Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Honduras
Based on data through September 11, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 ○ Lower mortality rate, $\delta = 0.8\%$
 ○ Higher mortality rate, $\delta = 1.2\%$
 ○ Infections last longer, $\gamma = 0.15$
 ○ Cases resolve more quickly, $\theta = 0.2$
 ○ Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Honduras: Daily Deaths per Million People

Honduras

Daily deaths per million people

Apr May Jun Jul Aug Sep

2020

0 1 2 3 4 5
Honduras: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

• See the paper for a full exposition

• A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Honduras: Estimates of $R_0(t)$

Honduras

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Honduras: Percent Currently Infectious

Honduras
Peak I/N = 0.18% Final I/N = 0.09% δ = 0.010 θ = 0.10 γ = 0.20
Honduras: Growth Rate of Daily Deaths over Past Week (percent)

Honduras

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

$$\log R_0(t) = a_0 - \alpha (\text{Daily Deaths})$$

$$\Rightarrow \alpha \approx 0.05$$

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\Rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

- After peak, forecasts settle down.
- Before that, very noisy!
- If the region has not peaked, do not trust
- With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Honduras (7 days): Daily Deaths per Million People ($\alpha = .05$)

Honduras

$R_0 = 1.1/0.7/0.8$ \ $\delta = 0.010$ \ $\alpha = 0.05$ \ $\theta = 0.1$ \ $%\text{Infect} = 2/2/2$

DATA THROUGH 11-SEP-2020

Daily deaths per million people

Honduras (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Honduras

$R_0=1.1/0.7/0.8$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/2/2

New York City

Italy

Cumulative deaths per million people

Robustness to Mortality Rate, δ
Honduras: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

DATA THROUGH 11-SEP-2020

Honduras

$R_0=1.1/0.7/0.8$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $%\text{Infect} = 2/2/2$
Honduras: Daily Deaths per Million People ($\delta = \ .01/\ .008/\ .012$)

Honduras

$R_0 = 1.1/0.7/0.8 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/2$

Data through 11-Sep-2020
Honduras: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Honduras

$R_0 = 1.1/0.7/0.8 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/2$

DATA THROUGH 11-SEP-2020
Reopening and Herd Immunity

– **Black**: assumes $R_0(todat)$ remains in place forever
– **Red**: assumes $R_0(suppress) = 1/s(today)$
– **Green**: we move 25% of the way from $R_0(today)$ back to initial $R_0 = “normal”$
– **Purple**: we move 50% of the way from $R_0(today)$ back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Honduras: Re-Opening ($\alpha = 0.05$)

Honduras

$R_0(t)=0.7$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.0/1.3$, $\delta = 0.010$, $\alpha = 0.05$

(Light bars = New York City, for comparison)
Honduras: Re-Opening \((\alpha = 0)\)

\[
R_0(t) = 0.7, \quad R_0(\text{suppress}) = 1.0, \quad R_0(25/50) = 1.0/1.3, \quad \delta = 0.010, \quad \alpha = 0.00
\]
Results for alternative parameter values
Honduras (7 days): Daily Deaths per Million People ($\alpha = 0$)

Honduras

$R_0 = 1.1/0.7/0.7$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $\%\text{Infect} = 2/2/2$

DATA THROUGH 11-SEP-2020
Honduras (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

Honduras

$R_0 = 1.1/0.7/0.7 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/2$

DATA THROUGH 11-SEP-2020

Cumulative deaths per million people

Honduras (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Honduras

$R_0 = 1.1/0.7/0.7 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \% \text{Infect} = 2/2/2$

Cumulative deaths per million people

Honduras: Daily Deaths per Million People ($\delta = 0.8\%$)

Honduras

$R_0 = 1.1/0.7/0.8 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 3/3/3$
Honduras: Cumulative Deaths per Million ($\delta = 0.8\%$)

Honduras

$R_0 = 1.1/0.7/0.8 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 3/3/3$
Honduras: Daily Deaths per Million People ($\delta = 1.2\%$)

Honduras

$R_0=1.1/0.7/0.8 \quad \delta = 0.012 \quad \theta=0.1 \quad \gamma=0.2 \quad \%\text{Infect}=2/2/2$
Honduras: Cumulative Deaths per Million ($\delta = 1.2\%$)

Honduras

$R_0 = 1.1/0.7/0.8$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ %Infect = 2/2/2
Honduras: Daily Deaths per Million People ($\gamma = .2/.15$)

Honduras

$R_0=1.1/0.7/0.8$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%Infect=2/2/2$

DATA THROUGH 11-SEP-2020
Honduras: Cumulative Deaths per Million $\gamma = .2/.15$)

DATA THROUGH 11-SEP-2020

$R_0=1.1/0.7/0.8 \ \delta = 0.010 \ \alpha=0.05 \ \theta=0.1 \ \%Infect= 2/ 2/ 2$

$\gamma = 0.25$
Honduras: Daily Deaths per Million People ($\theta = .1 / .07 / .2$)

Honduras

$R_0 = 1.1/0.7/0.8 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/2$

DATA THROUGH 11-SEP-2020

Daily deaths per million people

Honduras: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

R$_0$=1.1/0.7/0.8 $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/ 2/ 2

DATA THROUGH 11-SEP-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Honduras: Daily Deaths, Actual and Smoothed

Honduras: Daily deaths, d
\(\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20 \)
Honduras: Change in Smoothed Daily Deaths

Honduras: Delta d

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Honduras: Change in (Change in Smoothed Daily Deaths)

Honduras: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]