Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Iran
Based on data through September 11, 2020
Outline of Slides

- Basic data from Johns Hopkins CSSE (raw and smoothed)
- Brief summary of the model
- Baseline results \((\delta = 1.0\%, \gamma = 0.2, \theta = 0.1)\)
- Simulation of re-opening – possibilities for raising \(R_0\)
- Results with alternative parameter values:
 - Lower mortality rate, \(\delta = 0.8\%\)
 - Higher mortality rate, \(\delta = 1.2\%\)
 - Infections last longer, \(\gamma = 0.15\)
 - Cases resolve more quickly, \(\theta = 0.2\)
 - Cases resolve more slowly, \(\theta = 0.07\)
- Data underlying estimates of \(R_0(t)\)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Iran: Daily Deaths per Million People
Iran: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

• See the paper for a full exposition

• A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Iran: Estimates of $R_0(t)$

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]

[Graph showing the estimates of $R_0(t)$ for Iran from March to October 2020]
Iran: Percent Currently Infectious

Peak I/N = 0.13% Final I/N = 0.07% δ = 0.010 θ = 0.10 γ = 0.20
Iran: Growth Rate of Daily Deaths over Past Week (percent)
Notes on Interpreting Results
Guide to Graphs

• **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it

- For future, two approaches:
 1. Alternatively, we fit this equation:

 \[
 \log R_0(t) = a_0 - \alpha (\text{Daily Deaths})
 \]

 \[
 \Rightarrow \alpha \approx 0.05
 \]

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) =$ final empirical value. Constant in future, so no α adjustment $\Rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

- After peak, forecasts settle down.
- Before that, very noisy!
- If the region has not peaked, do not trust
- With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Iran (7 days): Daily Deaths per Million People ($\alpha = .05$)

\[R_0 = 1.4/1.1/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 3/3/5 \]

DATA THROUGH 11-SEP-2020
Iran (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

$R_0 = 1.4/1.1/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%Infect = 3/3/5$

DATA THROUGH 11-SEP-2020
Iran (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

$R_0 = 1.4/1.1/1.0$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 3/3/5$

New York City
Italy
Robustness to Mortality Rate, δ
Iran: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

$R_0 = 1.4/1.1/1.0$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$Infect = 3/3/5

DATA THROUGH 11-SEP-2020
Iran: Daily Deaths per Million People ($\delta = .01/.008/.012$)

Iran

$R_0 = 1.4/1.1/1.0$ \(\delta = 0.010 \) \(\alpha = 0.05 \) \(\theta = 0.1 \) \%Infect = 3/3/5

DATA THROUGH 11-SEP-2020
Iran: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

DATA THROUGH 11-SEP-2020

Iran

$R_0=1.4/1.1/1.0$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 3/3/5

$\delta = 0.008$
Reopening and Herd Immunity

– **Black**: assumes $R_0(\text{today})$ remains in place forever
– **Red**: assumes $R_0(\text{suppress}) = 1/s(\text{today})$
– **Green**: we move 25% of the way from $R_0(\text{today})$ back to initial $R_0 = “normal”$
– **Purple**: we move 50% of the way from $R_0(\text{today})$ back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Iran: Re-Opening ($\alpha = .05$)

Iran

$R_0(t)=1.1$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.3/1.5$, $\delta = 0.010$, $\alpha = 0.05$

(Light bars = New York City, for comparison)
Iran: Re-Opening ($\alpha = 0$)

Iran

$R_0(t)=1.1$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.3/1.5$, $\delta = 0.010$, $\alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Iran (7 days): Daily Deaths per Million People ($\alpha = 0$)

Iran

$R_0=1.4/1.1/1.1$ $\delta = 0.010$ $\alpha=0.00$ $\theta=0.1$ $%\text{Infect}=3/3/5$

DATA THROUGH 11-SEP-2020
Iran (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

$R_0 = 1.4/1.1/1.1$ \hspace{0.5cm} $\delta = 0.010$ \hspace{0.5cm} $\alpha = 0.00$ \hspace{0.5cm} $\theta = 0.1$ \hspace{0.5cm} %Infect = 3/3/5

DATA THROUGH 11-SEP-2020
Iran (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Iran

$R_0=1.4/1.1/1.1$ $\delta = 0.010$ $\alpha=0.00$ $\theta=0.1$ %Infect= 3/3/5
Iran: Daily Deaths per Million People ($\delta = 0.8\%$)

$$R_0 = 1.4/1.1/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 4/4/6$$
Iran: Cumulative Deaths per Million ($\delta = 0.8\%$)

Iran

$R_0=1.4/1.1/1.1$ $\delta=0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect= 4/4/6
Iran: Daily Deaths per Million People ($\delta = 1.2\%$)

$R_0 = 1.4/1.1/1.0$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ %Infect = 2/3/4
Iran: Cumulative Deaths per Million ($\delta = 1.2\%$)

R$_0=1.4/1.1/1.0$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%$Infect$=2/3/4$
Iran: Daily Deaths per Million People ($\gamma = .2/.15$)

Iran

$R_0=1.4/1.1/1.0 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect} = 3/3/5$

Data through 11-Sep-2020
Iran: Cumulative Deaths per Million $\gamma = .2/.15$)

DATA THROUGH 11-SEP-2020

$R_0=1.4/1.1/1.0$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $%\text{Infect}= 3/3/5$ $\gamma \approx 0.25$
Iran: Daily Deaths per Million People ($\theta = .1/0.07/0.2$)

Iran

$R_0 = 1.4/1.1/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \% \text{ Infect} = 3/3/5$

DATA THROUGH 11-SEP-2020

Daily deaths per million people
Iran: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Iran

$R_0=1.4/1.1/1.0 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}= 3/3/5$

DATA THROUGH 11-SEP-2020

Cumulative deaths per million people
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Iran: Daily Deaths, Actual and Smoothed

Iran: Daily deaths, d

δ = 0.010 θ=0.10 γ=0.20
Iran: Change in Smoothed Daily Deaths

Iran: Delta \(d \)
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Iran: Change in (Change in Smoothed Daily Deaths)

Iran: Delta (Δd)
δ = 0.010 θ = 0.10 γ = 0.20