Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Hubei, China
Based on data through September 11, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 o Lower mortality rate, $\delta = 0.8\%$
 o Higher mortality rate, $\delta = 1.2\%$
 o Infections last longer, $\gamma = 0.15$
 o Cases resolve more quickly, $\theta = 0.2$
 o Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Hubei, China: Daily Deaths per Million People
Hubei, China: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

- Inferred from daily deaths, and
- the change in daily deaths, and
- the change in (the change in daily deaths)
(see end of slide deck for this data)
Hubei, China: Estimates of $R_0(t)$

Hubei, China

$\delta = 0.010$ $\theta = 0.10$ $\gamma = 0.20$
Hubei, China: Percent Currently Infectious

Hubei, China
Peak I/N = 0.15% Final I/N = 0.03% δ = 0.010 θ = 0.10 γ = 0.20
Hubei, China: Growth Rate of Daily Deaths over Past Week (percent)

Hubei, China

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

\[
\log R_0(t) = a_0 - \alpha (\text{Daily Deaths})
\]

\[\Rightarrow \alpha \approx 0.05\]

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\Rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Hubei, China (7 days): Daily Deaths per Million People ($\alpha = 0.05$)

Hubei, China

$R_0 = 1.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 1/1/1$

DATA THROUGH 11-SEP-2020
Hubei, China (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Hubei, China

$R_0 = 1.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 1/1/1$

DATA THROUGH 11-SEP-2020
Hubei, China (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0.05$).

Hubei, China
$R_0=1.3/0.2/0.2$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $%\text{Infect}=1/1/1$

New York City
Italy
Robustness to Mortality Rate, δ
Hubei, China: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

Hubei, China

$R_0 = 1.3/0.2/0.2$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 1/1/1$

DATA THROUGH 11-SEP-2020
Hubei, China: Daily Deaths per Million People ($\delta = .01/.008/.012$)

\[
\begin{align*}
R_0 &= 1.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 1/1/1
\end{align*}
\]

DATA THROUGH 11-SEP-2020
Reopening and Herd Immunity

– Black: assumes $R_0(\text{today})$ remains in place forever
– Red: assumes $R_0(\text{suppress}) = 1/s(\text{today})$
– Green: we move 25% of the way from $R_0(\text{today})$
 back to initial $R_0 = \text{“normal”}$
– Purple: we move 50% of the way from $R_0(\text{today})$
 back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Hubei, China: Re-Opening ($\alpha = .05$)

Hubei, China

$R_0(t)=0.2$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=0.7/1.1$, $\delta = 0.010$, $\alpha=0.05$
Hubei, China: Re-Opening ($\alpha = 0$)

Hubei, China

$R_0(t)=0.2$, R_0 (suppress) = 1.0, $R_0(25/50)=0.7/1.1$, $\delta = 0.010$, $\alpha=0.00$
Results for alternative parameter values
Hubei, China (7 days): Daily Deaths per Million People ($\alpha = 0$)

Hubei, China

$R_0 = 1.3/0.2/0.2$ \(\delta = 0.010 \) \(\alpha = 0.00 \) \(\theta = 0.1 \) \%Infect = 1/1/1

DATA THROUGH 11-SEP-2020
Hubei, China (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

$$R_0 = 1.3/0.2/0.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 1/1/1$$

DATA THROUGH 11-SEP-2020
Hubei, China (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Hubei, China
$R_0 = 1.3/0.2/0.2$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $\%\text{Infect} = 1/1/1$
Hubei, China: Daily Deaths per Million People ($\delta = 0.8\%$)

Hubei, China
$R_0=1.3/0.2/0.2$ $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect= 1/ 1/ 1

SOME ERRORS IN ESTIMATION...
Hubei, China: Cumulative Deaths per Million ($\delta = 0.8\%$)

Hubei, China

$R_0=1.3/0.2/0.2$ $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ $\%$Infect= 1/ 1/ 1

SOME ERRORS IN ESTIMATION...
Hubei, China: Daily Deaths per Million People ($\delta = 1.2\%$)

Hubei, China
$R_0 = 1.3/0.2/0.2 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 1/1/1$

SOME ERRORS IN ESTIMATION...
Hubei, China: Cumulative Deaths per Million ($\delta = 1.2\%$)

Hubei, China

$R_0 = 1.3/0.2/0.2 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \text{%Infected} = 1/1/1$

SOME ERRORS IN ESTIMATION...
Hubei, China: Daily Deaths per Million People ($\gamma = .2/.15$)

Hubei, China

$R_0=1.3/0.2/0.2$ $\delta = 0.010$ $\theta=0.1$ $\gamma=0.2$ $\%Infect=1/1/1$

SOME ERRORS IN ESTIMATION...
Hubei, China: Cumulative Deaths per Million $\gamma = .2 / .15$
Hubei, China: Daily Deaths per Million People ($\theta = 0.1 / 0.07 / 0.2$)

Hubei, China

$R_0 = 1.5 / 0.2 / 0.2$ $\delta = 0.010$ $\theta = 0.2$ $\gamma = 0.2$ $\%\text{Infect} = 1 / 1 / 1$

SOME ERRORS IN ESTIMATION...
Hubei, China: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Hubei, China
$R_0=1.5/0.2/0.2$ $\delta = 0.010$ $\theta=0.2$ $\gamma=0.2$ $\%$Infect= 1/1/1

SOME ERRORS IN ESTIMATION...
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Hubei, China: Daily Deaths, Actual and Smoothed

Hubei, China: Daily deaths, d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Hubei, China: Change in Smoothed Daily Deaths

Hubei, China: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Hubei, China: Change in (Change in Smoothed Daily Deaths)

Hubei, China: Delta (Delta d)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]