Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for New York City (plus)
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results ($\delta = 1.0\%, \gamma = 0.2, \theta = 0.1$)
• Simulation of re-opening – possibilities for raising R_0
• Results with alternative parameter values:
 - Lower mortality rate, $\delta = 0.8\%$
 - Higher mortality rate, $\delta = 1.2\%$
 - Infections last longer, $\gamma = 0.15$
 - Cases resolve more quickly, $\theta = 0.2$
 - Cases resolve more slowly, $\theta = 0.07$
• Data underlying estimates of $R_0(t)$
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
New York City (plus): Daily Deaths per Million People
New York City (plus): Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
New York City (plus): Estimates of $R_0(t)$

New York City (plus)

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
New York City (plus): Percent Currently Infectious

New York City (plus)
Peak I/N = 4.09% Final I/N = 0.03% δ = 0.010 θ = 0.10 γ = 0.20
Notes on Interpreting Results
Guide to Graphs

• **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it.
- For future, two approaches:
 - Alternatively, we fit this equation:

$$\log R_0(t) = a_0 - \alpha(Daily\ Deaths)$$

$$\Rightarrow \alpha \approx .05$$

R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline.

- Robustness: Assume $R_0(t) =$ final empirical value. Constant in future, so no α adjustment $\Rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
New York City (plus) (7 days): Daily Deaths per Million People ($\alpha = 0.05$)

New York City (plus)

$R_0 = 2.2/1.6/1.4 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 24/25/27$

DATA THROUGH 09-OCT-2020
New York City (plus) (7 days): Cumulative Deaths per Million (Future, α)

\[R_0 = 2.2/1.6/1.4 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 24/25/27 \]
New York City (plus) (7 days): Cumulative Deaths per Million, Log Scale

New York City (plus)

\[R_0 = 2.2/1.6/1.4, \quad \delta = 0.010, \quad \alpha = 0.05, \quad \theta = 0.1, \quad \text{%Infect} = 24/25/27 \]
Robustness to Mortality Rate, δ
New York City (plus): Cumulative Deaths per Million ($\delta = .01/.008/.012$)

$R_0=2.2/1.6/1.4$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect=24/25/27

DATA THROUGH 09-OCT-2020
New York City (plus): Daily Deaths per Million People ($\delta = .01/.008/.012$)

New York City (plus)
$R_0 = 2.2/1.6/1.4$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect = 24/25/27

DATA THROUGH 09-OCT-2020
New York City (plus): Cumulative Deaths per Million ($\delta = .01/.008/.012$)

$$R_0 = 2.2/1.6/1.4 \quad \delta = 0.010 \quad \alpha=0.05 \quad \theta=0.1 \quad \%\text{Infect}=24/25/27$$

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

– **Black**: assumes R_0(today) remains in place forever
– **Red**: assumes R_0(suppress) = $1/s(today)$
– **Green**: we move 25% of the way from R_0(today) back to initial $R_0 =$ “normal”
– **Purple**: we move 50% of the way from R_0(today) back to initial $R_0 =$ “normal”

NOTE: Lines often cover each other up
New York City (plus): Re-Opening ($\alpha = .05$)

New York City (plus)

$R_0(t)=1.6, \ R_0^{\text{suppress}}=1.3, \ R_0^{(25/50)}=1.7/1.9, \ \delta = 0.010, \ \alpha=0.05$

(Light bars = New York City, for comparison)
New York City (plus): Re-Opening ($\alpha = 0$)

New York City (plus)

$R_0(t)=1.6$, $R_0(\text{suppress})=1.3$, $R_0(25/50)=1.7/1.9$, $\delta = 0.010$, $\alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
New York City (plus) (7 days): Daily Deaths per Million People ($\alpha = 0$)

New York City (plus)

$R_0 = 2.2/1.6/1.6 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 24/25/32$

DATA THROUGH 09-OCT-2020
New York City (plus) (7 days): Cumulative Deaths per Million (Future, α)

\[R_0 = 2.2/1.6/1.6 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 24/25/32 \]

DATA THROUGH 09-OCT-2020
New York City (plus): Cumulative Deaths per Million, Log Scale

New York City (plus)

$R_0 = 2.2/1.6/1.6$, $\delta = 0.010$, $\alpha = 0.00$, $\theta = 0.1$, %Infect = 24/25/32
New York City (plus): Daily Deaths per Million People ($\delta = 0.8\%$)

R\textsubscript{0}=2.3/1.7/1.5 $\delta = 0.008$ $\theta=0.1$ $\gamma=0.2$ %Infect=31/31/34
New York City (plus): Cumulative Deaths per Million ($\delta = 0.8\%$)

New York City (plus)

$R_0 = 2.3/1.7/1.5$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%\text{Infect} = 31/31/34$
New York City (plus): Daily Deaths per Million People ($\delta = 1.2\%$)

New York City (plus)

$R_0=2.2/1.5/1.3$ $\delta = 0.012$ $\theta=0.1$ $\gamma=0.2$ $\%Infect=20/21/23$
New York City (plus): Cumulative Deaths per Million ($\delta = 1.2\%$)

$R_0 = 2.2/1.5/1.3 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 20/21/23$
New York City (plus): Daily Deaths per Million People ($\gamma = .2/.15$)

New York City (plus)

$R_0 = 2.2/1.6/1.4$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 24/25/27

DATA THROUGH 09-OCT-2020
New York City (plus): Cumulative Deaths per Million $\gamma = .2 / .15$

New York City (plus)

$R_0 = 2.2 / 1.6 / 1.4 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 24 / 25 / 27$

DATA THROUGH 09-OCT-2020
New York City (plus): Daily Deaths per Million People ($\theta = .1/.07/.2$)

\[R_0 = 2.2/1.6/1.4 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 24/25/27 \]

DATA THROUGH 09-OCT-2020
New York City (plus): Cumulative Deaths per Million People ($\theta = .1/0.07$)

New York City (plus)

$R_0 = 2.2/1.6/1.4 \; \delta = 0.010 \; \alpha = 0.05 \; \theta = 0.1 \; \%\text{Infect} = 24/25/27$

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

Cumulative deaths per million people:

- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000

\(\theta = 0.07\)
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
New York City (plus): Daily Deaths, Actual and Smoothed

New York City (plus): Daily deaths, d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
New York City (plus): Change in Smoothed Daily Deaths

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
New York City (plus): Change in (Smoothed Daily Deaths)