Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Georgia
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results \((\delta = 1.0\%, \gamma = 0.2\%, \theta = 0.1)\)
• Simulation of re-opening – possibilities for raising \(R_0\)
• Results with alternative parameter values:
 o Lower mortality rate, \(\delta = 0.8\%\)
 o Higher mortality rate, \(\delta = 1.2\%\)
 o Infections last longer, \(\gamma = 0.15\)
 o Cases resolve more quickly, \(\theta = 0.2\)
 o Cases resolve more slowly, \(\theta = 0.07\)
• Data underlying estimates of \(R_0(t)\)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Georgia: Daily Deaths per Million People

![Graph showing daily deaths per million people in Georgia from April to October 2020.](image-url)
Georgia: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Georgia: Estimates of $R_0(t)$

Georgia

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$

Mar Apr May Jun Jul Aug Sep Oct Nov 2020

$R_0(t)$

0 0.5 1 1.5 2 2.5 3 3.5
Georgia: Percent Currently Infectious

Peak I/N = 0.34% Final I/N = 0.14% δ=0.010 θ=0.10 γ=0.20
Georgia: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 - ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

\[
\log R_0(t) = a_0 - \alpha (\text{Daily Deaths})
\]

\[
\Rightarrow \alpha \approx .05
\]

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Georgia (7 days): Daily Deaths per Million People ($\alpha = .05$)

$R_0=1.6/1.0/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect= 7/ 8/ 9

DATA THROUGH 09-OCT-2020
Georgia (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Georgia

$R_0=1.6/1.0/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}= 7/8/9$

DATA THROUGH 09-OCT-2020
Georgia (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0.05$)

Georgia

$R_0 = 1.6/1.0/1.1$ \ $\delta = 0.010$ \ $\alpha = 0.05$ \ $\theta = 0.1$ \ $\%$ Infect = 7/8/9

Cumulative deaths per million people

New York City

Italy

Robustness to Mortality Rate, δ
Georgia: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

R$_0=1.6/1.0/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 7/ 8/ 9

DATA THROUGH 09-OCT-2020
Georgia: Daily Deaths per Million People ($\delta = 0.01/0.008/0.012$)

Georgia

$R_0 = 1.6/1.0/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect $= 7/8/9$

DATA THROUGH 09-OCT-2020
Georgia: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

R$_0$=1.6/1.0/1.1 $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 7/8/9

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

– Black: assumes $R_0(today)$ remains in place forever
– Red: assumes $R_0(suppress) = 1/s(today)$
– Green: we move 25% of the way from $R_0(today)$
 back to initial $R_0 = “normal”$
– Purple: we move 50% of the way from $R_0(today)$
 back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Georgia: Re-Opening ($\alpha = .05$)

Georgia

$R_0(t)=1.0$, $R_0^{\text{suppress}}=1.1$, $R_0^{(25/50)}=1.2/1.5$, $\delta = 0.010$, $\alpha=0.05$

(Light bars = New York City, for comparison)
Georgia: Re-Opening ($\alpha = 0$)

\begin{align*}
R_0(t) &= 0.9, \quad R_0(\text{suppress}) = 1.1, \quad R_0(25/50) = 1.2/1.5, \quad \delta = 0.010, \quad \alpha = 0.00
\end{align*}

(Light bars = New York City, for comparison)
Results for alternative parameter values
Georgia (7 days): Daily Deaths per Million People ($\alpha = 0$)

$R_0 = 1.6/0.9/0.9 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 7/8/8$

DATA THROUGH 09-OCT-2020
Georgia (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Georgia

$R_0 = 1.6/0.9/0.9$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $\% \text{Infect} = 7/8/8$

DATA THROUGH 09-OCT-2020
Georgia (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Georgia

$R_0 = 1.6/0.9/0.9 \quad \delta = 0.010 \quad \alpha=0.00 \quad \theta=0.1 \quad \%\text{Infect}= 7/8/8$

New York City

Italy

Cumulative deaths per million people

Georgia: Daily Deaths per Million People ($\delta = 0.8\%$)

Georgia

$R_0 = 1.6/1.0/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 9/10/11$
Georgia: Cumulative Deaths per Million ($\delta = 0.8\%$)

Georgia

$R_0 = 1.6/1.0/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 9/10/11$
Georgia: Daily Deaths per Million People ($\delta = 1.2\%$)

Georgia

$R_0=1.6/1.0/1.1$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%Infect=6/7/7$
Georgia: Cumulative Deaths per Million ($\delta = 1.2\%$)

Georgia

$R_0=1.6/1.0/1.1 \quad \delta = 0.012 \quad \theta=0.1 \quad \gamma=0.2 \quad \%\text{Infect}=6/7/7$
Georgia: Daily Deaths per Million People ($\gamma = 0.2/0.15$)

$R_0 = 1.6/1.0/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 7/8/9$

DATA THROUGH 09-OCT-2020
Georgia: Cumulative Deaths per Million $\gamma = .2/.15$)

Georgia

$R_0=1.6/1.0/1.1 \, \delta = 0.010 \, \alpha=0.05 \, \theta=0.1 \, \%Infect=7/8/9$

DATA THROUGH 09-OCT-2020
Georgia: Daily Deaths per Million People (\(\theta = .1/.07/.2 \))

\[
R_0 = 1.6/1.0/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 7/8/9
\]

DATA THROUGH 09-OCT-2020
Georgia: Cumulative Deaths per Million People ($\theta = 0.1/0.07/0.2$)

$R_0=1.6/1.0/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%Infect=7/8/9$

DATA THROUGH 09-OCT-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Georgia: Daily Deaths, Actual and Smoothed

\[
\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20
\]
Georgia: Change in Smoothed Daily Deaths

Georgia: Delta d

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Georgia: Change in (Change in Smoothed Daily Deaths)

Georgia: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]