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Abstract

Ideas are different from nearly all other economic goods in that they are nonrivalrous.
This nonrivalry implies that production possibilities are likely to be characterized by in-
creasing returns to scale, an insight that has profound implications for economic growth.
The purpose of this chapter is to explore these implications.
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1. Introduction

People in countries like the United States are richer by a factor of about 10 or 20 than
people a century or two ago. Whereas U.S. per capita income today is $33,000, conven-
tional estimates put it at $1800 in 1850. Yet even this difference likely understates the
enormous increase in standards of living over this period. Consider the quality of life
of the typical American in the year 1850. Life expectancy at birth was a scant 40 years,
just over half of what it is today. Refrigeration, electric lights, telephones, antibiotics,
automobiles, skyscrapers, and air conditioning did not exist, much less the more sophis-
ticated technologies that impact our lives daily in the 21st century.1

Perhaps the central question of the literature on economic growth is “Why is there
growth at all?” What caused the enormous increase in standards of living during the last
two centuries? And why were living standards nearly stagnant for the thousands and
thousands of years that preceded this recent era of explosive growth?

The models developed as part of the renaissance of research on economic growth in
the last two decades attempt to answer these questions. While other chapters discuss
alternative explanations, this chapter will explore theories in which the economics of
ideas takes center stage. The discoveries of electricity, the incandescent lightbulb, the
internal combustion engine, the airplane, penicillin, the transistor, the integrated circuit,
just-in-time inventory methods, Wal–Mart’s business model, and the polymerase chain
reaction for replicating strands of DNA all represent new ideas that have been, in part,
responsible for economic growth over the last two centuries.

The insights that arise when ideas are placed at the center of a theory of economic
growth can be summarized in the following Idea Diagram:

Ideas⇒ Nonrivalry ⇒ IRS ⇒ Problems with CE.

To understand this diagram, first consider what we mean by “ideas”.Romer (1993)
divides goods into two categories: ideas and objects. Ideas can be thought of as in-
structions or recipes, things that can be codified in a bitstring as a sequence of ones
and zeros. Objects are all the rivalrous goods we are familiar with: capital, labor, out-
put, computers, automobiles, and most fundamentally the elemental atoms that make
up these goods. At some level, ideas are instructions for arranging the atoms and for
using the arrangements to produce utility. For thousands of years, silicon dioxide pro-
vided utility mainly as sand on the beach, but now it delivers utility through the myriad
of goods that depend on computer chips. Viewed this way, economic growth can be
sustained even in the presence of a finite collection of raw materials as we discover bet-
ter ways to arrange atoms and better ways to use the arrangements. One then naturally
wonders about possible limits to the ways in which these atoms can be arranged, but

1 Ideally, the calculations of GDP should take the changing basket of goods and changes in life expectancy
into account, but the standard price indices used to construct these comparisons are inadequate. See, for
example,DeLong (2000)andNordhaus (2003).
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the combinatorial calculations ofRomer (1993)andWeitzman (1998)quickly put such
concerns to rest. Consider, for example, the number of unique ways of ordering twenty
objects (these could be steps in assembling a computer chip or ingredients in a chemical
formula). The answer is 20!, which is on the order of 1018. To put this number in per-
spective, if we tried one different combination every second since the universe began,
we would have exhausted less than twenty percent of the possibilities.2

The first arrow in the Idea Diagram links ideas with the concept of nonrivalry. Recall
from public economics that a good is nonrivalrous if one person’s use of the good does
not diminish another’s use. Most economic goods – objects – are rivalrous: one person’s
use of a car, a computer, or an atom of carbon dimishes the ability of someone else
to use that object. Ideas, by contrast, are nonrivalrous. As examples, consider public
key cryptography and the famous introductory bars to Beethoven’s Fifth Symphony.
Audrey’s use of a particular cryptographic method does not inhibit my simultaneous
use of that method. Nor does Benji’s playing of the Fifth Symphony limit my (in)ability
to perform it simultaneously. For an example closer to our growth models, consider the
production of computer chips. Once the design of the latest computer chip has been
invented, it can be applied in one factory or two factories or ten factories. The design
does not have to be reinvented every time a new computer chip gets produced – the
same idea can be applied over and over again. More generally, the set of instructions
for combining and using atoms can be used at any scale of production without being
diminished.

The next link between nonrivalry and increasing returns to scale (IRS) is the first
indication that nonrivalry has important implications for economic growth. As discussed
in Romer (1990), consider a production function of the form

(1)Y = F(A,X),

whereY is output,A is an index of the amount of knowledge that has been discovered,
andX is a vector of the remaining inputs into production (e.g. capital and labor). Our
standard justification for constant returns to scale comes from a replication argument.
Suppose we’d like to double the production of computer chips. One way to do this is
to replicate all of the standard inputs: we build another factory identical to the first and
populate it with the same material inputs and with identical workers. Crucially, however,
we do not need to double the stock of knowledge because of its nonrivalry: the existing
design for computer chips can be used in the new factory by the new workers.

One might, of course, require additional copies of the blueprint, and these blueprints
may be costly to produce on the copying machine down the hall. The blueprints are not
ideas; the copies of the blueprints might be thought of as one of the rivalrous inputs
included in the vectorX. The bits of information encoded in the blueprint – the design
for the computer chip – constitute the idea.

2 Of course, one also must consider the fraction of combinations that are useful. Responding to one such
combinatorial calculation, George Akerlof is said to have wondered, “Yes, but how many of them are like
chicken ice cream?”.
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Mathematically, we can summarize these insights in the following two equations. For
some numberλ > 1,

(2)F(A, λX) = λY,

and as long as more knowledge is useful,

(3)F(λA, λX) > λY.

That is, there are constant returns to scale to the standard rivalrous inputsX and, there-
fore, increasing returns to scale to these inputs andA taken together. If we double the
number of factories, workers, and materialsand double the stock of knowledge, then
we will more than double the production of computer chips. Including ideas as an input
into production naturally leads one to models in which increasing returns to scale plays
an important role. Notice that a “standard” production function in macroeconomics of
the formY = Kα(AL)1−α builds in this property.

Introducing human capital into this framework adds an important wrinkle but does not
change the basic insight. Suppose that the design for a computer chip must be learned
by a team of scientists overseeing production before it can be used, thus translating the
idea into human capital. To double production, one can double the number of factories,
workers, and scientists. If one incorporates a better-designed computer chip as well,
production more than doubles. Notice that the human capital is rivalrous: a scientist can
work on my project or your project, but not on both at the same time. In contrast, the
idea is nonrivalrous: two scientists can both implement a new design for a computer
chip simultaneously.

Confusion can arise in thinking about human capital if one is not careful. For ex-
ample, consider a production function that is constant returns in physical and human
capital, the two rivalrous inputs:Y = KαH 1−α. Now, suppose thatH = hL, whereh is
human capital per person. Then, this production function isY = Kα(hL)1−α. There
were constant returns toK andH in our first specification, but one is tempted conclude
that there are increasing returns toK, L, andh together in the rewritten form. Which
is it? Does the introduction of human capital involve increasing returns, just like the
consideration of ideas?

The answer is no. To see why, consider a different example, this time omitting human
capital altogether. SupposeY = KαL1−α. This is perhaps our most familiar Cobb–
Douglas production function and it exhibits constant returns to scale inK andL. Now,
rewrite this production function asY = kαL, wherek ≡ K/L is physical capital
per person. Would we characterize this production function as possessing increasing
returns? Of course not! Obviously a simple change of variables cannot change the un-
derlying convexity of a production function.

This example suggests the following principle. In considering the degree of homo-
geneity of a production function, one must focus on the function that involves total
quantities, so that nothing is “per worker”. Intuitively, this makes sense: if one is de-
termining returns to scale, the presence of “per worker” variables will of course lead to
confusion. The application of this principle correctly identifies the production function
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based on human capitalY = KαH 1−α as possessing constant returns. Introducing ideas
into the production function leads to increasing returns because of nonrivalry.

Finally, the last link in our diagram connects increasing returns to scale to “Problems
with CE”, by which we mean problems with the standard decentralization of the optimal
allocation of resources using a perfectly competitive equilibrium. A central requirement
of a competitive equilibrium is that factors get paid their marginal products. But with
increasing returns to scale, as is well known, this is not possible. Continuing with the
production function in Equation(1), the property of constant returns inX guarantees
that3

(4)FXX = Y.

That is, paying each rivalrous factor its marginal product exhausts output, so that noth-
ing would be left over to compensate the idea inputs

(5)FXX + FAA > Y.

If the stock of knowledge is also paid its marginal product, then the firm would make
negative profits. This means that the standard competitive equilibrium will run into
problems in a model that includes ideas.

These two implications of incorporating ideas into our growth models – increasing
returns and the failure of perfect competition to deliver optimal allocations – are the
basis for many of the insights and results that follow in the remainder of this chapter.
This chain of reasoning provides the key foundation for idea-based growth theory.

The purpose of this chapter is to outline the contribution of idea-based growth models
to our understanding of economic growth. The next section begins by providing a brief
overview of the intellectual history of idea-based growth theory, paying special atten-
tion to developments that preceded the advent of new growth theory in the mid-1980s.
Section3 presents the simplest possible model of growth and ideas in order to illus-
trate how these theories explain long-run growth. Section4 turns to a richer model.
This framework is used to compare the allocation of resources in equilibrium with the
optimal allocation. The richer model also serves as the basis for several applications
that follow in Sections5 and 6. Section5 provides a discussion of the scale effects that
naturally emerge in models in which ideas play an important role and reviews a num-
ber of related contributions. Section6 summarizes what we have learned from growth
accounting in idea-based growth models, considers a somewhat controversial criticism
of endogenous growth models called the “linearity critique”, and briefly summarizes
some of the additional literature on growth and ideas. Finally, Section7 of this chapter
concludes by discussing several of the most important open questions related to growth
and ideas.

3 SinceX is a vector, the notation in this equation should be interpreted as the dot product between the
vector of derivatives and the vector of inputs.
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It is worth mentioning briefly as well what this chapter omits. The most significant
omission is a careful presentation of the Schumpeterian growth models ofAghion and
Howitt (1992)andGrossman and Helpman (1991)and the very interesting directions in
which these models have been pushed. This omission, however, is remedied in another
chapter of this Handbook by Aghion and Howitt. Probably the next most important
omission is a serious discussion of the empirical work in what is known as the pro-
ductivity literature on the links between R&D, growth, and social rates of return. An
excellent overview of this literature can be found inGriliches (1998).

2. Intellectual history of this idea

The fundamental insight conveyed by the Idea Diagram is an idea itself. And like many
ideas, it is one that has been discovered, at least in part, several times in the past, at times
being appreciated as a deep insight and at times being forgotten. A brief intellectual
history of this idea follows, in part because it is useful to document this history but also
in part because it helps to illuminate the idea itself.

William Petty, an early expert on the economics of taxation, identified in 1682 one of
the key benefits of a larger population:

As for the Arts of Delight and Ornament, they are best promoted by the greatest
number of emulators. And it is more likely that one ingenious curious man may
rather be found among 4 million than 400 persons. [Quoted bySimon (1998),
p. 372.]

