Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Kansas
Based on data through September 11, 2020
Outline of Slides

- Basic data from Johns Hopkins CSSE (raw and smoothed)
- Brief summary of the model
- Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
- Simulation of re-opening – possibilities for raising R_0
- Results with alternative parameter values:
 - Lower mortality rate, $\delta = 0.8\%$
 - Higher mortality rate, $\delta = 1.2\%$
 - Infections last longer, $\gamma = 0.15$
 - Cases resolve more quickly, $\theta = 0.2$
 - Cases resolve more slowly, $\theta = 0.07$
- Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Kansas: Daily Deaths per Million People

Daily deaths per million people

Kansas
Kansas: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Kansas: Estimates of $R_0(t)$

Kansas

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Kansas: Percent Currently Infectious

Kansas

Peak I/N = 0.13% Final I/N = 0.11% $\delta = 0.010$ $\theta = 0.10$ $\gamma = 0.20$
Kansas: Growth Rate of Daily Deaths over Past Week (percent)

Kansas

$\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20$
Notes on Interpreting Results
Guide to Graphs

• **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 o Black = current
 o Red = oldest, Orange = second oldest, Yellow = third oldest...
 o Violet (purple) = one day earlier

• For robustness graphs, same idea
 o Black = baseline (e.g. $\delta = 1.0\%$)
 o Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 o Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

$$\log R_0(t) = a_0 - \alpha(Daily\ Deaths)$$

$$\Rightarrow \alpha \approx .05$$

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) =$ final empirical value. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = 0.05$ (see robustness section for $\alpha = 0$)
Kansas (7 days): Daily Deaths per Million People (\(\alpha = .05 \))

\[R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/4/7 \]

DATA THROUGH 11-SEP-2020
Kansas (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Kansas

$R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \% \text{Infect} = 2/4/7$

DATA THROUGH 11-SEP-2020
Kansas (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Kansas
$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/4/7

Cumulative deaths per million people

New York City
Italy
Robustness to Mortality Rate, δ
Kansas: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Kansas

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect= 2/ 4/ 7

DATA THROUGH 11-SEP-2020
Kansas: Daily Deaths per Million People ($\delta = .01/0.008/0.012$)

Kansas

$R_0=1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect} = 2/4/7$

DATA THROUGH 11-SEP-2020
Kansas: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

\[R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/4/7 \]
Reopening and Herd Immunity

– Black: assumes $R_0(today)$ remains in place forever
– Red: assumes $R_0(suppress) = 1/s(today)$
– Green: we move 25% of the way from $R_0(today)$ back to initial $R_0 = “normal”$
– Purple: we move 50% of the way from $R_0(today)$ back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Kansas: Re-Opening ($\alpha = .05$)

Kansas

$R_0(t)=1.2$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.4/1.6$, $\delta = 0.010$, $\alpha=0.05$

(Light bars = New York City, for comparison)
Kansas: Re-Opening ($\alpha = 0$)

Kansas

$R_0(t)=1.2$, $R_0\text{(suppress)}=1.0$, $R_0(25/50)=1.4/1.6$, $\delta = 0.010$, $\alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Kansas (7 days): Daily Deaths per Million People ($\alpha = 0$)

\[R_0 = 1.5/1.2/1.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/4/18 \]

DATA THROUGH 11-SEP-2020
Kansas (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

$R_0 = 1.5/1.2/1.2$, $\delta = 0.010$, $\alpha = 0.00$, $\theta = 0.1$, %Infect = 2/4/18

Data through 11-Sep-2020
Kansas (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

\[R_0 = 1.5/1.2/1.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/4/18 \]
Kansas: Daily Deaths per Million People ($\delta = 0.8\%$)

Kansas

$R_0 = 1.5/1.2/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%$ Infect $= 3/4/8$
Kansas: Cumulative Deaths per Million ($\delta = 0.8\%$)

Kansas

$R_0=1.5/1.2/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ %Infect= 3/4/8
Kansas: Daily Deaths per Million People ($\delta = 1.2\%$)

Kansas

$R_0 = 1.5/1.2/1.1$ \quad $\delta = 0.012$ \quad $\theta = 0.1$ \quad $\gamma = 0.2$ \quad %Infect = 2/3/6
Kansas: Cumulative Deaths per Million ($\delta = 1.2\%$)

Kansas

$R_0 = 1.5/1.2/1.1$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%\text{Infect} = 2/3/6$
Kansas: Daily Deaths per Million People ($\gamma = .2/.15$)

Kansas

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%Infect= 2/4/7$

DATA THROUGH 11-SEP-2020
Kansas: Cumulative Deaths per Million $\gamma = .2/.15$)

Kansas

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%Infect=2/4/7$

DATA THROUGH 11-SEP-2020
Kansas: Daily Deaths per Million People ($\theta = .1/0.07/0.2$)

Data through 11-Sep-2020

$R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/4/7$
Kansas: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Kansas

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect = 2/4/7

DATA THROUGH 11-SEP-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Kansas: Daily Deaths, Actual and Smoothed

Kansas: Daily deaths, d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Kansas: Change in Smoothed Daily Deaths

Kansas: Delta d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Kansas: Change in (Change in Smoothed Daily Deaths)

Kansas: Delta (\(\delta \))
\[
\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20
\]