlying estimates of \(R_0(t) \)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Boston+Middlesex: Daily Deaths per Million People

![Graph showing daily deaths per million people in Boston+Middlesex from April to October 2020. The graph displays a significant spike in deaths during May, with a gradual decrease thereafter.](image-url)
Boston+Middlesex: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Boston+Middlesex: Estimates of $R_0(t)$

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Boston+Middlesex: Percent Currently Infectious

Boston+Middlesex
Peak I/N = 1.77% Final I/N = 0.08% $\delta=0.010$ $\theta=0.10$ $\gamma=0.20$
Boston+Middlesex: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

• **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - **Black** = current
 - **Red** = oldest, **Orange** = second oldest, **Yellow** = third oldest...
 - **Violet (purple)** = one day earlier

• For robustness graphs, same idea
 - **Black** = baseline (e.g. $\delta = 1.0\%$)
 - **Red** = lowest parameter value (e.g. $\delta = 0.8\%$)
 - **Green** = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

$$\log R_0(t) = a_0 - \alpha(Daily \ Deaths)$$

$$\Rightarrow \alpha \approx 0.05$$

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = final empirical value$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Boston+Middlesex (7 days): Daily Deaths per Million People $\left(\alpha = .05\right)$

Boston+Middlesex

$R_0=2.1/1.1/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad %Ifect=14/14/15$

DATA THROUGH 09-OCT-2020
Boston+Middlesex (7 days): Cumulative Deaths per Million (Future, $\alpha = 1.1$)

$R_0 = 2.1/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 14/14/15$

DATA THROUGH 09-OCT-2020
Boston+Middlesex (7 days): Cumulative Deaths per Million, Log Scale

New York City

Italy

Boston+Middlesex

$R_0 = 2.1/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect}=14/14/15$
Robustness to Mortality Rate, δ
Boston+Middlesex: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 14/14/15

DATA THROUGH 09-OCT-2020
Boston+Middlesex: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 14/14/15$

DATA THROUGH 09-OCT-2020
Boston+Middlesex: Cumulative Deaths per Million (δ = .01/.008/.012)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect=14/14/15

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

– Black: assumes $R_0(today)$ remains in place forever
– Red: assumes $R_0(suppress) = 1/s(today)$
– Green: we move 25% of the way from $R_0(today)$
 back to initial $R_0 = “normal”$
– Purple: we move 50% of the way from $R_0(today)$
 back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Boston+Middlesex: Re-Opening \((\alpha = .05) \)

Boston+Middlesex

\[R_0(t) = 1.1, \quad R_0(\text{suppress}) = 1.2, \quad R_0(25/50) = 1.3/1.6, \quad \delta = 0.010, \quad \alpha = 0.05 \]

(Light bars = New York City, for comparison)
Boston+Middlesex: Re-Opening ($\alpha = 0$)

Boston+Middlesex

$R_0(t)=1.0$, R_0 (suppress) = 1.2, $R_0(25/50)=1.3/1.6$, $\delta = 0.010$, $\alpha = 0.00$
Results for alternative parameter values
Boston+Middlesex (7 days): Daily Deaths per Million People ($\alpha = 0$)

R$_0$=2.1/1.0/1.0 $\delta = 0.010$ $\alpha=0.00$ $\theta=0.1$ %Infect=14/14/14

DATA THROUGH 09-OCT-2020
Boston+Middlesex (7 days): Cumulative Deaths per Million (Future, $\alpha = 2.1$)

$R_0 = 2.1/1.0/1.0 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad %\text{Infect}=14/14/14$

DATA THROUGH 09-OCT-2020
Boston+Middlesex (7 days): Cumulative Deaths per Million, Log Scale

Boston+Middlesex

$R_0 = 2.1/1.0/1.0$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $\%$Infect = 14/14/14
Boston+Middlesex: Daily Deaths per Million People ($\delta = 0.8\%$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.2$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%\text{Infect} = 17/18/18$
Boston+Middlesex: Cumulative Deaths per Million ($\delta = 0.8\%$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.2$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%$Infect = 17/18/18
Boston+Middlesex: Daily Deaths per Million People \((\delta = 1.2\%) \)

Boston+Middlesex

\[R_0=2.1/1.0/1.1 \quad \delta = 0.012 \quad \theta=0.1 \quad \gamma=0.2 \quad \%\text{Infect}=12/12/12 \]
Boston+Middlesex: Cumulative Deaths per Million ($\delta = 1.2\%$)

Boston+Middlesex

$R_0=2.1/1.0/1.1 \quad \delta = 0.012 \quad \theta=0.1 \quad \gamma=0.2 \quad \%\text{Infect}=12/12/12$
Boston+Middlesex: Daily Deaths per Million People ($\gamma = .2/ .15$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ \(\delta = 0.010 \) \(\alpha = 0.05 \) \(\theta = 0.1 \) \%Infect = 14/14/15
Boston+Middlesex: Cumulative Deaths per Million $\gamma = 0.2 / 0.15$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 14/14/15

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

$\gamma = 0.2$

$\gamma = 0.15$
Boston+Middlesex: Daily Deaths per Million People ($\theta = .1/.07/.2$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%Infect = 14/14/15$

DATA THROUGH 09-OCT-2020
Boston+Middlesex: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Boston+Middlesex

$R_0 = 2.1/1.1/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect=14/14/15

DATA THROUGH 09-OCT-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Boston+Middlesex: Daily Deaths, Actual and Smoothed

Boston+Middlesex: Daily deaths, d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Boston+Middlesex: Change in Smoothed Daily Deaths

Boston+Middlesex: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Boston+Middlesex: Change in (Change in Smoothed Daily Deaths)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]