Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities

Jesús Fernández-Villaverde and Chad Jones

Extended results for Portugal
Based on data through October 9, 2020
Outline of Slides

• Basic data from Johns Hopkins CSSE (raw and smoothed)
• Brief summary of the model
• Baseline results \((\delta = 1.0\%, \gamma = 0.2, \theta = 0.1)\)
• Simulation of re-opening – possibilities for raising \(R_0\)
• Results with alternative parameter values:
 o Lower mortality rate, \(\delta = 0.8\%\)
 o Higher mortality rate, \(\delta = 1.2\%\)
 o Infections last longer, \(\gamma = 0.15\)
 o Cases resolve more quickly, \(\theta = 0.2\)
 o Cases resolve more slowly, \(\theta = 0.07\)
• Data underlying estimates of \(R_0(t)\)
Underlying data from Johns Hopkins CSSE

- Raw data
- Smoothed = 7 day centered moving average
- No “excess deaths” correction (change as of Aug 6 run)
Portugal: Daily Deaths per Million People

Portugal
Portugal: Daily Deaths per Million People (Smoothed)
Brief Summary of Model

- See the paper for a full exposition

- A 5-state SIRDC model with a time-varying R_0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1.0%</td>
<td>Mortality rate from infections (IFR)</td>
</tr>
<tr>
<td>γ</td>
<td>0.2</td>
<td>Rate at which people stop being infectious</td>
</tr>
<tr>
<td>θ</td>
<td>0.1</td>
<td>Rate at which cases (post-infection) resolve</td>
</tr>
<tr>
<td>α</td>
<td>0.05</td>
<td>Rate at which $R_0(t)$ decays with daily deaths</td>
</tr>
<tr>
<td>R_0</td>
<td>...</td>
<td>Initial base reproduction rate</td>
</tr>
<tr>
<td>$R_0(t)$</td>
<td>...</td>
<td>Base reproduction rate at date t (β_t/γ)</td>
</tr>
</tbody>
</table>
Estimates of Time-Varying R_0

– Inferred from daily deaths, and
– the change in daily deaths, and
– the change in (the change in daily deaths)
(see end of slide deck for this data)
Portugal: Estimates of $R_0(t)$

Portugal

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$
Portugal: Percent Currently Infectious

Portugal

Peak I/N = 0.17% Final I/N = 0.05% \(\delta = 0.010 \) \(\theta = 0.10 \) \(\gamma = 0.20 \)
Portugal: Growth Rate of Daily Deaths over Past Week (percent)

Portugal
\[\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20\]
Notes on Interpreting Results
Guide to Graphs

- **Warning**: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper.

- 7 days of forecasts: Rainbow color order!
 - ROY-G-BIV (old to new, low to high)
 - Black = current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier

- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = 1.0\%$)
 - Red = lowest parameter value (e.g. $\delta = 0.8\%$)
 - Green = highest parameter value (e.g. $\delta = 1.2\%$)
How does R_0 change over time?

- Inferred from death data when we have it
- For future, two approaches:
 1. Alternatively, we fit this equation:

 \[
 \log R_0(t) = a_0 - \alpha (\text{Daily Deaths})
 \]

 \[\Rightarrow \alpha \approx 0.05\]

 R_0 declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline

- Robustness: Assume $R_0(t) = \text{final empirical value}$. Constant in future, so no α adjustment $\rightarrow \alpha = 0$
Repeated “Forecasts” from the past 7 days of data

– After peak, forecasts settle down.
– Before that, very noisy!
– If the region has not peaked, do not trust
– With $\alpha = .05$ (see robustness section for $\alpha = 0$)
Portugal (7 days): Daily Deaths per Million People ($\alpha = .05$)

Portugal

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/ 3/ 6

DATA THROUGH 09-OCT-2020
Portugal (7 days): Cumulative Deaths per Million (Future, $\alpha = .05$)

$$R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/6$$

DATA THROUGH 09-OCT-2020
Portugal (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = .05$)

$R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%Infect = 2/3/6$
Robustness to Mortality Rate, δ
Portugal: Cumulative Deaths per Million ($\delta = .01/.008/.012$)

DATA THROUGH 09-OCT-2020

Portugal

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ $\%$Infect$= 2/3/6$
Portugal: Daily Deaths per Million People ($\delta = .01/.008/.012$)

Portugal

$R_0 = 1.5/1.2/1.1 \; \delta = 0.010 \; \alpha = 0.05 \; \theta = 0.1 \; \%\text{Infect} = 2/3/6$

DATA THROUGH 09-OCT-2020
Portugal: Cumulative Deaths per Million ($\delta = .01/ .008 / .012$)

