Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Ecuador
Based on data through August 24, 2020
Outline of Slides

- Basic data from Johns Hopkins CSSE (raw and smoothed)
- Brief summary of the model
- Baseline results \((\delta = 1.0\%, \gamma = 0.2, \theta = 0.1)\)
- Simulation of re-opening – possibilities for raising \(R_0\)
- Results with alternative parameter values:
 - Lower mortality rate, \(\delta = 0.8\%\)
 - Higher mortality rate, \(\delta = 1.2\%\)
 - Infections last longer, \(\gamma = 0.15\)
 - Cases resolve more quickly, \(\theta = 0.2\)
 - Cases resolve more slowly, \(\theta = 0.07\)
- Data underlying estimates of \(R_0(t)\)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Ecuador: Daily Deaths per Million People

Ecuador
Brief Summary of Model

• See the paper for a full exposition

• A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Ecuador: Estimates of $R_0(t)$

Ecuador

$\delta = 0.010 \hspace{0.5cm} \theta = 0.10 \hspace{0.5cm} \gamma = 0.20$
Ecuador: Percent Currently Infectious

Peak I/N = 0.34% Final I/N = 0.08% δ = 0.010 θ = 0.10 γ = 0.20
Ecuador: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

• **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - **Red** = oldest, **Orange** = second oldest, **Yellow** = third oldest...
 - **Violet** (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. \(\delta = 1.0\%\))
 - **Red** = lowest parameter value (e.g. \(\delta = 0.8\%\))
 - **Green** = highest parameter value (e.g. \(\delta = 1.2\%\))
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:

 1. Alternatively, we fit this equation:

 $$\log R_0(t) = a_0 - \alpha(Daily\ Deaths)$$

 $\Rightarrow \alpha \approx 0.05$

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) =$ final empirical value. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Ecuador (7 days): Daily Deaths per Million People ($\alpha = 0.05$)

$R_0 = 1.2/1.3/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 4/5/9

DATA THROUGH 24-AUG-2020
Ecuador (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

$R_0=1.2/1.3/1.1 \ \delta = 0.010 \ \alpha=0.05 \ \theta=0.1 \ \%Infect= 4/5/9$

DATA THROUGH 24-AUG-2020
Ecuador (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 4/5/9$

New York City

Italy
Robustness to Mortality Rate, δ
Ecuador: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect}= 4/5/9$

DATA THROUGH 24-AUG-2020
Ecuador: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect = 4/5/9

DATA THROUGH 24-AUG-2020
Ecuador: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect $= 4/5/9$

DATA THROUGH 24-AUG-2020
Reopening and Herd Immunity

– **Black**: assumes $R_0(today)$ remains in place forever
– **Red**: assumes $R_0(suppress) = 1/s(today)$
– **Green**: we move 25% of the way from $R_0(today)$ back to initial $R_0 = \text{“normal”}$
– **Purple**: we move 50% of the way from $R_0(today)$ back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Ecuador: Re-Opening ($\alpha = 0.05$)

Ecuador

$R_0(t)=1.3, \ R_0(\text{suppress})=1.1, \ R_0(25/50)=1.5/1.6, \ \delta = 0.010, \ \alpha=0.05$
Ecuador: Re-Opening ($\alpha = 0$)

Ecuador
$R_0(t) = 1.3$, $R_0(\text{suppress}) = 1.1$, $R_0(25/50) = 1.5/1.6$, $\delta = 0.010$, $\alpha = 0.00$
Results for alternative parameter values
Ecuador (7 days): Daily Deaths per Million People ($\alpha = 0$)

Ecuador

$R_0 = 1.2/1.3/1.3$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $%\text{Infect} = 4/6/32$

DATA THROUGH 24-AUG-2020
Ecuador (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Ecuador

$R_0=1.2/1.3/1.3 \ \delta = 0.010 \ \alpha=0.00 \ \theta=0.1 \ \%Infect=4/6/32$

DATA THROUGH 24-AUG-2020
Ecuador (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Ecuador

$R_0 = 1.2/1.3/1.3$, $\delta = 0.010$, $\alpha = 0.00$, $\theta = 0.1$, %Infect = 4/6/32

New York City

Italy
Ecuador: Daily Deaths per Million People (\(\delta = 0.8\% \))

\[R_0 = 1.2/1.3/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \% \text{Infect} = 5/6/12 \]
Ecuador: Cumulative Deaths per Million ($\delta = 0.8\%$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%$ Infect = 5/6/12
Ecuador: Daily Deaths per Million People ($\delta = 1.2\%$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%$ Infection $= 3/4/8$
Ecuador: Cumulative Deaths per Million ($\delta = 1.2\%$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ %Infect = 3/ 4/ 8
Ecuador: Daily Deaths per Million People ($\gamma = .2/.15$)

Ecuador

$R_0=1.2/1.3/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect= 4/5/9

DATA THROUGH 24-AUG-2020
Ecuador: Cumulative Deaths per Million $\gamma = .2/.15$)

Ecuador

$R_0 = 1.2/1.3/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect $= 4/5/9$

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

2020

$\gamma = 0.15$

$\gamma = 0.2$
Ecuador: Daily Deaths per Million People ($\theta = 0.1/0.07/0.2$)

Ecuador

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 4/5/9$

DATA THROUGH 24-AUG-2020
Ecuador: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

DATA THROUGH 24-AUG-2020

Ecuador

$R_0 = 1.2/1.3/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 4/5/9$

$\theta = 0.1$

$\theta = 0.2$

$\theta = 0.07$
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Ecuador: Daily Deaths, Actual and Smoothed

Ecuador: Daily deaths, d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Ecuador: Change in Smoothed Daily Deaths

Ecuador: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Ecuador: Change in (Change in Smoothed Daily Deaths)

Ecuador: Delta (Δd)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]