Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Detroit
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 ◦ Lower mortality rate, $\delta = 0.8\%$
 ◦ Higher mortality rate, $\delta = 1.2\%$
 ◦ Infections last longer, $\gamma = 0.15$
 ◦ Cases resolve more quickly, $\theta = 0.2$
 ◦ Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Detroit: Daily Deaths per Million People

Detroit
Detroit: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t / γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

- Inferred from daily deaths, and
- the change in daily deaths, and
- the change in (the change in daily deaths)
(see end of slide deck for this data)
Detroit: Estimates of $R_0(t)$

Detroit

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Detroit: Percent Currently Infectious

Detroit
Peak I/N = 2.15% Final I/N = 0.12% δ = 0.010 θ = 0.10 γ = 0.20
Detroit: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

• Warning: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 ◦ Black = current
 ◦ Red = oldest, Orange = second oldest, Yellow = third oldest...
 ◦ Violet (purple) = one day earlier

• For robustness graphs, same idea
 ◦ Black = baseline (e.g. $\delta = 1.0\%$)
 ◦ Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 ◦ Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

 \[
 \log R_0(t) = a_0 - \alpha(Daily Deaths)
 \]

 $\Rightarrow \alpha \approx .05$

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Detroit (7 days): Daily Deaths per Million People ($\alpha = .05$)

Detroit

$R_0=2.3/0.3/0.3$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect=16/16/16

DATA THROUGH 09-OCT-2020
Detroit (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Detroit

$R_0 = 2.3/0.3/0.3$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect=16/16/16
Detroit (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Detroit

$R_0 = 2.3/0.3/0.3 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect}=16/16/16$

Cumulative deaths per million people

New York City

Italy

Detroit
Robustness to Mortality Rate, δ
Detroit: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

Detroit

$R_0=2.3/0.3/0.3 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}=16/16/16$

DATA THROUGH 09-OCT-2020
Detroit: Daily Deaths per Million People ($\delta = .01 / .008 / .012$)

Detroit

$R_0 = 2.3 / 0.3 / 0.3 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad %\text{Infect} = 16 / 16 / 16$

DATA THROUGH 09-OCT-2020
Detroit: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Detroit
$R_0 = 2.3/0.3/0.3 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 16/16/16$

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

\(\delta = 0.008\)
Reopening and Herd Immunity

- Black: assumes $R_0(\text{today})$ remains in place forever
- Red: assumes $R_0(\text{suppress}) = 1/s(\text{today})$
- Green: we move 25% of the way from $R_0(\text{today})$ back to initial $R_0 =$ “normal”
- Purple: we move 50% of the way from $R_0(\text{today})$ back to initial $R_0 =$ “normal”

NOTE: Lines often cover each other up
Detroit: Re-Opening ($\alpha = .05$)

Detroit

$R_0(t)=0.3$, $R_0(\text{suppress})=1.2$, $R_0(25/50)=0.8/1.3$, $\delta = 0.010$, $\alpha=0.05$

(Light bars = New York City, for comparison)
Detroit: Re-Opening ($\alpha = 0$)

Detroit

$R_0(t)=0.2$, $R_0(\text{suppress})=1.2$, $R_0(25/50)=0.7/1.2$, $\delta = 0.010$, $\alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Detroit (7 days): Daily Deaths per Million People ($\alpha = 0$)

Detroit

$R_0 = 2.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 16/16/16$

DATA THROUGH 09-OCT-2020
Detroit (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Detroit

$R_0 = 2.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect}=16/16/16$

DATA THROUGH 09-OCT-2020
Detroit (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Detroit
$R_0 = 2.3/0.2/0.2$ \hspace{1cm} $\delta = 0.010$ \hspace{1cm} $\alpha = 0.00$ \hspace{1cm} $\theta = 0.1$ \hspace{1cm} $\%\text{Infect} = 16/16/16$
Detroit: Daily Deaths per Million People ($\delta = 0.8\%$)

Detroit

$R_0 = 2.3/0.3/0.3 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect}=19/19/19$

SOME ERRORS IN ESTIMATION...
Detroit: Cumulative Deaths per Million ($\delta = 0.8\%$)

Detroit

$R_0 = 2.3/0.3/0.3 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 19/19/19$

SOME ERRORS IN ESTIMATION...
Detroit: Daily Deaths per Million People ($\delta = 1.2\%$)

Detroit

$R_0=2.3/0.3/0.3$ \(\delta = 0.012\) \(\theta=0.1\) \(\gamma=0.2\) \%Infect=13/13/13

SOME ERRORS IN ESTIMATION...
Detroit: Cumulative Deaths per Million ($\delta = 1.2\%$)

Detroit

$R_0 = 2.3/0.3/0.3$ \(\delta = 0.012 \) \(\theta = 0.1 \) \(\gamma = 0.2 \) \%Infect = 13/13/13

SOME ERRORS IN ESTIMATION...
Detroit: Daily Deaths per Million People ($\gamma = .2/.15$)

Detroit

$R_0 = 2.3/0.3/0.3$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect = 16/16/16

DATA THROUGH 09-OCT-2020
Detroit: Cumulative Deaths per Million $\gamma = 0.2/0.15$)

Detroit

$R_0 = 2.3/0.3/0.3 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect}=16/16/16$

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

Detroit: Daily Deaths per Million People ($\theta = 0.1/0.07/0.2$)

Detroit

$R_0=2.3/0.3/0.3$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect}=16/16/16$

DATA THROUGH 09-OCT-2020
Detroit: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

$R_0 = 2.3/0.3/0.3$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infected = 16/16/16

DATA THROUGH 09-OCT-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Detroit: Daily Deaths, Actual and Smoothed

Detroit: Daily deaths, d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Detroit: Change in Smoothed Daily Deaths

Detroit: Delta d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Detroit: Change in (Change in Smoothed Daily Deaths)

Detroit: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]