More than a century later, Thomas Jefferson came closer to characterizing the nonri-
valrous nature of an idea:4

Its peculiar character. . . is that no one possesses the less,because every other
possesses the whole of it. He who receives an idea from me, receives instruction
himself without lessening mine; as he who lights his taper at mine, receives light
without darkening me. That ideas should freely spread from one to another over the
globe, for the moral and mutual instruction of man, and improvement of his condi-
tion, seems to have been peculiarly and benevolently designed by nature, when she
made them, like fire, expansible over all space, without lessening their density at
any point . . . [Letter from Thomas Jefferson to Isaac McPherson, August 13, 1813,
collected inLipscomb and Bergh (1905), pp. 333–335.]

But it was not until the 1960s that economists systematically explored the economics
of ideas.Kuznets (1960)intuits a link between population, ideas, and economic growth,
andBoserup (1965)emphasizes how population pressure can lead to the adoption of

4 David (1993)cites this passage in emphasizing that ideas are “infinitely expansible”, a phrase picked up
by Quah (1996).



1070 C.I. Jones

new technologies.Arrow (1962b)andShell (1966)clearly recognize the failure of mod-
els of perfect competition to deliver optimal resource allocation in the presence of ideas.
Phelps (1966)andNordhaus (1969)present explicit models in which the nonrivalry of
knowledge leads to increasing returns and derive the result, discussed in detail below,
that long-run growth in per capita income is driven by population growth.5 Still, neither
of these papers knows quite how seriously to take this prediction, with Nordhaus calling
it a “peculiar result” (p. 23). Within two years, however,Phelps (1968)is convinced:

One can hardly imagine, I think, how poor we would be today were it not for the
rapid population growth of the past to which we owe the enormous number of
technological advances enjoyed today. . . If I could re-do the history of the world,
halving population size each year from the beginning of time on some random
basis, I would not do it for fear of losing Mozart in the process. [Pp. 511–512.]

This implication then becomes central to the popular writings of Julian Simon in the
debates over the merits and drawbacks of population growth, as inSimon (1986, 1998).

The formal literature on idea-based growth falters considerably in the 1970s and early
1980s. Much of the work that is carried out involves applications of the basicSolow
(1956)model and the growth accounting calculations that subsequently followed. By
the mid-1980s, many of the insights gleaned during the 1960s were no longer being
taught in graduate programs. In part, this period of neglect seems to have stemmed from
a lack of adequate techniques for modeling the departures from perfect competition that
are implied by the economics of ideas [e.g. seeRomer (1994b)]. This theoretical gap
gets filled through the work on imperfect competition bySpence (1976)andDixit and
Stiglitz (1977).

Idea-based growth models are thrust to center stage in the profession with the pub-
lication of a series of papers byRomer (1986, 1987, 1990). These papers – most
especially the last one – lay out with startling clarity the link between economic
growth and ideas.6 Shortly thereafter, the models ofAghion and Howitt (1992)and
Grossman and Helpman (1991)introduce the Schumpeterian notions of creative de-
struction and business stealing, pushing idea-based growth theory further.7

3. A simple idea-based growth model

3.1. The model

It is useful to begin with the simplest possible idea-based growth model in order to
see clearly how the key ingredients fit together to provide an explanation of long-run

5 The learning-by-doing models ofArrow (1962a)andSheshinski (1967)contain a similar result.
6 This brief review obviously ignores many fundamental contributions to growth theory in order to focus on

the history of idea-based growth models. Other chapters in this Handbook will lay out the roles played by
neoclassical growth models, AK models, and models of growth driven by human capital accumulation.
7 Other important contributions around this time includeJudd (1985)andSegerstrom, Anant and Dinopoulos

(1990).
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growth. To strip the model to its essence, we ignore physical capital and human capital;
these will be introduced in the richer framework of Section4.

Suppose that in our toy economy the only rivalrous input in production (theX vari-
able in the Introduction) is labor. The economy contains a single consumption good that
is produced according to

(6)Yt = Aσ
t LY t , σ > 0,

whereY is the quantity of output of the good,A is the stock of knowledge or ideas,
andLY is the amount of labor used to produce the good. Notice that there are constant
returns to scale to the rivalrous inputs, here just labor, and increasing returns to labor
and ideas taken together. To double the production of output, it is sufficient to double
the amount of labor using the same stock of knowledge. If we also double the stock of
knowledge, we would more than double output.

The other good that gets produced in this economy is knowledge itself. Just as more
workers can produce more output in Equation(6), more researchers can produce more
new ideas:

(7)Ȧt = ν(At )LAt = νLAtA
φ
t , ν > 0.

If A is the stock of knowledge, theṅA is the amount of new knowledge produced at
time t . LA denotes the number of researchers, and each researcher can produceν(A)

new ideas at a point in time. To simplify further, we assume thatν(A) is a power func-
tion.

Notice the similarity between Equations(6) and (7). Both equations involve constant
returns to scale to the rivalrous labor input, and both allow departures from constant re-
turns because of the nonrivalry of ideas. Ideas are simply another good in this economy
that labor can produce.

If φ > 0, then the number of new ideas a researcher invents over a given interval
of time is an increasing function of the existing stock of knowledge. We might label
this thestanding on shoulders effect: the discovery of ideas in the past makes us more
effective researchers today. Alternatively, though, one might consider the case where
φ < 0, i.e. where the productivity of research declines as new ideas are discovered.
A useful analogy in this case is a fishing pond. If the pond is stocked with only 100 fish,
then it may be increasingly difficult to catch each new fish. Similarly, perhaps the most
obvious new ideas are discovered first and it gets increasingly difficult to find the next
new idea.

With these production functions given, we now specify a resource constraint and a
method for allocating resources. The number of workers and the number of researchers
sum to the total amount of labor in the economy,L,

(8)LYt + LAt = Lt .

The amount of labor, in turn, is assumed to be given exogenously and to grow at a
constant exponential raten,

(9)Lt = L0ent , n > 0.
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Finally, the only allocative decision that needs to be made in this simple economy is
how to allocate labor. We make a Solow-like assumption that a constant fractions of
the labor force works as researchers, leaving 1− s to produce goods.

3.2. Solving for growth

The specification of this economy is now complete, and it is straightforward to solve
for growth in per capita output,y ≡ Y/L. First, notice the important result thatyt =
(1 − s)Aσ

t , i.e. per capita output is proportional to the stock of ideas (raised to some
power). Because of the nonrivalry of ideas, per capita output depends on thetotal stock
of ideas, not on the stock of ideas per capita.

Taking logs and time derivatives, we have the corresponding relation in growth rates

(10)
ẏt

yt

= σ
Ȧt

At

.

Growth of per capita output is proportional to the growth rate of the stock of knowledge,
where the factor of proportionality measures the degree of increasing returns in the
goods sector.

The growth rate of the stock of ideas, in turn is given by

(11)
Ȧt

At

= ν
LAt

A
1−φ
t

.

Under the assumption thatφ < 1, it is straightforward to show that the dynamics of
this economy lead to a stable balanced growth path (defined as a situation in which all
variables grow at constant rates, possibly zero). For the growth rate ofA to be constant
in Equation(11), the numerator and denominator of the right-hand side of that equation
must grow at the same rate. Lettinggx denote the growth rate of some variablex along
the balanced growth path, we then have

(12)gA = n

1 − φ
.

The growth rate of the stock of ideas, in the long-run, is proportional to the rate of
population growth, where the factor of proportionality depends on the degree of returns
to scale in the production function for ideas.

Finally, this equation can be substituted into Equation(10) to get the growth rate of
output per worker in steady state,

(13)gy = σgA = σn

1 − φ
.

The growth rate of per capita output is proportional to the rate of population growth,
where the factor of proportionality depends on the degree of increasing returns in the
two sectors.
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3.3. Discussion

Why is this the case? There are two basic elements of the toy economy that lead to
the result. First, just as the total output of any good depends on the total number of
workers producing the good, more researchers produce more new ideas. A larger popu-
lation means more Mozarts and Newtons, and more Wright brothers, Sam Waltons, and
William Shockleys. Second, the nonrivalry of knowledge means that per capita output
depends on the total stock of ideas, not on ideas per person.8 Each person in the econ-
omy benefits from the new ideas created by the Isaac Newtons and William Shockleys
of the world, and this benefit is not degraded by the presence of a larger population.

Together, these steps imply that output per capita is an increasing function, in the
long run, of the number of researchers in the economy, which in turn depends on the
size of the population. Log-differencing this relation, the growth rate of output per capita
depends on the growth rate of the number of researchers, which in turn is tied to the rate
of population growth in the long run.

At some basic level, these results should not be surprising at all. Once one grants that
the nonrivalry of ideas implies increasing returns to scale, it is nearly inevitable that the
size of the population affects the level of per capita income. After all, that is virtually
the definition of increasing returns.

In moving from this toy model to the real world, one must obviously be careful.
Probably the most important qualification is that our toy model consists of a single
country. Without thinking more carefully about the flows of ideas across countries in
the real world, it is more accurate to compare the predictions of this toy economy to the
world as a whole rather than to any single economy. Taiwan and China both benefit from
ideas created throughout the world, so it is not the Taiwanese or Chinese population that
is especially relevant to those countries’ growth experiences.

Another qualification relates to the absence of physical and human capital from the
model. At least as far as long-run growth is concerned, this absence is not particularly
harmful: recall the intuition from the Solow growth model that capital accumulation is
not, by itself, a source of long-run growth. Still, because of transition dynamics these
factors are surely important in explaining growth over any given time period, and they
will be incorporated into the model in the next section.

Finally, it is worth mentioning briefly how this result differs from the original results
in the models ofRomer (1990), Aghion and Howitt (1992), andGrossman and Helpman
(1991). Those models essentially make the assumption thatφ = 1 in the production
function for new ideas. That is, the growth rate of the stock of knowledge depends on the
number of researchers. This change serves to strengthen the importance of increasing
returns to scale in the economy, so much so that a growing number of researchers causes
the growth rate of the economy to grow exponentially. We will discuss this result in more
detail in later sections.

8 Contrast this to the case in which “capital” replaces the word “ideas” in this phrase. Because capital is
rivalrous, output per capita depends on capital per person.
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4. A richer model and the allocation of resources

The simple model given in the previous section provides several of the key insights of
idea-based growth models, but it is too simple to provide others. In particular, the final
implication in the basic Idea Diagram related to the problems a competitive equilib-
rium has in allocating resources has not been discussed. In this section, we remedy this
shortcoming and discuss explicitly several mechanisms for allocating resources in an
economy in which ideas play a crucial role. In addition, we augment the simple model
with the addition of physical capital, human capital, and the Dixit–Stiglitz love of vari-
ety approach that has proven to be quite useful in modeling growth.

The model presented in this section is developed in a way that has become a de
facto standard in macroeconomics. First, the economic environment – the collection of
production technologies, resource constraints, and utility functions – is laid out. Any
method of allocating resources is constrained by the economic environment. Next, we
present several different ways in which resources can be allocated in this economy and
derive results for each allocation. The first allocation is the simplest: a rule-of-thumb
allocation analogous to the constant saving rate assumption ofSolow (1956). The sec-
ond allocation is the optimal one, i.e. the allocation that maximizes utility subject to
the constraints imposed by the economic environment. These first two are very natural
allocations to consider. One then immediately is led to ask the question of whether a
decentralized equilibrium allocation, that is one in which markets allocate resources
rather than a planner, can replicate the optimal allocation. In general, the answer to this
question is that it depends on the nature of the institutions that govern the equilibrium.
We will solve explicitly for one of these equilibrium allocations in Section4.4and then
discuss several alternative institutions that might be used to allocate resources in this
model.

