Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for California
Based on data through August 24, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results \((\delta = 1.0\%, \gamma = 0.2, \theta = 0.1) \)
• Simulation of re-opening – possibilities for raising \(R_0 \)
• Results with alternative parameter values:
 - Lower mortality rate, \(\delta = 0.8\% \)
 - Higher mortality rate, \(\delta = 1.2\% \)
 - Infections last longer, \(\gamma = 0.15 \)
 - Cases resolve more quickly, \(\theta = 0.2 \)
 - Cases resolve more slowly, \(\theta = 0.07 \)
• Data underlying estimates of \(R_0(t) \)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
California: Daily Deaths per Million People

California

Daily deaths per million people

Apr May Jun Jul Aug 2020
Brief Summary of Model

• See the paper for a full exposition

• A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
California: Estimates of $R_0(t)$

California
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
California: Percent Currently Infectious

California
Peak I/N = 0.18% Final I/N = 0.16% δ = 0.010 θ = 0.10 γ = 0.20
California: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it.
- For future, two approaches:
 1. Alternatively, we fit this equation:

\[
\log R_0(t) = a_0 - \alpha(Daily\ Deaths)
\]

\[\Rightarrow \alpha \approx .05\]

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$.
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
California (7 days): Daily Deaths per Million People ($\alpha = .05$)

California

$R_0 = 1.4/1.0/1.1$ \hspace{0.5cm} $\delta = 0.010$ \hspace{0.5cm} $\alpha = 0.05$ \hspace{0.5cm} $\theta = 0.1$ \hspace{0.5cm} $\%$ Infect $= 3/4/7$

DATA THROUGH 24-AUG-2020
California (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

California

$R_0 = 1.4/1.0/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 3/4/7$

DATA THROUGH 24-AUG-2020
California (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0.05$)

$R_0 = 1.4/1.0/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 3/4/7$

- California
- New York City
- Italy
Robustness to Mortality Rate, δ
California: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

DATA THROUGH 24-AUG-2020
California: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

California

$R_0 = 1.4/1.0/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 3/4/7$

DATA THROUGH 24-AUG-2020
California: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

California

$R_0 = 1.4/1.0/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect $= 3/4/7$

DATA THROUGH 24-AUG-2020
Reopening and Herd Immunity

– Black: assumes $R_0(today)$ remains in place forever
– Red: assumes $R_0(suppress) = 1/s(today)$
– Green: we move 25% of the way from $R_0(today)$ back to initial $R_0 = “normal”$
– Purple: we move 50% of the way from $R_0(today)$ back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
California: Re-Opening ($\alpha = .05$)

California

$R_0(t)=1.0$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.3/1.5$, $\delta = 0.010$, $\alpha=0.05$
California: Re-Opening ($\alpha = 0$)

California

$R_0(t)=1.0$, $R_0^{\text{suppress}}=1.0$, $R_0(25/50)=1.3/1.5$, $\delta = 0.010$, $\alpha=0.00$
Results for alternative parameter values
California (7 days): Daily Deaths per Million People ($\alpha = 0$)

California

$R_0 = 1.4/1.0/1.0 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 3/4/6$

DATA THROUGH 24-AUG-2020
California (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

California

$R_0 = 1.4/1.0/1.0$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $\%$ Infect $= 3/4/6$

DATA THROUGH 24-AUG-2020
California (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

California

$R_0=1.4/1.0/1.0$ $\delta = 0.010$ $\alpha=0.00$ $\theta=0.1$ $\%$Infect = 3/4/6

New York City

Italy
California: Daily Deaths per Million People ($\delta = 0.8\%$)

California

$R_0=1.4/1.0/1.1$ $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect= 4/5/8
California: Cumulative Deaths per Million ($\delta = 0.8\%$)

California

$R_0 = 1.4/1.0/1.1$ \hspace{0.5cm} $\delta = 0.008$ \hspace{0.5cm} $\theta = 0.1$ \hspace{0.5cm} $\gamma = 0.2$ \hspace{0.5cm} $\%\text{Infect} = 4/5/8$
California: Daily Deaths per Million People ($\delta = 1.2\%$)

California

$R_0=1.4/1.0/1.0$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%\text{Infect}=3/4/6$
California: Cumulative Deaths per Million ($\delta = 1.2\%$)

California

$R_0 = 1.4/1.0/1.0$ \(\delta = 0.012\) \(\theta = 0.1\) \(\gamma = 0.2\) \%Infect = 3/4/6
California: Daily Deaths per Million People ($\gamma = 0.2/0.15$)

California

$R_0 = 1.4/1.0/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 3/4/7$

DATA THROUGH 24-AUG-2020
California: Cumulative Deaths per Million $\gamma = .2/.15$)

California

$R_0 = 1.4/1.0/1.1 \; \delta = 0.010 \; \alpha = 0.05 \; \theta = 0.1 \; \%\text{Infect} = 3/4/7$

DATA THROUGH 24-AUG-2020

$\gamma \equiv 0.15$
California: Daily Deaths per Million People ($\theta = .1/.07/.2$)

California

$R_0=1.4/1.0/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%\text{Infect}=3/4/7$

DATA THROUGH 24-AUG-2020
California: Cumulative Deaths per Million People ($\theta = .1 / .07 / .2$)

California

$R_0 = 1.4 / 1.0 / 1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 3/4/7

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
California: Daily Deaths, Actual and Smoothed

California: Daily deaths, d

$\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20$
California: Change in Smoothed Daily Deaths

California: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
California: Change in (Change in Smoothed Daily Deaths)

California: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]