Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Dominican Republic
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%$, $\gamma = 0.2$, $\theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 o Lower mortality rate, $\delta = 0.8\%$
 o Higher mortality rate, $\delta = 1.2\%$
 o Infections last longer, $\gamma = 0.15$
 o Cases resolve more quickly, $\theta = 0.2$
 o Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Dominican Republic: Daily Deaths per Million People

Dominican Republic

Daily deaths per million people

Apr May Jun Jul Aug Sep Oct

2020
Dominican Republic: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Dominican Republic: Estimates of $R_0(t)$

Dominican Republic
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Dominican Republic: Percent Currently Infectious

Dominican Republic
Peak I/N = 0.10% Final I/N = 0.02% δ=0.010 θ=0.10 γ=0.20
Dominican Republic: Growth Rate of Daily Deaths over Past Week (percent)

Dominican Republic
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - **Red** = oldest, **Orange** = second oldest, **Yellow** = third oldest...
 - **Violet** (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - **Red** = lowest parameter value (e.g. $\delta = 0.8\%$)
 - **Green** = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

\[
\log R_0(t) = a_0 - \alpha(Daily \ Deaths)
\]

\[\Rightarrow \alpha \approx .05\]

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Dominican Republic (7 days): Daily Deaths per Million People ($\alpha = .05$)

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect}= 2/3/7$

DATA THROUGH 09-OCT-2020

0 1 2 3 4 5 6

Daily deaths per million people
Dominican Republic (7 days): Cumulative Deaths per Million (Future, α)

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 2/3/7$

DATA THROUGH 09-OCT-2020
Dominican Republic (7 days): Cumulative Deaths per Million, Log Scale

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/7$
Robustness to Mortality Rate, δ
Dominican Republic: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

DATA THROUGH 09-OCT-2020

$R_0=1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}=2/3/7$
Dominican Republic: Daily Deaths per Million People ($\delta = .01/.008/.012$)

DATA THROUGH 09-OCT-2020

Dominican Republic
$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/7$
Dominican Republic: Cumulative Deaths per Million \((\delta = 0.01/0.008/0.012)\)

Dominican Republic

\(R_0 = 1.2/1.3/1.1\) \(\delta = 0.010\) \(\alpha = 0.05\) \(\theta = 0.1\) \%Infect = 2/3/7

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

– Black: assumes $R_0(\text{today})$ remains in place forever
– Red: assumes $R_0(\text{suppress}) = 1/s(\text{today})$
– Green: we move 25% of the way from $R_0(\text{today})$ back to initial $R_0 = \text{“normal”}$
– Purple: we move 50% of the way from $R_0(\text{today})$ back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Dominican Republic: Re-Opening ($\alpha = .05$)

Dominican Republic

$R_0(t)=1.3, \ R_0(suppress)=1.0, \ R_0(25/50)=1.5/1.7, \ \delta = 0.010, \ \alpha=0.05$

(Light bars = New York City, for comparison)
Dominican Republic: Re-Opening ($\alpha = 0$)

Dominican Republic

$R_0(t) = 1.3$, $R_0\text{(suppress)} = 1.0$, $R_0(25/50) = 1.5/1.7$, $\delta = 0.010$, $\alpha = 0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Dominican Republic (7 days): Daily Deaths per Million People ($\alpha = 0$)

Dominican Republic

$R_0 = 1.2/1.3/1.3 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/29$

DATA THROUGH 09-OCT-2020
Dominican Republic (7 days): Cumulative Deaths per Million (Future, α)

Dominican Republic

$R_0 = 1.2/1.3/1.3 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/29$

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

Dominican Republic (7 days): Cumulative Deaths per Million, Log Scale

Dominican Republic
\[R_0 = 1.2/1.3/1.3 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \% \text{Infect} = 2/3/29 \]
Dominican Republic: Daily Deaths per Million People ($\delta = 0.8\%$)

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \% \text{Infect} = 3/3/8$
Dominican Republic: Cumulative Deaths per Million ($\delta = 0.8\%$)

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 3/3/8$
Dominican Republic: Daily Deaths per Million People ($\delta = 1.2\%$)

Dominican Republic

$R_0 = 1.2/1.3/1.0$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%$ Infect = 2/2/6
Dominican Republic: Cumulative Deaths per Million ($\delta = 1.2\%$)

Dominican Republic

$R_0 = 1.2/1.3/1.0$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $%\text{Infect} = 2/2/6$
Dominican Republic: Daily Deaths per Million People \((\gamma = .2 / .15)\)

Data through 09-Oct-2020

Dominican Republic

\(R_0 = 1.2 / 1.3 / 1.1\)
\(\delta = 0.010\)
\(\alpha = 0.05\)
\(\theta = 0.1\)
\(\%\text{Infect} = 2 / 3 / 7\)
Dominican Republic: Cumulative Deaths per Million $\gamma = .2/.15$
Dominican Republic: Daily Deaths per Million People ($\theta = .1 / .07 / .2$)

Dominican Republic

$R_0 = 1.2 / 1.3 / 1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infected $= 2 / 3 / 7$

DATA THROUGH 09-OCT-2020
Dominican Republic: Cumulative Deaths per Million People ($\theta = 1/0.07$)

Dominican Republic

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 2/3/7$

DATA THROUGH 09-OCT-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Dominican Republic: Daily Deaths, Actual and Smoothed

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Dominican Republic: Change in Smoothed Daily Deaths

Dominican Republic: Delta d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Dominican Republic: Change in (Change in Smoothed Daily Deaths)

Dominican Republic: Delta (Delta d)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]