4.1. The economic environment

The economic environment for this new model consists of a set of production functions,
a set of resource constraints, and preferences. These will be described in turn.

First, the basic production functions are these:

(14)Yt =
( ∫ At

0
xθ
it di

)α/θ

H 1−α
Y t , 0 < α < 1, 0 < θ < 1,

(15)K̇t = Yt − Ct − δKt , K0 > 0, δ > 0,

(16)Ȧt = νHλ
AtA

φ
t , A0 > 0, ν > 0, λ > 0, φ < 1.

Equation(14) is the production function for the final output good. Final outputY is
produced using human capitalHY and a collection of intermediate capital goodsxi .
A represents the measure of these intermediate goods that are available at any point in
time. These intermediate goods enter the production function through a CES aggregator
function, and the elasticity of substitution between intermediate goods is 1/(1−θ) > 1.
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Notice that there are constant returns to scale inHY and these intermediate goods in
producing output for a givenA. However, there are increasing returns to scale onceA is
treated as a variable. The sense in which this is true will be made precise below.

Equation(15) is a standard accumulation equation for physical capital.
Equation(16) is the production function for new ideas. In this economy, ideas have

a very precise meaning – they represent new varieties of intermediate goods that can be
used in the production of final output. New ideas are produced with a Cobb–Douglas
function of human capital and the existing stock of knowledge.9 As in the simple model,
the parameterφ measures the way in which the current stock of knowledge affects the
production of new ideas. It nets out the standing on shoulders effect and the fishing out
effect. The parameterλ represents the elasticity of new idea production with respect
to the number of researchers. A value ofλ = 1 implies that doubling the number of
researchers doubles the production of new ideas at a point in time for a given stock of
knowledge. On the other hand, one imagines that doubling the number of researchers
might less than double the number of new ideas because of duplication, suggesting
λ < 1.

Next, the resource constraints for the economy are given by

(17)
∫ At

0
xit di = Kt,

(18)HAt + HYt = Ht,

(19)Ht = htLt ,

(20)ht = eψ	ht , ψ > 1,

(21)Lt = (1 − 	ht )Nt ,

(22)Nt = N0ent , N0 > 0, n > 0.

Breaking slightly from my taxonomy, Equation(17) involves a production function
as well as a resource constraint. In particular, one unit of raw capital can be transformed
instantaneously into one unit of any intermediate good for which a design has been dis-
covered. Equation(17) then is the resource constraint that says that the total quantity of
intermediate goods produced cannot exceed the amount of raw capital in the economy.

Equation(18)says that the amount of human capital used in the production of goods
and ideas equals the total amount of human capital available in the economy. Equa-
tion (19) states the identity that this total quantity of human capital is equal to human
capital per personh times the total labor forceL (all labor is identical). An individual’s

9 Physical capital is not used in the production of new ideas in order to simplify the model. A useful alter-
native to this approach is the “lab equipment” approach suggested byRivera-Batiz and Romer (1991)where
units of the final output good are used to produce ideas, i.e. capital and labor combine in the same way to
produce ideas as to produce final output. Apart from some technicalities, all of the results given below have
exact analogues in a lab-equipment approach.
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human capital is related by the Mincerian exponential to the amount of time spent accu-
mulating human capital,	h, in Equation(20). We simplify the model by assuming there
are no dynamics associated with human capital accumulation.10 Equation(21) defines
the labor force to be the population multiplied by the amount of time that people are not
accumulating human capital, and Equation(22)describes exogenous population growth
at raten.

Finally, preferences in this economy take the usual form:11

(23)Ut =
∫ ∞

t

Nsu(cs)e
−ρ(s−t) ds, ρ > n,

(24)ct ≡ Ct

Nt

,

(25)u(c) = c1−ζ − 1

1 − ζ
, ζ > 0.

4.2. Allocating resources with a rule of thumb

Given this economic environment, we can now consider various ways in which re-
sources may be allocated. The primary allocative decisions that need to be made are
relatively few. At each point in time, we need to determine the amount of time spent
gaining human capital	h, the amount of consumptionc, the amount of human capital
allocated to researchHA, and the split of the raw capital into the various varieties{xi}.
Once these allocative decisions have been made, the twelve equations in(14) to (25)
above, combined with these four allocations pin down all of the quantities in the
model.12

The simplest way to begin allocating resources in just about any model is with a “rule
of thumb”. That is, the modeler specifies some simple, exogenous rules for allocating
resources. This is useful for a number of reasons. First, it forces us to be clear from

10 This approach can be justified by a simple dynamic system of the formḣ = µeψ	h − δh, where human
capital depreciates at rateδ. It is readily seen that in the steady state, this equation implies thath is proportional
to eψ	h , as we have assumed. More generally, of course, richer equations for human capital can be imagined.
11 To keep utility finite, we require a technical condition on the parameters of the model. The appropriate
condition can be determined by looking at the utility function and takes the form

ρ > n + λ

1 − φ

σ

1 − α
(1 − ζ )n.

12 The counting goes as follows. At a point in time we have the four allocation rules and the twelve equations
given above. The four rules pin down the allocations	h, C, HA, {xi } and then twelve equations deliverY , K,
A, HY , H , h, L, N , U , c andu. The careful counter will notice I have mentioned 15 objects but 16 equations.
The subtlety is that we should think of the allocation rule as determining{xi } subject to the resource constraint
in (17). (For comparison, notice that we chooseHA and the resource constraint pins downHY . Similarly, but
loosely speaking, we choose “all but one” of thexi and the resource constraint pins down the last one.)
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the beginning about exactly what allocation decisions need to be made. Second, it re-
veals how key endogenous variables depend on the allocations themselves. This is nice
because the subsequent results will hold along a balanced growth path even if other
mechanisms are used to allocated resources.

DEFINITION 4.1. A rule of thumb allocation in this economy consists of the following
set of equations:

(26)	ht = 	̄h ∈ (0, 1),

(27)1 − Ct

Yt

= s̄K ∈ (0, 1),

(28)
HAt

Ht

= s̄A ∈ (0, 1),

(29)xit = x̄t ≡ Kt

At

for all i ∈ [0, At ].

As is obvious from the definition, our rule of thumb allocation involves agents in the
economy allocating a constant fraction of time to the accumulation of human capital,
a constant fraction of output for investment in physical capital, a constant division of hu-
man capital into research, and allocating the raw capital symmetrically in the production
of the intermediate capital goods.

With this allocation chosen, one can now in principle solve the model for all of the
endogenous variables at each point in time. For our purposes, it will be enough to solve
for a few key results along the balanced growth path of the economy, which is defined
as follows:

DEFINITION 4.2. A balanced growth path in this economy is a situation in which all
variables grow at constant exponential rates (possibly zero) and in which this constant
growth could continue forever.

The following notation will also prove useful in what follows. Lety ≡ Y/N denote
final output per capita and letk ≡ K/N represent capital per person. We will use an as-
terisk superscript to denote variables along a balanced growth path. And finally,gx will
be used to denote the exponential growth rate of some variablex along a balanced
growth path.

With this notation, we can now provide a number of useful results for this model.

RESULT 1. With constant allocations of the form given above, this model yields the
following results:

(a) Because of the symmetric use of intermediate capital goods, the production func-
tion for final output can be written as

(30)Yt = Aσ
t Kα

t H 1−α
Y t , σ ≡ α

(
1

θ
− 1

)
.
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(b) Along a balanced growth path, output per capitay depends on the total stock of
ideas, as in

(31)y∗
t =

(
s̄K

n + gk + δ

)α/(1−α)

h∗(1 − s̄A)(1 − 	̄h)A
∗σ/(1−α)
t .

(c) Along a balanced growth path, the stock of ideas is increasing in the number of
researchers, adjusted for their human capital,

(32)A∗
t =

(
ν

gA

)1/(1−φ)

H
∗λ/(1−φ)
At .

(d) Combining these last two results, output per capita along the balanced growth
path is an increasing function of research, which in turn is proportional to the
labor force,

(33)y∗
t ∝ H

∗γ

At = (hs̄ALt )
γ , γ ≡ σ

1 − α

λ

1 − φ
.

(e) Finally, taking logs and derivatives of these relationships, one gets the growth
rates along the balanced growth path,

(34)gy = gk = σ

1 − α
gA = γgHA

= g ≡ γ n.

In general, these results show how the simple model given in the previous section
extends when a much richer framework is considered.Result 1(a) shows that this Dixit–
Stiglitz technology reduces to a familiar-looking production function when the various
capital goods are used symmetrically.Result 1(b) derives the level of output per capita
along a balanced growth path, obtaining a solution that is closely related to what one
would find in a Solow model. The first term on the right-hand side is simply the capital–
output ratio in steady state, the second term adjusts for human capital, the third term
adjusts for the fraction of the labor force working to produce goods, and the fourth
term adjusts for labor force participation. The final term shows, as in the simple model,
that per capita output along a balanced growth path is proportional to the total stock of
knowledge (raised to some power).

Result 1(c) provides the analogous expression for the other main production function
in the model, the production of ideas. The stock of ideas along a balanced growth path is
proportional to the level of the research input (labor adjusted for human capital), again
raised to some power. More researchers ultimately mean more ideas in the economy.

Result 1(d) combines these last two expressions to show that per capita output is
proportional to the level of research input, which, since human capital per worker is
ultimately constant, means that per capita output is proportional to the size of the labor
force.13 The exponentγ essentially measures the total degree of increasing returns to

13 From now on we will leave the “raised to some power” phrase implicit.
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scale in this economy. Notice that it depends on the parameters of both the goods pro-
duction function and the idea production function, both of which may involve increasing
returns.

Finally, Result 1(e) takes logs and derivatives of the relevant “levels” solutions to
derive the growth rates of several variables. Output per worker and capital per worker
both grow at the same rate. This rate is proportional to the growth rate of the stock
of knowledge, which in turn is proportional to the growth rate of the effective level of
research. The growth rate of research is ultimately pinned down by the growth rate of
population. This last equality parallels the result in the simple model: the fundamental
growth rate in the economy is a product of the degree of increasing returns and the rate
of population growth. An interesting feature of this result is that the long-run growth rate
does not depend on the allocations in this model. Notice thats̄A, for example, does not
enter the expression for the long-run growth rate. Changes in the allocation of human
capital to research have “level effects”, as shown inResult 1(b), but they do not affect
the long-run growth rate. This aspect of the model will turn out to be a relatively robust
prediction of a class of idea-based growth models.14

Pausing to consider the key equations that make upResult 1, the reader might nat-
urally wonder about the restrictive link between the growth rate of human capital and
the growth rate of the labor force that has been assumed. For example, in considering
Result 1(d), one might accept that per capita output is proportional to research labor
adjusted for its human capital, but wonder whether one can get more “action” on the
growth side by letting human capital per researcher grow endogenously (in contrast, it
is constant in this model).

The answer is that it depends on how one models human capital accumulation. There
are many richer specifications of human capital accumulation that deliver results that
ultimately resemble those inResult 1. One example is given in footnote10. Another is
given in Chapter 6 ofJones (2002a). In this latter example, an individual’s human capital
represents the measure of ideas that the individual knows how to work with, which
grows over time along a balanced growth path paralleling the growth in knowledge.

