Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Chile
Based on data through August 24, 2020
Outline of Slides

- Basic data from Johns Hopkins CSSE (raw and smoothed)
- Brief summary of the model
- Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
- Simulation of re-opening – possibilities for raising R_0
- Results with alternative parameter values:
 - Lower mortality rate, $\delta = 0.8\%$
 - Higher mortality rate, $\delta = 1.2\%$
 - Infections last longer, $\gamma = 0.15$
 - Cases resolve more quickly, $\theta = 0.2$
 - Cases resolve more slowly, $\theta = 0.07$
- Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Chile: Daily Deaths per Million People

Chile
Chile: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date $t \ (\beta_t/\gamma)$</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Chile: Estimates of $R_0(t)$

\[
\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20
\]
Chile: Percent Currently Infectious

Peak I/N = 0.56% Final I/N = 0.13% δ = 0.010 θ = 0.10 γ = 0.20
Chile: Growth Rate of Daily Deaths over Past Week (percent)

Chile

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Notes on Interpreting Results
Guide to Graphs

• **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - **Red** = oldest, **Orange** = second oldest, **Yellow** = third oldest...
 - **Violet** (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - **Red** = lowest parameter value (e.g. $\delta = 0.8\%$)
 - **Green** = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it.
- For future, two approaches:

 1. Alternatively, we fit this equation:

 \[
 \log R_0(t) = a_0 - \alpha(Daily\ Deaths)
 \]

 \[
 \Rightarrow \alpha \approx 0.05
 \]

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\Rightarrow \alpha = 0$.
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Chile (7 days): Daily Deaths per Million People ($\alpha = 0.05$)

$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect = 6/7/11

DATA THROUGH 24-AUG-2020
Chile (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Chile

$R_0 = 1.6/1.1/1.1$ \(\delta = 0.010\) \(\alpha = 0.05\) \(\theta = 0.1\) \%Infect = 6/7/11

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people

Chile (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 6/7/11
Robustness to Mortality Rate, δ
Chile: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Chile

$R_0=1.6/1.1/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}= 6/7/11$

DATA THROUGH 24-AUG-2020
Chile: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

Chile
$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect = 6/7/11

DATA THROUGH 24-AUG-2020
Chile: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

R$_0$=1.6/1.1/1.1 $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 6/7/11

DATA THROUGH 24-AUG-2020
Reopening and Herd Immunity

– **Black**: assumes $R_0{\text{today}}$ remains in place forever
– **Red**: assumes $R_0{\text{suppress}} = 1/s{\text{today}}$
– **Green**: we move 25% of the way from $R_0{\text{today}}$
 back to initial $R_0 = \text{“normal”}$
– **Purple**: we move 50% of the way from $R_0{\text{today}}$
 back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Chile: Re-Opening ($\alpha = .05$)

Chile

$R_0(t)=1.1$, $R_0(\text{suppress})=1.1$, $R_0(25/50)=1.3/1.6$, $\delta = 0.010$, $\alpha=0.05$
Chile: Re-Opening ($\alpha = 0$)

Chile
$R_0(t)=1.1$, $R_0(\text{suppress})=1.1$, $R_0(25/50)=1.3/1.6$, $\delta = 0.010$, $\alpha=0.00$
Results for alternative parameter values
Chile (7 days): Daily Deaths per Million People ($\alpha = 0$)

Chile

$R_0=1.6/1.1/1.1$ $\delta = 0.010$ $\alpha=0.00$ $\theta=0.1$ $%\text{Infect}= 6/7/12$

DATA THROUGH 24-AUG-2020
Chile (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Chile

$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ %Infect = 6/7/12

DATA THROUGH 24-AUG-2020
Chile: Daily Deaths per Million People ($\delta = 0.8\%$)

R$_0$=1.6/1.1/1.1 $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect= 7/9/13
Chile: Cumulative Deaths per Million ($\delta = 0.8\%$)
Chile: Daily Deaths per Million People ($\delta = 1.2\%$)

Chile

$R_0=1.6/1.1/1.1 \quad \delta = 0.012 \quad \theta=0.1 \quad \gamma=0.2 \quad \%\text{Infect} = 5/6/9$
Chile: Cumulative Deaths per Million ($\delta = 1.2\%$)

Chile

$R_0=1.6/1.1/1.1$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%\text{Infect}=5/6/9$
Chile: Daily Deaths per Million People ($\gamma = .2 / .15$)

$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect $= 6/7/11$

DATA THROUGH 24-AUG-2020
Chile: Cumulative Deaths per Million $\gamma = .2/.15$)

$R_0 = 1.6/1.1/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 6/7/11$

DATA THROUGH 24-AUG-2020
Chile: Daily Deaths per Million People ($\theta = .1/.07/.2$)

\[R_0 = 1.6/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 6/7/11 \]
Chile: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

$R_0 = 1.6/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 6/7/11$

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people

Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Chile: Daily Deaths, Actual and Smoothed

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Chile: Change in Smoothed Daily Deaths

Chile: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Chile: Change in (Change in Smoothed Daily Deaths)

Chile: Delta (Delta d)
\[\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20 \]