Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Michigan
Based on data through August 24, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 o Lower mortality rate, $\delta = 0.8\%$
 o Higher mortality rate, $\delta = 1.2\%$
 o Infections last longer, $\gamma = 0.15$
 o Cases resolve more quickly, $\theta = 0.2$
 o Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Michigan: Daily Deaths per Million People (Smoothed)

Daily deaths per million people (smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

- Inferred from daily deaths, and
- the change in daily deaths, and
- the change in (the change in daily deaths)
(see end of slide deck for this data)
Michigan: Estimates of $R_0(t)$

Michigan
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Michigan: Percent Currently Infectious

Michigan
Peak I/N = 1.01% Final I/N = 0.07% $\delta = 0.010$ $\theta = 0.10$ $\gamma = 0.20$
Michigan: Growth Rate of Daily Deaths over Past Week (percent)

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Notes on Interpreting Results
Guide to Graphs

- **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

$$\log R_0(t) = a_0 - \alpha (\text{Daily Deaths})$$

$$\Rightarrow \alpha \approx .05$$

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

- After peak, forecasts settle down.
- Before that, very noisy!
- If the region has not peaked, do not trust
- With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Michigan (7 days): Daily Deaths per Million People ($\alpha = .05$)

Michigan
$R_0=2.0/1.1/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect$=8/9/10$

DATA THROUGH 24-AUG-2020
Michigan (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Michigan

$R_0=2.0/1.1/1.1$ \hspace{1em} $\delta = 0.010$ \hspace{1em} $\alpha=0.05$ \hspace{1em} $\theta=0.1$ \hspace{1em} $\%Infect= 8/9/10$

DATA THROUGH 24-AUG-2020
Michigan (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

\[R_0 = 2.0/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 8/9/10 \]
Robustness to Mortality Rate, δ
Michigan: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

Data through 24-Aug-2020

Michigan

$R_0 = 2.0/1.1/1.1$ \(\delta = 0.010 \) \(\alpha = 0.05 \) \(\theta = 0.1 \) \%Infect = 8/9/10
Michigan: Daily Deaths per Million People ($\delta = .01/0.008/0.012$)

Michigan

$R_0=2.0/1.1/1.1 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect} = 8/9/10$

DATA THROUGH 24-AUG-2020
Michigan: Cumulative Deaths per Million ($\delta = .01 / .008 / .012$)

Michigan
$R_0=2.0/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%Infect = 8/9/10$

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people
Reopening and Herd Immunity

– Black: assumes $R_0(today)$ remains in place forever
– Red: assumes $R_0(suppress) = 1/s(today)$
– Green: we move 25% of the way from $R_0(today)$ back to initial $R_0 = \text{“normal”}$
– Purple: we move 50% of the way from $R_0(today)$ back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Michigan: Re-Opening ($\alpha = 0.05$)

Michigan

$R_0(t)=1.1$, $R_0(\text{suppress})=1.1$, $R_0(25/50)=1.4/1.6$, $\delta = 0.010$, $\alpha=0.05$
Michigan: Re-Opening ($\alpha = 0$)

Michigan

$R_0(t)=1.2, \ R_0(\text{suppress})=1.1, \ R_0(25/50)=1.4/1.6, \ \delta = 0.010, \ \alpha=0.00$
Results for alternative parameter values
Michigan (7 days): Daily Deaths per Million People ($\alpha = 0$)

Michigan

$R_0 = 2.0/1.2/1.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 8/9/11$

DATA THROUGH 24-AUG-2020
Michigan (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

DATA THROUGH 24-AUG-2020

$R_0 = 2.0/1.2/1.2$ $\delta = 0.010$ $\alpha = 0.00$ $\theta = 0.1$ $%\text{Infect} = 8/9/11$
Michigan (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Michigan

$R_0 = 2.0/1.2/1.2$ \(\delta = 0.010 \) \(\alpha = 0.00 \) \(\theta = 0.1 \) \%Infect = 8/9/11

New York City

Italy
Michigan: Daily Deaths per Million People ($\delta = 0.8\%$)

\[\text{Daily deaths per million people} \]

Michigan

\[R_0 = 2.0/1.2/1.1 \quad \delta = 0.008 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 11/11/13 \]
Michigan: Cumulative Deaths per Million ($\delta = 0.8\%$)

Michigan

$R_0 = 2.0/1.2/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $%\text{Infect} = 11/11/13$
Michigan: Daily Deaths per Million People ($\delta = 1.2\%$)

Michigan

$R_0 = 2.0/1.1/1.1$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%$Infect = 7/8/9
Michigan: Cumulative Deaths per Million ($\delta = 1.2\%$)

Michigan

\[R_0 = 2.0/1.1/1.1 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 7/8/9 \]

Cumulative deaths per million people
Michigan: Daily Deaths per Million People \((\gamma = 0.2/0.15)\)

\[
\begin{align*}
R_0 &= 2.0/1.1/1.1 & \delta &= 0.010 & \alpha &= 0.05 & \theta &= 0.1 & \%\text{Infect} &= 8/9/10 \\
\text{DATA THROUGH 24-AUG-2020}
\end{align*}
\]
Michigan: Cumulative Deaths per Million $\gamma = .2 / .15$)
Michigan: Daily Deaths per Million People ($\theta = .1/.07/.2$)

Michigan

$R_0 = 2.0/1.1/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 8/9/10$

DATA THROUGH 24-AUG-2020
Michigan: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Michigan

$R_0=2.0/1.1/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 8/ 9/10

DATA THROUGH 24-AUG-2020

Cumulative deaths per million people
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Michigan: Daily Deaths, Actual and Smoothed

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Michigan: Change in Smoothed Daily Deaths

Michigan: Delta d
\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]