An example in which one gets endogenous growth in human capital per worker occurs
when one specifies an accumulation equation that is linear in the stock of human capital
itself ḣ = βeψ	hh, reminiscent ofLucas (1988). For reasons discussed in Section6.2,
this approach is unsatisfactory, at least in my view.

4.3. The optimal allocation of resources

The next allocation we will consider is the optimal allocation. That is, we seek to solve
for the allocation of resources that maximizes welfare. Because this model is based on
a representative agent, this is a straightforward objective, and the optimal allocation is
relatively easy to solve for.

14 This invariance result can be overturned in models in which the population growth rate is an endogenous
variable, but the direction of the effects are sometimes odd. SeeJones (2003).
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DEFINITION 4.3. Theoptimal allocation of resources in this economy consists of time
paths{ct , 	ht , sAt , {xit }}∞t=0 that maximize utilityUt at each point in time given the
economic environment, i.e. given Equations(14)–(25), wheresAt ≡ HAt/Ht .

In solving for the optimal allocation of resources, it is convenient to work with the
following current-value Hamiltonian

(35)Ht = u(ct ) + µ1t

(
yt − ct − (n + δ)kt

) + µ2t νsλ
Ath

λ
t (1 − 	ht )

λNλ
t A

φ
t ,

where

(36)yt = Aσ
t kα

t

[
(1 − sAt )ht (1 − 	ht )

]1−α
.

This last equation incorporates the fact that because of symmetry, the optimal allocation
of resources requires the capital goods to be employed in equal quantities.

The current-value HamiltonianHt reflects the utility value of what gets produced
at time t : the consumption, the net investment, and the new ideas. As suggested by
Weitzman (1976), it is the utility equivalent of net domestic product. The necessary
first-order conditions for an optimal allocation can then be written as a set of three
control conditions∂Ht /∂mt = 0, wherem is a placeholder forc, sA and	h and two
arbitrage-like equations

(37)ρ̄ = ∂Ht /∂zt

µit

+ µ̇it

µit

,

with their corresponding transversality conditions limt→∞ µite−ρ̄t zt = 0. In these ex-
pressions,z is a placeholder fork andA, with i = 1, 2, respectively, and̄ρ = ρ − n

is the effective rate of time preference. The arbitrage interpretation equates the effec-
tive rate of time preference to the “dividend” and “capital gain” associated with owning
either capital or ideas, where the dividend is the additional flow of utility,∂Ht /∂zt .

RESULT 2. In this economy with the optimal allocation of resources, we have the fol-
lowing results:

(a) All of the results inResult 1continue to hold, provided the allocations are in-
terpreted as the optimal allocations rather than the rule-of-thumb allocations. For
example, output per person along the balanced growth path is proportional to the
stock of ideas (raised to some power), which in turn is proportional to the ef-
fective amount of research and therefore to the size of the population. As another
example, the key growth rates of the economy are determined as in Equation(34),
i.e. they are ultimately proportional to the rate of population growth where the
factor of proportionality measures the degree of increasing returns in the econ-
omy.

(b) The optimal allocation of consumption satisfies the standard Euler equation

(38)
ċt

ct

= 1

ζ

(
∂yt

∂kt

− δ − ρ

)
.
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(c) The optimal allocation of labor to research equates the value of the marginal
product of labor in producing goods to the value of the marginal product of labor
in producing new ideas. One way of writing this equation is

(39)
s

op
At

1 − s
op
At

= (µ2t /µ1t )λȦt

(1 − α)yt

,

where the “op” superscript denotes the optimal allocation. This equation says that
the ratio of labor working to produce ideas to labor working to produce goods is
equal to labor’s contribution to the value of the new ideas that get produced di-
vided by labor’s contribution to the value of output per person that gets produced.
Notice thatµ2/µ1 is essentially the relative price of a new idea in units of output
per person.

Along a balanced growth path, we can rewrite this expression as

(40)
s

op
A

1 − s
op
A

=
σYt /At

r∗−(gY −gA)−φgA
λȦt

(1 − α)Yt

,

wherer∗ ≡ ρ + ζgc functions as the effective interest rate for discounting future
output to the present. The relative price of a new idea is given by the presented
discounted value of the marginal product of the new idea in the goods production
function. This marginal product at one point in time isσY/A, and the equation
divides byr∗ − (gY − gA) − φgA to adjust for time discounting, growth in this
marginal product over time at rategY − gA, and an adjustment for the fact that
each new idea helps to produce additional ideas according to the spillover pa-
rameterφ. Finally, one can cancel theY ’s from the numerator and denominator
and replaceȦ/A by gA to get a closed-form solution for the allocation of labor
to research along a balanced growth path.

(d) The optimal saving rate in this economy along a balanced growth path can be
solved for from the Euler equation and the capital accumulation equation. It is
given by

(41)s
op
K = α(n + g + δ)

ρ + δ + ζg
,

whereg is the underlying growth rate of the economy, given inResult 1(e). Notice
that the optimal investment rate is proportional to the ratio of the marginal product
of capital evaluated at the golden rule,n+g+δ, to the marginal product of capital
evaluated at the modified golden rule,ρ + δ + ζg.

(e) The optimal allocation of time to human capital accumulation is straightforward
in this model, and essentially comes down to picking	h to maximize eψ	h ×
(1− 	h). The solution is to set	op

ht = 1−1/ψ for all t . As mentioned before, this
model introduces human capital in a simple fashion, so the optimal allocation is
correspondingly simple.
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4.4. A Romer-style equilibrium with imperfect competition

A natural question to ask at this point is whether some kind of market equilibrium can
reproduce the optimal allocation of resources. The discussion at the beginning of this
chapter made clear the kind of problems that an equilibrium allocation will have to
face: the economy is characterized by increasing returns and therefore a standard com-
petitive equilibrium will generally not exist and will certainly not generate the optimal
allocation of resources. We are forced to depart from a perfectly competitive economy
with no externalities, and therefore one will not be surprised to learn in this section that
the equilibrium economy, in the absence of some kind of policy intervention, does not
generally reproduce the optimal allocation of resources.

In this section, we study the equilibrium with imperfect competition first described
for a model like this byRomer (1990). Romer built on the analysis byEthier (1982),
who extended the consumer variety approach to imperfect competition ofSpence (1976)
andDixit and Stiglitz (1977)to the production side of the economy. The economic en-
vironment (potentially) involves departures from constant returns in two places, the
production function for the consumption–output good and the production function for
ideas. We deal with these departures by introducing imperfect competition for the for-
mer and externalities for the latter.

Briefly, the economy consists of three sectors. A final goods sector produces the
consumption–capital–output good using labor and a collection of capital goods. The
capital goods sector produces a variety of different capital goods using ideas and raw
capital. Finally, the research sector employs human capital in order to produce new
ideas, which in this model are represented by new kinds of capital goods. The final
goods sector and the research sector are perfectly competitive and characterized by free
entry, while the capital goods sector is the place where imperfect competition is intro-
duced. When a new design for a capital good is discovered, the design is awarded an
infinitely-lived patent. The owner of the patent has the exclusive right to produce and
sell the particular capital good and therefore acts as a monopolist in competition with
the producers of other kinds of capital goods. The monopoly profits that flow to this
producer ultimately constitute the compensation to the researchers who discovered the
new design in the first place.

As is usually the case, defining the equilibrium allocation of resources in a growth
model is more complicated than defining the optimal allocation of resources (if for no
other reason than that we have to specify markets and prices). We will begin by stating
the key decision problems that have to be solved by the various agents in the economy
and then we will put these together in our formal definition of equilibrium.

PROBLEM (HH). Households solve a standard optimization problem, choosing a time
path of consumption and an allocation of time. That is, taking the time path of{wt, rt }
as given, they solve

(42)max{ct ,	ht ,	t }

∫ ∞

0
Ntu(ct )e

−ρt dt
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subject to

(43)v̇t = (rt − n)vt + wtht	t − ct , v0 given,

(44)ht = eψ	ht ,

(45)	ht + 	t = 1,

(46)Nt = N0ent ,

(47)lim
t→∞ vt exp

{
−

∫ t

0
(rs − n) ds

}
� 0,

wherevt is the financial wealth of an individual,wt is the wage rate per unit of human
capital, andrt is the interest rate.

PROBLEM (FG). A perfectly competitive final goods sector takes the variety of capital
goods in existence as given and uses the production technology in Equation(14) to
produce output. That is, at each point in timet , taking the wage ratewt , the measure
of capital goodsAt , and the prices of the capital goodspit as given, the representative
firm solves

(48)max{xit },HY t

( ∫ At

0
xθ
it di

)α/θ

H 1−α
Y t − wtHYt −

∫ At

0
pitxit di.

PROBLEM (CG). Each variety of capital good is produced by a monopolist who owns
a patent for the good, purchased at a one-time pricePAt . As discussed in describing
the economic environment, one unit of the capital good can be produced with one unit
of raw capital. The monopolist sees a downward-sloping demand curve for her product
from the final goods sector and chooses a price to maximize profits. That is, at each
point in time and for each capital goodi, a monopolist solves

(49)max
pit

πit ≡ (pit − rt − δ)x(pit ),

wherex(pit ) is the demand from the final goods sector for intermediate goodi if the
price ispit . This demand curve comes from a first-order condition inProblem (FG).
The monopoly profits are the revenue from sales of the capital goods less the cost of
the capital need to produce the capital goods (including depreciation). The monopolist
is small relative to the economy and therefore takes aggregate variables and the interest
ratert as given.15

15 To be more specific, the demand curvex(pi ) is given by

x(pit ) =
(

α
Y∫ At

0 xθ
it

di

1

pit

)1/(1−θ)

.

We assume the monopolist is small relative to the aggregate so that it takes the price elasticity to be−1/(1−θ).
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PROBLEM (R&D). The research sector produces ideas according to the production
function in Equation(16). However, each individual researcher is small and takes the
productivity of the idea production function as given. In particular, each researcher as-
sumes that the idea production function is

(50)Ȧt = ν̄tHAt .

That is, the duplication effects associated withλ and the knowledge spillovers associ-
ated withφ in Equation(16) are assumed to be external to the individual researcher. In
this perfectly competitive research sector, the representative research firm solves

(51)max
HAt

PAt ν̄tHAt − wtHAt ,

taking the price of ideasPAt , research productivitȳνt , and the wage ratewt as given.
Now that these decision problems have been described, we are ready to define an

equilibrium with imperfect competition for this economy.

DEFINITION 4.4. Anequilibrium with imperfect competition in this economy consists
of time paths for the allocations{ct , 	ht , 	t , {xit }, Yt ,Kt , vt , {πit },HY t ,HAt ,Ht , ht , Lt ,

Nt , At , ν̄t }∞t=0 and prices{wt, rt , {pit }, PAt }∞t=0 such that for allt :
1. ct , vt , ht , 	ht and	t solveProblem (HH).
2. {xit } andHYt solveProblem (FG).
3. pit andπit solveProblem (CG)for all i ∈ [0, At ].
4. HAt solvesProblem (R&D).
5. (rt ) The capital market clears:Vt ≡ vtNt = Kt + PAtAt .
6. (wt ) The labor market clears:HYt + HAt = Ht .
7. (ν̄t ) The idea production function is satisfied:ν̄t = νHλ−1

At A
φ
t .

8. (Kt ) The capital resource constraint is satisfied:
∫ At

0 xit di = Kt .

