Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Chicago
Based on data through August 24, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 - Lower mortality rate, $\delta = 0.8\%$
 - Higher mortality rate, $\delta = 1.2\%$
 - Infections last longer, $\gamma = 0.15$
 - Cases resolve more quickly, $\theta = 0.2$
 - Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from
Johns Hopkins CSSE

– Raw data
– Smoothed = 7 day centered moving average
– No “excess deaths” correction (change as of Aug 6 run)
Chicago: Daily Deaths per Million People

![Daily deaths per million people in Chicago from April to August 2020](image)
Chicago: Daily Deaths per Million People (Smoothed)

Daily deaths per million people (smoothed)
Brief Summary of Model

- See the [paper](#) for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Chicago: Estimates of $R_0(t)$

Chicago

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Chicago: Percent Currently Infectious

Chicago
Peak I/N = 0.77% Final I/N = 0.07% δ = 0.010 θ = 0.10 γ = 0.20
Chicago: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

• **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

• Inferred from death data when we have it

• For future, two approaches:

 1. Alternatively, we fit this equation:

\[
\log R_0(t) = a_0 - \alpha(Daily\ Deaths)
\]

 \[\Rightarrow \alpha \approx 0.05\]

 \(R_0\) declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

• Robustness: Assume $R_0(t) =$ final empirical value. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Chicago (7 days): Daily Deaths per Million People ($\alpha = .05$)

Chicago

$R_0 = 1.9/1.3/1.2$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 10/11/15

DATA THROUGH 24-AUG-2020
Chicago (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Chicago

$R_0=1.9/1.3/1.2$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect=10/11/15

DATA THROUGH 24-AUG-2020
Chicago (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Chicago

$R_0=1.9/1.3/1.2$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect=10/11/15

New York City

Italy
Robustness to Mortality Rate, δ
Chicago: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

$R_0 = 1.9/1.3/1.2 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect}=10/11/15$

DATA THROUGH 24-AUG-2020
Chicago: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

Chicago

$R_0 = 1.9/1.3/1.2$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect = 10/11/15

DATA THROUGH 24-AUG-2020
Chicago: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

Chicago

$R_0 = 1.9/1.3/1.2$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 10/11/15

DATA THROUGH 24-AUG-2020
Reopening and Herd Immunity

– Black: assumes R_0 (today) remains in place forever
– Red: assumes R_0 (suppress) = $1/s(today)$
– Green: we move 25% of the way from R_0 (today) back to initial R_0 = “normal”
– Purple: we move 50% of the way from R_0 (today) back to initial R_0 = “normal”

NOTE: Lines often cover each other up
Chicago: Re-Opening \((\alpha = .05)\)

Chicago

\(R_0(t)=1.3, \ R_0(\text{suppress})=1.1, \ R_0(25/50)=1.5/1.7, \ \delta = 0.010, \ \alpha=0.05\)
Chicago: Re-Opening \((\alpha = 0)\)

Chicago

\[R_0(t)=1.4, \ R_0(\text{suppress})=1.1, \ R_0(25/50)=1.5/1.7, \ \delta = 0.010, \ \alpha=0.00 \]
Results for alternative parameter values
Chicago (7 days): Daily Deaths per Million People ($\alpha = 0$)

\[R_0 = 1.9 / 1.4 / 1.4 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%İnfect = 10 / 11 / 32 \]

DATA THROUGH 24-AUG-2020
Chicago (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Chicago

$R_0 = 1.9/1.4/1.4 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect}=10/11/32$

DATA THROUGH 24-AUG-2020
Chicago (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Chicago

$R_0 = 1.9/1.4/1.4 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 10/11/32$

Cumulative deaths per million people

New York City

Italy
Chicago: Daily Deaths per Million People ($\delta = 0.8\%$)

Chicago

$R_0 = 1.9/1.4/1.2 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect}=12/14/18$
Chicago: Cumulative Deaths per Million ($\delta = 0.8\%$)

Chicago

$R_0=1.9/1.4/1.2$ $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect=12/14/18
Chicago: Daily Deaths per Million People ($\delta = 1.2\%$)

Chicago

$R_0 = 1.9/1.3/1.1 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 8/9/12$
Chicago: Cumulative Deaths per Million ($\delta = 1.2\%$)

Chicago

$R_0 = 1.9/1.3/1.1$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%$Infect= 8/9/12
Chicago: Daily Deaths per Million People ($\gamma = .2/15$)

Chicago

$R_0 = 1.9/1.3/1.2$, $\delta = 0.010$, $\alpha = 0.05$, $\theta = 0.1$, $\%$Infect = 10/11/15

DATA THROUGH 24-AUG-2020
Chicago: Cumulative Deaths per Million $\gamma = .2/1.5$)

Chicago

$R_0=1.9/1.3/1.2 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%Infect=10/11/15$

$\gamma = 0.15$

$\gamma = 0.2$

DATA THROUGH 24-AUG-2020
Chicago: Daily Deaths per Million People ($\theta = .1/.07/.2$)

Chicago

$R_0=1.9/1.3/1.2$ \ $\delta = 0.010$ \ $\alpha=0.05$ \ $\theta=0.1$ \ $\%\text{Infect}=10/11/15$

DATA THROUGH 24-AUG-2020
Chicago: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

DATA THROUGH 24-AUG-2020

Chicago

$R_0=1.9/1.3/1.2 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}=10/11/15$

$\theta = 0.07$
$\theta = 0.1$
$\theta = 0.2$
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Chicago: Daily Deaths, Actual and Smoothed

Chicago: Daily deaths, d
\(\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \)
Chicago: Change in Smoothed Daily Deaths

Chicago: Delta d

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Chicago: Change in (Change in Smoothed Daily Deaths)

Chicago: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]