Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Oregon
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results \((\delta = 1.0\%, \gamma = 0.2, \theta = 0.1) \)
• Simulation of re-opening – possibilities for raising \(R_0 \)
• Results with alternative parameter values:
 - Lower mortality rate, \(\delta = 0.8\% \)
 - Higher mortality rate, \(\delta = 1.2\% \)
 - Infections last longer, \(\gamma = 0.15 \)
 - Cases resolve more quickly, \(\theta = 0.2 \)
 - Cases resolve more slowly, \(\theta = 0.07 \)
• Data underlying estimates of \(R_0(t) \)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Oregon: Daily Deaths per Million People

Oregon

Daily deaths per million people

Apr May Jun Jul Aug Sep Oct

2020
Oregon: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the *paper* for a full exposition
- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Oregon: Estimates of $R_0(t)$

\[\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \]
Oregon: Percent Currently Infectious

Peak I/N = 0.07% Final I/N = 0.06% δ = 0.010 θ = 0.10 γ = 0.20
Oregon: Growth Rate of Daily Deaths over Past Week (percent)

\[
\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20
\]
Notes on Interpreting Results
Guide to Graphs

• **Warning:** Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

• 7 days of forecasts: Rainbow color order!
 ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

• For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it

- For future, two approaches:
 1. Alternatively, we fit this equation:

 $$\log R_0(t) = a_0 - \alpha(Daily\ Deaths)$$

 $\Rightarrow \alpha \approx .05$

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Oregon (7 days): Daily Deaths per Million People ($\alpha = 0.05$)

\[R_0 = 1.2/1.2/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/6 \]

DATA THROUGH 09-OCT-2020
Oregon (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

Oregon

$R_0=1.2/1.2/1.0$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/ 2/ 6

DATA THROUGH 09-OCT-2020
Oregon (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

Oregon

$R_0 = 1.2/1.2/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/6$

Cumulative deaths per million people

New York City

Italy

Robustness to Mortality Rate, δ
Oregon: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

Oregon

$R_0=1.2/1.2/1.0$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/ 2/ 6

DATA THROUGH 09-OCT-2020
Oregon: Daily Deaths per Million People ($\delta = .01/.008/.012$)

Oregon

$R_0 = 1.2/1.2/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \% \text{Infect} = 2/2/6$

DATA THROUGH 09-OCT-2020
Oregon: Cumulative Deaths per Million ($\delta = 0.01/0.008/0.012$)

$R_0 = 1.2/1.2/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/6$

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

- **Black**: assumes $R_0(today)$ remains in place forever
- **Red**: assumes $R_0(suppress) = 1/s(today)$
- **Green**: we move 25% of the way from $R_0(today)$ back to initial $R_0 = “normal”$
- **Purple**: we move 50% of the way from $R_0(today)$ back to initial $R_0 = “normal”$

NOTE: Lines often cover each other up
Oregon: Re-Opening ($\alpha = .05$)

Oregon

$R_0(t)=1.2$, R_0(suppress$)=1.0$, R_0(25/50)$=1.4/1.6$, $\delta = 0.010$, $\alpha=0.05$

(Light bars = New York City, for comparison)
Oregon: Re-Opening ($\alpha = 0$)

Oregon

$R_0(t)=1.2$, $R_0(\text{suppress})=1.0$, $R_0(25/50)=1.4/1.6$, $\delta = 0.010$, $\alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Oregon (7 days): Daily Deaths per Million People ($\alpha = 0$)

Oregon

$R_0 = 1.2/1.2/1.2$, $\delta = 0.010$, $\alpha = 0.00$, $\theta = 0.1$, %Infect = 2/3/20

DATA THROUGH 09-OCT-2020
Oregon (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

\[R_0 = 1.2/1.2/1.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/20 \]

DATA THROUGH 09-OCT-2020

Cumulative deaths per million people

Oregon (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Oregon
$R_0 = 1.2/1.2/1.2 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/20$

Cumulative deaths per million people

New York City
Italy
Oregon: Daily Deaths per Million People ($\delta = 0.8\%$)

Oregon

$R_0 = 1.2/1.2/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $\%\text{Infect} = 2/3/7$
Oregon: Cumulative Deaths per Million \((\delta = 0.8\%)\)

Oregon

\(R_0 = 1.2/1.2/1.1\) \(\delta = 0.008\) \(\theta = 0.1\) \(\gamma = 0.2\) \%Infect = 2/3/7
Oregon: Daily Deaths per Million People ($\delta = 1.2\%$)

Oregon

$R_0 = 1.2 / 1.2 / 1.0$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%$Infect = 1/2/5
Oregon: Cumulative Deaths per Million ($\delta = 1.2\%$)

Oregon

$R_0 = 1.2/1.2/1.0$ $\delta = 0.012$ $\theta = 0.1$ $\gamma = 0.2$ $\%\text{Infect} = 1/2/5$
Oregon: Daily Deaths per Million People ($\gamma = .2/.15$)

Oregon

$R_0 = 1.2/1.2/1.0$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%\text{Infect} = 2/2/6$

DATA THROUGH 09-OCT-2020
Oregon: Cumulative Deaths per Million $\gamma = .2/.15$)

Oregon
$R_0=1.2/1.2/1.0 \ \delta = 0.010 \ \alpha=0.05 \ \theta=0.1 \ \%Infect= 2/2/6$

Cumulative deaths per million people

DATA THROUGH 09-OCT-2020

$\gamma = 0.15$

$\gamma = 0.2$
Oregon: Daily Deaths per Million People ($\theta = .1 / .07 / .2$)

Oregon

$R_0 = 1.2/1.2/1.0 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/2/6$

DATA THROUGH 09-OCT-2020
Oregon: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Oregon

$R_0 = 1.2/1.2/1.0 \ \delta = 0.010 \ \alpha = 0.05 \ \theta = 0.1 \ \%\text{Infect} = 2/2/6$

DATA THROUGH 09-OCT-2020
Data Underlying Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
Oregon: Daily Deaths, Actual and Smoothed

Oregon: Daily deaths, d
\[\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20 \]