9. (PAt ) Assets have equal returns:rt = πit

PAt
+ ṖAt

PAt
.

10. Yt is given by the production function in(14).
11. At is given by the production function in(16).
12. Ht = htLt .
13. Lt = 	tNt andNt = N0ent .

Notice that, roughly speaking, there are twenty equilibrium objects that are part of
the definition of equilibrium and there are twenty equations described in the conditions
for equilibrium that determine these objects at each point in time.16 Not surprisingly,
one cannot solve in general for the equilibrium outside of the balanced growth path, but
along a balanced growth path the solution is relatively straightforward, and we have the
following results.

16 The condition omitted from this definition of equilibrium is the law of motion for the capital stock, given
in the economic environment in Equation(15). That this equation holds in equilibrium is an implication of
Walras’ law. It can be derived in equilibrium by differentiating the capital market clearing condition that
V = K + PAA with respect to time and making the natural substitutions.
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RESULT 3. In the equilibrium with imperfect competition:
(a) All of the results inResult 1continue to hold along the balanced growth path,

provided the allocations are interpreted as the equilibrium allocations rather than
the rule-of-thumb allocations. For example, output per person along the balanced
growth path is proportional to the stock of ideas (raised to some power), which in
turn is proportional to the effective amount of research and therefore to the size
of the population. As another example, the key growth rates of the economy are
determined as in Equation(34), i.e. they are ultimately proportional to the rate
of population growth where the factor of proportionality measures the degree of
increasing returns in the economy.

(b) The Euler equation for consumption and the allocation of time to human capital
accumulation are undistorted in this equilibrium. That is, the equations that apply
are identical to the equations describing the optimal allocation of resources:

(52)
ċt

ct

= 1

ζ

(
r

eq
t − ρ

)
,

(53)	
eq
ht = 1 − 1

ψ
.

(c) The solution toProblem (CG)involves a monopoly markup over marginal cost
that depends on the CES parameter in the usual way,

(54)p
eq
it = p

eq
t ≡ 1

θ

(
r

eq
t + δ

)
.

Because of this monopoly markup, however, capital is paid less than its marginal
product, and the equilibrium interest rate is given by

(55)r
eq
t = αθ

Yt

Kt

− δ.

Because the equilibrium economy grows at the same rate as the economy with
optimal allocations, the steady-state interest rate determined from the Euler equa-
tion is the same in the two economies. Therefore, the fact that capital is paid less
than its marginal product translates into a suboptimally low capital–output ratio
in the equilibrium economy. Similarly, the equilibrium investment rate along a
balanced growth path is given by

(56)s
eq
K = αθ(n + g + δ)

ρ + δ + ζg
= θs

op
K .

(d) The equilibrium allocation of human capital to research equates the wage of hu-
man capital in producing goods to its wage in producing ideas. This result can be
written in an equation analogous to(39)as

(57)
s

eq
At

1 − s
eq
At

= PAt Ȧt

(1 − α)Yt

.
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The ratio of the share of human capital working to produce ideas to that working
to produce goods is equal to the value of the output of new ideas divided by
labor’s share of the value of final goods.

Along the balanced growth path, we can rewrite this expression as

(58)
s

eq
A

1 − s
eq
A

=
σθYt /At

req−(gY −gA)
Ȧt

(1 − α)Yt

,

which is directly comparable to the optimal allocation in Equation(40). In com-
paring these two equations, we see three differences. The first two differences
reflect the externalities in the idea production function. The true marginal prod-
uct of human capital in research is lower by a factor ofλ < 1 than the equilibrium
economy recognizes because of the congestion/duplication externality, which
tends to lead the equilibrium to overinvest in research. On the other hand, the
equilibrium allocation ignores the fact that the discovery of new ideas may raise
the future productivity of research ifφ > 0. This changes the effective rate at
which the flow of future ideas is discounted, potentially causing the equilibrium
to underinvest in research. Finally, the third difference reflects the appropriability
of returns. A new idea raises the current level of output in the final goods sector
according to the marginal productσY/A. However, the research sector appropri-
ates only the fractionθ < 1 of this marginal product. The reason is familiar from
the standard monopoly diagram in undergraduate classes: the profits appropriated
by a monopolist are strictly lower than the consumer surplus created by that mo-
nopolist. This appropriability effect works to cause the equilibrium allocation of
human capital to research to be too low. Overall, these three distortions do not all
work in the same direction, so that theory cannot tell us whether the equilibrium
allocation to research is too high or too low.

4.5. Discussion

Let us step back for a moment to take stock of what we learn from the developments in
this section. The most important finding isResult 1, together with the fact that it carries
over into the other allocations asResult 2(a) andResult 3(a). This result is simply a
confirmation of the basic results from the simple model in Section3. Because of the
nonrivalrous nature of ideas, output per person depends on the total stock of ideas in
the economy instead of the per capita stock of ideas. This is a direct implication of the
fact that nonrivalry leads to increasing returns to scale. In turn, it implies that output
per capita, in the long run, is an increasing function of the total amount of research,
which in turn is an increasing function of the scale of the economy, measured by the
size of its total population. Log-differencing this statement, we see that the growth rate
of output per worker ultimately depends on the growth rate of the number of researchers
and therefore on the growth rate of population. This has been analyzed and discussed
extensively in a number of recent papers; these will be reviewed in detail in Section5.
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The second main finding from models like this is that the equilibrium allocation of
resources is not generally optimal, at least not in the absence of some kind of policy
intervention. Here, the allocation of resources to the production of new ideas can be
either too high or too low, as discussed above.17 In addition, investment rates are too
low in equilibrium, reflecting the fact that capital is paid less than its marginal product
so that some resources are available to compensate inventive effort.

In this equilibrium, the suboptimal allocation of resources is easily remedied. A sub-
sidy to capital accumulation and a subsidy or tax on research can be financed with lump
sum taxes in order to generate the optimal allocation of resources. A useful exercise
is to solve for the equilibrium in the presence of such taxes in order to determine the
optimal tax rates along a balanced growth path.

Given the simplicity of this economic environment, there exist alternative institutions
that are equally effective in getting optimal allocations. For example, consider a per-
fectly competitive economy in which all research is publicly-funded. The government
raises revenue with lump-sum taxes and uses these taxes to hire researchers that produce
new ideas. These new ideas are then released into the public domain where anyone can
use them to produce capital goods in perfect competition.18

In practice of course, one suspects that obtaining the optimal allocation of resources
is more difficult than either the world of imperfect competition with taxes and subsidies
or the perfectly-competitive world with public funding of research suggest. There are
many different directions for research, many different kinds of labor (different skill
levels and talents), and individual effort choices that are unobserved by the government.
Indeed, the available evidence suggests that the allocation of resources to research falls
short of the optimal level.Jones and Williams (1998)take advantage of a large body of
empirical work in the productivity literature to conclude that the social rate of return to
research substantially exceeds the private rate of return, suggesting that research effort
falls short of the optimum.

The implication of this is that there is no reason to think that we have found the best
institutions for generating the optimal allocation of resources to research. Institutions
like the patent system or the Small Business Innovative Research (SBIR) grants program
are themselves ideas. These institutions have evolved over time to promote an efficient

17 This conclusion also holds true in the Schumpeterian growth models ofAghion and Howitt (1992)and
Grossman and Helpman (1991)discussed inChapter 2of this Handbook, but for a different reason. In these
quality-ladder models, a firm discovers a better version of an existing product, displacing the incumbent
producer. Some of the rents earned by the innovator are the result of past discoveries, and some of the rents
earned by future innovators will be due to the discovery of the current innovator. This business stealing
creates another distortion in the allocation of resources to research. Because an innovator essentially steals
first and gets expropriated later, the effect of this business stealing distortion is to promote excessive research.
Because the model also features appropriability problems and knowledge spillovers, the equilibrium amount
of research can be either too high or too low in these models.
18 A useful exercise here is to define the competitive equilibrium with public funding of research and to solve
for optimal taxes and public expenditure.

http://dx.doi.org/10.1016/S1574-0684(05)01002-6
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allocation of resources, but it is almost surely the case that better institutions – better
ideas – are out there to be discovered.

Interestingly, this result can be illustrated within the model itself. Notice how much
easier it is to define the optimal allocation than it is to define the equilibrium allocation.
The equilibrium with imperfect competition requires the modeler to be “clever” and
to come up with the right institutions (e.g., a patent system, monopolistic competition,
and the appropriate taxes and subsidies) to make everything work out. In reality, society
must invent and implement these institutions.

Three recent papers deserve mention in this context.Romer (2000)argues that subsi-
dizing the key input into the production of ideas – human capital in the form of college
graduates with degrees in engineering and the natural sciences – is preferable to gov-
ernment subsidies downstream like the SBIR program.Kremer (1998)notes the large
ex-post monopoly distortions associated with patents in the pharmaceutical industry and
elsewhere and proposes a new mechanism for encouraging innovation. In particular, he
suggests that the government (or other altruistic organizations such as charitable foun-
dations) should consider purchasing the patents for particular innovations and releasing
them into the public domain to eliminate the monopoly distortion.Boldrin and Levine
(2002), in a controversial paper, are even more critical of existing patent and copyright
systems and propose restricting them severely or even eliminating them altogether.19

They argue that first-mover advantages, secrecy, and imitation delays provide ample
protection for innovators and that an economy without patent and copyright systems
would have a better allocation of resources than the current regime in which copyright
protection is essentially indefinite and patents are used as a weapon to discourage in-
novation. Each of these papers makes a useful contribution by attempting to create new
institutions that might improve the allocation of resources.

5. Scale effects

Idea-based growth models are linked tightly to increasing returns to scale, as was noted
earlier in the Idea Diagram. The mechanism at the heart of this link is nonrivalry: the
fact that knowledge can be used by an arbitrarily large number of people simultaneously
without degradation means that there is something special about the first instantiation
of an idea. There is a cost to creating an idea in the first place that does not have to be
re-incurred as the idea gets used by more and more people. This fixed cost implies that
production is, at least in the absence of some other fixed factor like land, characterized
by increasing returns to scale.

Notice that nothing in this argument relies on a low marginal cost of production or
on the absence of learning and human capital. Consider the design of a new drug for
treating high blood pressure. Discovering the precise chemical formulation for the drug

19 See also the important elaborations and clarifications inQuah (2002).
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may require hundreds of millions of dollars of research effort. This idea is then simply a
chemical formula. Producing copies of the drug – pills – may be expensive, for example
if the drug involves the use of a rare chemical compound. It may also be such that only
the best-trained biochemists have the knowledge to understand the chemical formula
and manufacture the drug. Nevertheless, an accurate characterization of the production
technology for producing the drug is as a fixed research cost followed by a constant
marginal cost. Once the chemical formula is discovered, to double the production of
pills we simply double the number of highly-trained biochemists, build a new (identical)
factory, and purchase twice as much of the rare chemical compound used as an input.

Because the link between idea-based growth theory and increasing returns is so
strong, the role of “scale effects” in growth models has been the focus of a series of
theoretical and empirical papers. In discussing these papers, it is helpful to consider
two forms of scale effects. In models that exhibit “strong” scale effects, the growth
rate of the economy is an increasing function of scale (which typically means overall
population or the population of educated workers). Examples of such models include
the first-generation models ofRomer (1990), Aghion and Howitt (1992)andGrossman
and Helpman (1991). On the other hand, in models that exhibit “weak” scale effects,
the level of per capita income in the long run is an increasing function of the size of
the economy. This is true in the “semi-endogenous” growth models ofJones (1995a),
Kortum (1997)andSegerstrom (1998)that were written at least partially in response to
the strong scale effects in the first generation models. The models examined formally in
the previous sections of this chapter fit into this category as well.