DATA THROUGH 09-OCT-2020
Reopening and Herd Immunity

– **Black**: assumes $R_0({\text{today}})$ remains in place forever
– **Red**: assumes $R_0(\text{suppress}) = 1/s(\text{today})$
– **Green**: we move 25% of the way from $R_0(\text{today})$ back to initial $R_0 = \text{“normal”}$
– **Purple**: we move 50% of the way from $R_0(\text{today})$ back to initial $R_0 = \text{“normal”}$

NOTE: Lines often cover each other up
Portugal: Re-Opening ($\alpha = .05$)

$R_0(t)=1.2$, $R_0\text{ (suppress)}=1.0$, $R_0(25/50)=1.4/1.6$, $\delta = 0.010$, $\alpha=0.05$

(Light bars = New York City, for comparison)
Portugal: Re-Opening ($\alpha = 0$)

Portugal

$R_0(t)=1.3, \ R_0(\text{suppress})=1.0, \ R_0(25/50)=1.4/1.6, \ \delta = 0.010, \ \alpha=0.00$

(Light bars = New York City, for comparison)
Results for alternative parameter values
Portugal (7 days): Daily Deaths per Million People ($\alpha = 0$)

$R_0 = 1.5/1.3/1.3 \delta = 0.010 \ \alpha = 0.00 \ \theta = 0.1 \ \%\text{Infect} = 2/3/23$

DATA THROUGH 09-OCT-2020
Portugal (7 days): Cumulative Deaths per Million (Future, $\alpha = 0$)

$R_0 = 1.5/1.3/1.3 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/23$

DATA THROUGH 09-OCT-2020
Portugal (7 days): Cumulative Deaths per Million, Log Scale ($\alpha = 0$)

Portugal

$R_0 = 1.5/1.3/1.3 \quad \delta = 0.010 \quad \alpha = 0.00 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/23$
Portugal: Daily Deaths per Million People ($\delta = 0.8\%$)

Portugal

$R_0=1.5/1.2/1.1$ \(\delta = 0.008 \) \(\theta=0.1 \) \(\gamma=0.2 \) \%Infect= 3/ 4/ 8
Portugal: Cumulative Deaths per Million ($\delta = 0.8\%$)

Portugal

$R_0 = 1.5/1.2/1.1$ $\delta = 0.008$ $\theta = 0.1$ $\gamma = 0.2$ $%\text{Infect} = 3/4/8$
Portugal: Daily Deaths per Million People ($\delta = 1.2\%$)

Portugal

$R_0=1.5/1.2/1.0 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 2/3/5$
Portugal: Cumulative Deaths per Million ($\delta = 1.2\%$)

$R_0 = 1.5/1.2/1.0 \quad \delta = 0.012 \quad \theta = 0.1 \quad \gamma = 0.2 \quad \%\text{Infect} = 2/3/5$
Portugal: Daily Deaths per Million People ($\gamma = .2 / .15$)

Data through 09-Oct-2020

$R_0 = 1.5 / 1.2 / 1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ $\%$ Infect = 2 / 3 / 6
Portugal: Cumulative Deaths per Million $\gamma = .2/.15$)

$R_0=1.5/1.2/1.1$ $\delta = 0.010$ $\alpha=0.05$ $\theta=0.1$ %Infect= 2/3/6

DATA THROUGH 09-OCT-2020
Portugal: Daily Deaths per Million People \((\theta = .1/0.07/0.2) \)

\[R_0 = 1.5/1.2/1.1 \quad \delta = 0.010 \quad \alpha = 0.05 \quad \theta = 0.1 \quad \%\text{Infect} = 2/3/6 \]
Portugal: Cumulative Deaths per Million People ($\theta = .1/.07/.2$)

Data through 09-Oct-2020

$R_0 = 1.5/1.2/1.1$ $\delta = 0.010$ $\alpha = 0.05$ $\theta = 0.1$ %Infect = 2/3/6

Cumulative deaths per million people

Data Underlying Estimates of Time-Varying R_0

- Inferred from daily deaths, and
- the change in daily deaths, and
- the change in (the change in daily deaths)
Portugal: Daily Deaths, Actual and Smoothed

Portugal: Daily deaths, d

$\delta = 0.010 \quad \theta=0.10 \quad \gamma=0.20$
Portugal: Change in Smoothed Daily Deaths

Portugal: Delta d

$\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20$

Feb Mar Apr May Jun Jul Aug Sep Oct
Portugal: Change in (Change in Smoothed Daily Deaths)

Portugal: Delta (Delta d)
\(\delta = 0.010 \quad \theta = 0.10 \quad \gamma = 0.20 \)