To use an analogy from the computer software industry, are scale effects a bug or a
feature? I believe the correct answer is slightly complicated. I will argue that overall they
are a feature, i.e. a useful prediction of the model that helps us to understand the world.
However, in some papers, most notably in the first generation of idea-based growth
models, these scale effects appeared in an especially potent way, producing predictions
in these models that are easily falsified. This strong form of scale effects – in which
the long-run growth rate of the economy depends on its scale – is a bug. Subsequent
research has remedied this problem, maintaining everything that is important about idea-
based growth models but eliminating the strong form of the scale effects prediction.
This still leaves us, as discussed above, with a weak form of scale effects: the size of
the economy affects, in some sense, the level of per capita income. This, of course, is
nothing more than a statement that the economy is characterized by increasing returns to
scale. The weak form of scale effects has its critics as well, but I will argue two things.
First, these criticisms are generally misplaced. And second, it’s fortunate that this is the
case: the weak form of scale effects is so inextricably tied to idea-based growth models
that rejecting one is largely equivalent to rejecting the other.

The remainder of this section consists of two basic parts. Section5.1 returns to the
simple growth model presented in Section3 to formalize the strong and weak versions of
scale effects. The remaining sections then discuss a range of applications in the literature
related to scale effects.
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5.1. Strong and weak scale effects

The simple model in Section3 revealed that the growth rate of per capita income is
proportional to the growth rate of the stock of ideas. Consider that same model, but
replace the idea production function in Equation(7) with

(59)Ȧt = νLλ
AtA

φ
t .

We could go further and incorporate human capital, as we did in the richer model of
Section4, but this will not change the basic result, so we will leave out this complication.

Now consider two cases. In the first, we impose the condition thatφ < 1. In the
second, we will instead assume thatφ = 1. In the case ofφ < 1, the analysis goes
through exactly as in the models developed earlier, and the growth rate of the stock of
ideas along a balanced growth path is given by

(60)gA = λn

1 − φ
,

which pins down all the key growth rates in the model. Notice that, as before, the growth
rate is proportional to the rate of population growth. It is straightforward to show, as we
did earlier, that the level of per capita income in such an economy is an increasing
function of the size of the population. That is, this model exhibits weak scale effects.
Finally, notice that this equation cannot apply ifφ = 1; in that case, the denominator
would explode.

To see more clearly the source of the problem, rewrite the idea production function
when we assumeφ = 1 as

(61)
Ȧt

At

= νLλ
At .

In this case, the growth rate of knowledge is proportional to the number of researchers
raised to some powerλ. If the number of researchers is itself growing over time, the
simple model will not exhibit a balanced growth path. Rather, the growth rate itself will
be growing! Withφ = 1, the simple model exhibits strong scale effects.

The first generation idea-based growth models ofRomer (1990), Aghion and Howitt
(1992)andGrossman and Helpman (1991)all include idea production functions that
essentially make the assumption ofφ = 1, and all exhibit the strong form of scale
effects.20 The problem with the strong form of scale effects is easy to document and un-
derstand. Because the growth rate of the economy is an increasing function of research
effort, these models require research effort to be constant over time to match the relative

20 This is easily seen in the Romer expanding variety model, as that model is the building block for the models
developed in this chapter. It is slightly trickier to see this in the quality ladder models ofAghion and Howitt
(1992)andGrossman and Helpman (1991). In those models, each researcher produces a constant number of
ideas, but ideas get bigger over time. In particular, each new idea generates aproportional improvement in
productivity.
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stability of growth rates in the United States and some other advanced economies. How-
ever, research effort is itself growing over time (for example, if for no other reason than
simply because the population is growing). These facts are now documented in more
detail.

A useful stylized fact that any growth model must come to terms with is the relative
stability of growth rates in the United States over more than a century. This stability can
be easily seen by plotting per capita GDP for the United States on a logarithmic scale,
as shown inFigure 1. A straight line with a growth rate of 1.8 percent per year provides
a very accurate description of average growth rates in the United States dating back to
1870. There are departures from this line, of course, most clearly corresponding to the
Great Depression and the recovery following World War II. But what is truly remarkable
about this figure is how well a straight line describes the trend.

Jones (1995b)made this point in the following way. Suppose one drew a trend line
using data from 1870 to 1929 and then extrapolated that line forward to predict per
capita GDP today. It turns out that such a prediction matches up very well with the
current level of per capita GDP, confirming the hypothesis that growth rates have been
relatively stable on average.21

Figure 1. U.S. GDP per capita log scale.Source: Maddison (1995).

21 Of course this is only an approximation. The growth rate from 1950 to 1994 averaged 1.95 percent, while
the growth rate from 1870 to 1929 averaged 1.75 percent [see, e.g.,Ben-David and Papell (1995)on this
increase]. On the other hand, the 2.20 percent growth rate in the 1950s and 1960s is slightly higher than the
1.74 percent growth rate after 1970, reflecting the productivity slowdown. Similar results can be obtained
with GDP per worker and GDP per hour worked, seeWilliams (1995).
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This stylized fact represents an important benchmark that any growth model must
match. Whatever the engine driving long run growth, it must (a) be able to produce
relatively stable growth rates for a century or more, and (b) must not predict that growth
rates in the United States over this period of time should depart from such a pattern. To
see this force of this argument, consider first a theory likeLucas (1988)that predicts
that investment in human capital is the key to growth. In this model, the growth rate of
the economy is proportional to the investment rate in human capital. But if investment
rates in human capital have risen significantly in the 20th century in the United States,
as data on educational attainment suggests, this is a problem for the theory. It could
be rescued if investment rates in human capital in the form of on-the-job training have
fallen to offset the rise in formal education, but there is little evidence suggesting that
this is the case.

This stylized fact is even more problematic for the first-generation idea-based growth
models ofRomer (1990), Aghion and Howitt (1992)andGrossman and Helpman (1991)
(R/AH/GH). These models predict that growth is an increasing function of research
effort, but research effort has apparently grown tremendously over time. As one example
of this fact, considerFigure 2. This figure plots an index of the number of scientists and
engineers engaged in research in the G-5 countries. Between 1950 and 1993, this index
of research effort rose by more than a factor of eight. In part this is because of the
general growth in employment in these countries, but as the figure shows, it also reflects
a large increase in the fraction of employment devoted to research. A similar fact can be

Figure 2. Researchers and employment in the G-5 countries (index).Note. From calculations inJones
(2002b). Data on researchers before 1950 in countries other than the United States is backcasted using the
1965 research share of employment. The G-5 countries are France, Germany, Japan, the United Kingdom and

the United States.
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documented using just the data for the United States, or by looking at spending on R&D
rather than employment.22 The bottom line is that resources devoted to research have
exhibited a tremendous amount of growth in the post-war period, while growth rates in
the United States have been relatively stable. The implication is that models that exhibit
strong scale effects are inconsistent with the basic trends in aggregate data. Evidence
like this is one of the main arguments in favor of models that exhibit weak scale effects
instead.23

5.2. Growth effects and policy invariance

At some level, the rejection of models with strong scale effects in favor of models with
weak scale effects should not be especially interesting. The only difference between the
two models, as discussed above, is essentially the strength of the knowledge spillover
parameter. In expanding variety models, isφ = 1 or isφ < 1? Nothing in the evidence
necessarily rules outφ = 0.95, and continuity arguments suggest that the economics of
φ = 0.95 andφ = 1 cannot be that different.

The main difference in the economic results that one obtains in the two models per-
tains to the ability of changes in policy to alter the long-run growth rate of the economy.
In the models that exhibit strong scale effects, the long-run growth rate is an increasing
function of the number of researchers. Hence, a policy that increases the number of re-
searchers, such as an R&D expenditure subsidy, will increase the long-run growth rate.
In contrast, ifφ < 1, then the long-run growth rate depends on elasticities of produc-
tion functions and on the rate of population growth. To the extent that these parameters
are unaffected by policy – as one might naturally take to be the case, at least to a first
approximation – policy changes such as a subsidy to R&D or a tax on capital will have
no affect on the long-run growth rate. They will of course affect the long-run level of
income and will affect the growth rate along a transition path, but the long-run growth
rate is invariant to standard policy changes.

This statement can be qualified in a couple of ways. First, the population growth rate
is really an endogenous variable determined by fertility choices of individuals. Policy
changes can affect this choice and hence can affect long-run growth even in a model
with weak scale effects, as shown inJones (2003). However, the effects can often be
counter to the usual direction. For example, a subsidy to R&D can lead people to per-
form more research and have fewer kids, reducing fertility. Hence a subsidy to research

22 There are several ways to look at the R&D spending share of GDP. For total R&D expenditures as a
share of GDP in the United States, most of the increase in the R&D share occurs before 1960. However, if
one substracts out R&D expenditures on defense and space (which might be a reasonable thing to do since
government output is valued at cost), or if one focuses on non-federally-financed research, the trend in the U.S.
share emerges clearly; see Chapter 4 of the NSF’sScience and Engineering Indicators, 2004. Alternatively,
there are substantial trends in the R&D shares for most of the other G-7 countries; in addition to the 2004
edition, see also the 1993 edition of the NSF’sScience and Engineering Indicators to get data on the research
shares back to 1970.
23 The other main argument is the “linearity critique” discussed further in Section6.2.
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can reduce the long-run growth rate. This can be true even if it is optimal to subsidize
research – this kind of model makes clear that long-run growth and welfare are two very
different concepts. The second qualification is that one can imagine subsidies that af-
fect the direction of research and that can possibly affect long-run growth. For example,
Cozzi (1997)constructs a model in which research can proceed in different directions
that may involve different knowledge spillover elasticities. By shifting research to the
directions with high spillovers, it is possible to change the long-run growth rate.

Despite these qualifications, it remains true that in the semi-endogenous growth mod-
els written to address the problem of strong scale effects, straightforward policies do not
affect the long-run growth rate. This has led a number of researchers to seek alternative
means of eliminating the strong scale effects prediction while maintaining the potency
of policy to alter the long-run growth rate. Key papers in this line of research include
Young (1998), Peretto (1998), Dinopoulos and Thompson (1998)andHowitt (1999)
(Y/P/DT/H).

These papers all work in a similar way.24 In particular, each adds a second dimension
to the model, so that research can improve productivity for a particular product or can
add to the variety of products. To do this in the simplest way, suppose that aggregate
consumption (or output) is a CES composite of a variety of different products

(62)Ct =
( ∫ Bt

0
Y

1/θ
it di

)θ

, θ > 1,

whereBt represents the variety of goods that are available at datet andYit is the output
of varietyi. Assume that each varietyYi is produced using the Romer-style technology
with φ = 1 in the simple model given earlier in Section3.

The key to the model is the way in which the number of different varietiesB changes
over time. To keep the model as simple as possible, assume

(63)Bt = L
β
t .

That is, the number of varieties is proportional to the population raised to some powerβ.
Notice that this relationship could be given microfoundations with an idea production
function analogous to that in Equation(16).25

Finally, let us assume each intermediate variety is used in the same quantity so that
Yit = Yt , implying Ct = Bθ

t Yt . Per capita consumption is thenct = Bθ
t yt , and per

capita consumption growth along a balanced growth path is

(64)gc = θgB + σgA = θβn + σgA.

Assuming an idea production function withφ = 1, like that in R/AH/GH, the growth
rate of the stock of ideas is proportional to research effort per variety,LAt/Bt = sLt/Bt ,

(65)gA = νsLt

Bt

= νsL
1−β
t .

24 This section draws heavily onJones (1999).
25 For example, ifḂ = LBγ , then Equation(63) holds along a balanced growth path withβ = 1/(1 − γ ).
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Substituting this equation back into(64) gives the growth rate of per capita output as a
function of exogenous variables and parameters

(66)gc = θβn + σνsL
1−β
t .

With β = 1 so thatBt = Lt , the strong scale effect is eliminated from the model,
while the effect of policy on long-run growth is preserved. That is, a permanent increase
in the fraction of the labor force working in research,s, will permanently raise the
growth rate. This is the key result sought by the Y/P/DT/H models.

However, there are two important things to note about this result. First, it is very frag-
ile. In particular, to the extent thatβ �= 1, problems reemerge. Ifβ < 1, then the model
once again exhibits strong scale effects. Alternatively, ifβ > 1, then changes ins no
longer permanently affect the long-run growth rate. Thus, the Y/P/DT/H result depends
crucially on a knife-edge case for this parameter value, in addition to the Romer-like
knife-edge assumption ofφ = 1. Second, as the first term in Equation(66) indicates,
the model still exhibits the weak form of scale effects. This result is not surprising given
that these are idea-based growth models, but it is useful to recognize since many of the
papers in this literature have titles that include the phrase “growth without scale effects”.
What these titles really mean is that the papers attempt to eliminate strong scale effects;
all of them still possess weak scale effects. These points are discussed in more detail in
Jones (1999)andLi (2000, 2002).

5.3. Cross-country evidence on scale effects

One source of evidence on the empirical relevance of scale effects comes from looking
across countries or regions at a point in time. Consider first the ideal cross-sectional
evidence. One would observe two regions, one larger than the other, that are otherwise
identical. The two regions would not interact in any way and the only source of new
ideas in the two regions would be the regions’ own populations. In such an ideal ex-
periment, one could search for scale effects by looking at the stock of ideas and at per
capita income in each region over time. In the long-run, one would expect that the larger
region would end up being richer.

In practice, of course, this ideal experiment is never observed. Instead, we have data
on different countries and regions in the world, but these regions almost certainly share
ideas and they almost certainly are not equal in other dimensions. It falls to clever econo-
metricians to use this data to approximate the ideal experiment. No individual piece of
evidence is especially compelling, but the collection taken together does indeed suggest
that the cross-sectional evidence on scale effects supports the basic model.

Certainly the most creative approximation to date is found inKremer (1993)and later
appears in the Pulitzer Prize-winning bookGuns, Germs, and Steel by Diamond (1997).
The most recent ice age ended about 10,000 B.C. Before that time, ocean levels were
lower, allowing humans to migrate around the world – for example across the Bering
Strait and into the Americas. In this sense, ideas could diffuse across regions. However,
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with the end of the ice age, sea levels rose, and various regions of the world were effec-
tively isolated from each other, at least until the advent of large sailing ships sometime
around the year 1000 or 1500. In particular, for approximately 12,000 years, five regions
were mutually isolated from one another: the Eurasian/African continents, the Ameri-
cas, Australia, Tasmania (an island off the coast of Australia), and the Flinders Island
(a very small island off the coast of Tasmania). These regions are also nicely ranked in
terms of population sizes, from the relatively highly-populated Eurasian/African conti-
nent down to the small Flinders Island, with a population that likely numbered fewer
than 500.

It is plausible that 12,000 years ago these regions all had similar technologies: all
were relatively primitive hunter-gatherer cultures. Now fast-forward to the year 1500
when a wave of European exploration reintegrates the world. First, the populous Old
World has the highest level of technological sophistication; they are the ones doing the
exploring. The Americas follow next, with cities, agriculture, and the Aztec and Mayan
civilizations. Australia is in the intermediate position, having developed the boomerang,
the atlatl, fire-making, and sophisticated stone tools, but still consisting of a hunter-
gatherer culture. Tasmania is relatively unchanged, and the population of Flinders Island
had died out completely. The technological rank of these regions more than 10,000 years
later matches up exactly with their initial population ranks at the end of the last ice age.

Turning to more standard evidence from the second-half of the 20th century, one is
first struck by the apparent lack of support for the hypothesis of weak scale effects.
The most populous countries of the world, China and India, are among the poorest,
while some of the smallest countries like Hong Kong and Luxembourg are among the
richest. And the countries with the most rapid rates of population growth – many in
Africa – are among the countries with the slowest rates of per capita income growth.
However, a moment’s thought suggests that one must be careful in interpreting this evi-
dence. It is clearly not the case that Hong Kong and Luxembourg are isolated countries
that grow solely based on the ideas created by their own populations. These countries
benefit tremendously from ideas created around the world. And in the case of the poor
countries of the world, “other things” are clearly not equal. These countries have very
different levels of human capital and different policies, institutions, and property rights
that contribute to their poverty. Hence, we must turn to econometric evidence that seeks
to neutralize these differences.

The clearest cross-country evidence in favor of weak scale effects comes from papers
that explicitly control for differences in international trade. Intuitively, openness to in-
ternational trade is likely related to openness to idea flows, and the flow of ideas from
other countries is one of the key factors that needs to be neutralized.Backus, Kehoe
and Kehoe (1992), Frankel and Romer (1999)andAlcala and Ciccone (2002)are the
main examples of this line of work, and all find an important role for scale.Alcala and
Ciccone (2002)provide what is probably the best specification, controlling for both
trade and institutional quality (and instrumenting for these endogenous variables), but
the results inFrankel and Romer (1999)are similar. Alcala and Ciccone find a long-
run elasticity of GDP per worker with respect to the size of the workforce that is equal
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to 0.20.26 That is, holding other things equal, a 10 percent increase in the size of the
workforce in the long run is associated with a 2 percent higher GDP per worker.27

Other cross-country studies, of course, have not been able to precisely estimate this
elasticity.Hall and Jones (1999), for example, found a point estimate of about 0.05,
but with a standard error of 0.06.Sala-i-Martin (1997)does not find the size of the
population to be a robust variable in his four million permutations of cross-country
growth regressions. Finally, it should be recognized that this cross-country estimate of
the scale elasticity is not necessarily an estimate of the structural parameterγ in the
idea models presented earlier in Section4. One needs a theory of technology adoption
and idea flows in order to make sense of the estimates. For example, in a world where
ideas flow to all places instantaneously, there would be no reason to find a scale effect
in the cross-section evidence.

A final piece of evidence that is often misinterpreted as providing evidence against
the weak scale effects prediction is the negative coefficient on population growth in a
cross-country growth regression, such as inMankiw, Romer and Weil (1992). Recall
that the standard interpretation of these regressions is that they are estimating transition
dynamics. The negative coefficient on population growth is interpreted as capturing the
dilution of the investment rate associated with the Solow model. Consider two countries
that are identical but for different population growth rates. The country with the faster
population growth rate must equip a larger number of new workers with the existing
capital–labor ratio, effectively diluting the investment rate. The result is that such an
economy has a lower capital–output ratio in steady state, reducing output per worker
along the balanced growth path. But this same force is also at work in any growth model,
including idea-based models, as was apparent above inResult 1(b). The implication is
that this cross-country evidence is not inconsistent with models in which weak scale
effects play a role.

5.4. Growth over the very long run

Additional evidence on the potential relevance of scale effects to economic growth
comes from what at first might seem an unlikely place: the history of growth from
thousands of years ago to the present.

One of the important applications of models of economic growth in recent years
has been to understand economic growth over this very long time period. Many of our
workhorse models of growth were constructed with an eye toward 20th-century growth.
Asking how well they explain growth over a much longer period of time therefore pro-
vides a nice test of our models.

26 The standard error of this particular point estimate is about 0.10. Across different specifications, the elas-
ticity ranges from a low of about 0.10 to a high of about 0.40.
27 Of course in the model with trade, other things would not be equal: a change in population would almost
surely affect the trade-GDP ratios that measure openness in the regression.
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Figure 3. World per capita GDP (log scale).Note. Data fromMaddison (1995)for years after 1500. Before
1500, we assume a zero growth rate, as suggested by Maddison and others.

The key fact that must be explained over this period is quite stunning and is displayed
in Figure 3. For thousands and thousands of years prior to the Industrial Revolution,
standards of living were relatively low. In particular, the evidence suggests that there
was no sustained growth in per capita incomes before the Industrial Revolution.28 Then,
quite suddenly from the standpoint of the sweep of world history, growth rates accel-
erated and standards of living began rising with increasing rapidity. At the world level,
per capita income today is probably about 10 times higher than it was in the year 1800
or 1500 or even 10,000 years ago. A profound question in economic history – and one
that growth economists have begun delving into – is this: How do we understand this
entire time path? Why were standards of living relatively low and stagnant for so long,
why have they risen so dramatically in the last 150 years, and what changed?29

The recent growth literature on this question is quite large, and a thorough review is
beyond the scope of the present chapter (additional discussion can be found inChapter 4
of this Handbook, by Oded Galor). Representative papers includeLee (1988), Kremer

28 SeeLucas (1998), Galor and Weil (2000), Jones (2001)andClark (2001)for a discussion of this evidence.
29 A cottage industry (!) in recent years has sprung up in which macroeconomists bring their modeling tools
to bear on major questions in economic history. In addition to growth over the very long run, macroeconomists
have studied the Great Depression[Ohanian and Cole (2001)], the Second Industrial Revolution[Atkeson and
Kehoe (2002)], and the rise in female labor force participation over the course of the 20th century[Greenwood,
Seshadri and Yorukoglu (2001)]among other topics.

http://dx.doi.org/10.1016/S1574-0684(05)01004-X
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(1993), Goodfriend and McDermott (1995), Lucas (1998), Galor and Weil (2000), Clark
(2001), Jones (2001), Stokey (2001), Hansen and Prescott (2002)andTamura (2002).

In several of these papers, scale effects play a crucial role. Scale is at the heart of the
models ofLee (1988), Kremer (1993)andJones (2001), and it also plays an important
role in getting growth started in the model based on human capital inGalor and Weil
(2000).

The role of scale effects in these models can be illustrated most effectively by looking
at the elegant model ofLee (1988). The three key equations of that model are:

(67)Yt = AtL
1−β
t T

β
t , Tt = 1,

(68)
Ȧt

At

= γ logLt , A0 given,

(69)
L̇t

Lt

= α

(
log

Yt

Lt

− log ȳ

)
, L0 given.

Equation(67) describes a production function that depends on ideasA, laborL, and
landT , which is assumed to be in fixed supply and normalized to one. Equation(68)
is a Romer-like production function for new ideas. Notice that we have assumed the
φ = 1 case so that we can get an analytic solution below, but the nature of the results
does not depend on this assumption. Notice also that we assume all labor can produce
ideas, and we assume a log form. This makes the model log-linear, which is the sec-
ond key assumption needed to get a closed-form solution. Finally, Equation(69) is a
Malthusian equation describing population growth. If output per person is greater than
the subsistence parameterȳ, then population grows; if less then population declines.

The model can be solved as follows. First, choose the units of output such that the
subsistence term gets normalized to zero, logȳ = 0. Next, leta ≡ logA and	 ≡ logL.
Then the model reduces to a linear homogeneous system of differential equations:

(70)ȧt = γ 	t ,

(71)	̇t = αat − αβ	t .

It is straightforward to solve this system to find

(72)log
Yt

Lt

= ω1eθ1t + ω2eθ2t ,

whereθ1 > 0 andθ2 < 0 are the eigenvalues associated with this system, andω1 > 0.30

That is, the solution involves a double exponential: the natural log of output per worker

30 The differential system can be solved using linear algebra, as inBarro and Sala-i-Martin (1995, p. 480)or,
even more intuitively, by writing it as a single second-order differential equation, as inBoyce and DiPrima
(1997, pp. 123–125). The values for the constants in Equation(72) areθ1 = (−αβ +

√
(αβ)2 + 4αγ )/2,

θ2 = (−αβ −
√

(αβ)2 + 4αγ )/2, ω1 = (θ1/α)(α(a0 − β	0) − θ2	0)/(θ1 − θ2), ω2 = (θ2/α)(θ1	0 −
α(a0 − β	0))/(θ1 − θ2).
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grows exponentially, so that the growth rate of output per worker,y ≡ Y/L, itself grows
exponentially,

(73)
ẏt

yt

= ω1θ1eθ1t + ω2θ2eθ2t .

Mathematically, it is this double exponential growth that allows the model to deliver a
graph that looks approximately like that inFigure 3.

Analytically, Lee’s result is extremely nice. However, the analytic results are obtained
only by simplifying the model considerably – perhaps too much. For example, the model
generates double exponential growth in population as well. As shown inKremer (1993),
this pattern fits the broad sweep of world history, but it sharply contradicts the demo-
graphic transition that has set in over the last century, where population growth rates
level off and decline. In addition, the analytic results require the strong assumption that
φ = 1.

If one wishes to depart from the log-linear structure of Lee’s model, the analysis
must be conducted numerically. This is done inJones (2001), with a more realistic
demographic setup and with an idea production function that incorporatesφ < 1. The
basic insights fromLee (1988)apply over the broad course of history, but the model
also predicts a demographic transition and a leveling off of per capita income growth
in the 20th century. The model with weak scale effects, then, is able to match the basic
facts of income and population growth over both the very long run and the 20th century.

The economic intuition for these results is straightforward. Thousands and thousands
of years ago, the population was relatively small and the productivity of the population
at producing ideas was relatively low. Per capita consumption, then, stayed around the
Malthusian level that kept population constant (ȳ in the Lee model above). Suppose it
took 1000 years for this population to discover a new idea. With the arrival of the new
idea, per capita income and fertility rose, producing a larger population. Diminishing
returns associated with a fixed supply of land drove consumption back to its subsistence
level, but now the population was larger. Instead of requiring 1000 years to produce a
new idea, this larger population produced a new idea sooner, say in 800 years. Con-
tinuing along this virtuous circle, growth gradually accelerated. Provided the economic
environment is characterized by a sufficiently large degree of increasing returns (to off-
set the diminishing returns associated with limited land), the acceleration in population
growth produces a scale effect that leads to the acceleration of per capita income growth.
Eventually, the economy becomes sufficiently rich that a demographic transition sets in,
leading population growth and per capita income growth to level out.31

31 It is even possible for the demographic transition to drive population growth rates down to zero, in which
cases per capita income growth rates decline as well. There is always growth in this world – even a constant
population produces new ideas – but the growth rate is no longer exponential. SeeJones (2001).
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5.5. Summary: scale effects

Virtually all idea-based growth models involve some kind of scale effect, for the basic
reason laid out earlier in the presentation of the Idea Diagram. The strong scale effects
of many first-generation idea-based growth models – in which the growth rate of the
economy is an increasing function of its size – are inconsistent with the relative stability
of growth rates in the United States in the 20th century. Subsequent idea-based growth
models replaced this strong scale effect with a weak scale effect, where the long-run
level of per capita income is an increasing function of the size of the economy. The
long-run growth rate in these models is generally an increasing function of the rate of
growth of research effort, which in turn depends on the population growth rate of the
countries contributing to world research. However, this growth rate is typically taken to
be exogenous, producing the policy-invariance results common in these models.

Simple correlations (say of income per person with population, or growth rates of per
capita income with population growth rates) on first glance appear to be inconsistent
with weak scale effects. However, the ceteris paribus assumption is not valid for such
comparisons. Attempts to render other things equal using careful econometrics certainly
reveal no inconsistency with the weak scale effects prediction, although they also do not
necessarily provide precise estimates of the magnitude of the key scale elasticity.

More broadly, the very long-run history of economic growth appears consistent with
weak scale effects. Models in which scale plays an important role have proven capable
of explaining the very long-run dynamics of population and per capita income, includ-
ing the extraordinarily slow growth over much of history and the transition to modern
economic growth since the Industrial Revolution.

6. Growth accounting, the linearity critique, and other contributions

This section summarizes a variety of additional insights related to idea-based growth
models. Section6.1 discusses growth accounting in such models, showing that scale
effects have accounted for only about 20 percent of U.S. growth in the post-war period.
Increases in educational attainment and increases in R&D intensity account for the re-
maining 80 percent. Section6.2considers a somewhat controversial “linearity critique”
of endogenous growth models that first appeared in the 1960s. Finally, Section6.3will
discuss briefly several other important contributions to the literature on growth and ideas
that have not yet been mentioned.

6.1. Growth accounting in idea-based models

Growth accounting in a neoclassical framework has a long, illustrious tradition, begin-
ning with Solow (1957). As is well known, such accounting typically finds a residual,
which is labeled “total factor productivity growth” (TFP growth). In some ways, en-
dogenous growth models can be understood as trying to find ways to endogenize TFP
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growth, i.e. to make it something that is determined within the model rather than as-
sumed to be completely exogenous. Having such a model in hand, then, it is quite natural
to ask how the model decomposes growth into its sources. That is, quantitatively, how
does a particular model account for growth?

Jones (2002b)conducts one of these growth accounting exercises in an economic
environment that is basically identical to that analyzed in Section4. In the long run in
that model, per capita growth is proportional to the rate of population growth of the
idea-producing regions. Off a balanced growth path, of course, growth can come from
transition dynamics, for example, due to capital deepening or to rapid growth in the
stock of ideas. Given the stylized fact that U.S. growth rates have been relatively stable
over a long period of time, one might be tempted to think that the U.S. is close to its
balanced growth path so that growth due to transition dynamics is negligible. On the
contrary, however, Jones shows that just the opposite is true. Approximately 80 percent
of U.S. growth in the post-war period is due to transition dynamics associated in roughly
equal parts with increases in educational attainment and with increases in world R&D
intensity. Only about 20 percent of U.S. growth is attributed to the scale effect associated
with population growth in the idea-generating countries.32

This finding raises a couple of important questions. First, how it is that growth rates
can be relatively stable in the United States if transition dynamics are so important? The
answer proposed byJones (2002b)can be seen in a simple analogy. Consider a standard
Solow (1956)model that begins in steady state. Now suppose the investment rate in-
creases permanently by 1 percentage point. We know that growth rates rise temporarily
and then decline. Now suppose the investment rate, rather than staying constant, grows
exponentially. We know that this cannot happen forever since the investment rate is
bounded below one. However, it could happen for awhile. In such a world, it is possible
for the continued increases in the investment rate to sustain a constant growth rate that is
higher than the long-run growth rate. In the idea-based growth model analyzed byJones
(2002b), it is not the investment rate in physical capital that is driving the transition dy-
namics. Instead, educational attainment and research intensity (the fraction of the labor
force working to produce ideas in advanced countries) appear to be rising smoothly in
a way that can generate stable growth, at least as an approximation.

The second natural question raised by this accounting concerns the future of U.S.
growth. If 80 percent of U.S. growth is due to transition dynamics, then a straight-
forward implication of the result is that growth rates could slow substantially at some
point in the future when the U.S. transits to its balanced growth path. To the extent that
population growth rates in the idea-producing countries are declining, this finding is
reinforced. Still, there are many other qualifications that must be made concerning this
result. Most importantly, it is not clear when the transition dynamics will “run out”, par-
ticularly since the fraction of the labor force engaged in research seems to be relatively

32 Comin (2002)suggests that the contribution of R&D to growth could be even smaller. The key assumptions
he needs to get this result are that R&D as a share of GDP is truly small, as measured, and that the elasticity
of output with respect to ideas is small.
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small. In addition, the increased development of countries like China and India means
that the pool of potential idea creators could rise for a long time.

6.2. The linearity critique

This section considers the somewhat controversial “linearity critique” of endogenous
growth models that first appeared in the 1960s. A coarse version of the criticism is that
such models rely on a knife-edge assumption that a particular differential equation is
linear in some sense. If the linearity is relaxed slightly, the model either does not gener-
ate long-run growth or exhibits growth rates that explode. This section first presents the
basic issue and then attempts to show how it can be used productively to make progress
in our understanding of economic growth.33

Growth models that are capable of producing steady-state growth require strong as-
sumptions. For example, it is well known that steady-state growth is possible only
if technological change is labor-augmenting or if the production function is Cobb–
Douglas.34 Another requirement is that the model must possess a differential equation
that is linear. That is, all growth models that exhibit steady-state growth ultimately rest
on an assumption that some differential equation takes the form

(74)Ẋ = X.

Growth models differ primarily according to the way in which they label theX variable
and the way in which they fill in the blank in this differential equation.35

For example, in theSolow (1956)model without technological progress, the differen-
tial equation for capital accumulation is less than linear, and the model cannot produce
sustained exponential growth. On the other hand, when one adds exogenous techno-
logical change in the form of a linear differential equationȦt = gAt , one obtains a
model with steady-state growth. In the AK growth models ofFrankel (1962)andRebelo
(1991), the law of motion for physical capital is assumed to be linear. In the human cap-
ital model ofLucas (1988), it is the law of motion for human capital accumulation that
is assumed to be linear. Finally, in the first-generation idea-based growth models of
Romer (1990), Aghion and Howitt (1992)andGrossman and Helpman (1991), it is the
idea production function itself that is assumed to be a linear differential equation.

This kind of knife-edge requirement has made economists uncomfortable for some
time.Stiglitz (1990)andCannon (2000)note that this is one reason endogenous growth
models did not catch on in the 1960s even though several were developed.36 Solow
(1994)resurrects this criticism in arguing against recent models of endogenous growth.

33 This section draws heavily onJones (2003).
34 See, for example, the Appendix to Chapter 2 inBarro and Sala-i-Martin (1995).
35 This approach to characterizing growth models is taken fromRomer (1995). Two qualifications apply.
First, this linearity can be hidden in models with multiple state variables, as discussed inMulligan and
Sala-i-Martin (1993). Second, linearity is an asymptotic requirement, not a condition that needs to hold at
every point in time, as noted byJones and Manuelli (1990).
36 The very nice AK model ofFrankel (1962)is perhaps the clearest example.
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What is not sufficiently well appreciated, however, is thatany model of sustained
exponential growth requires such a knife-edge condition. Neoclassical growth models
are not immune to this criticism; they just assume the linearity to be completely unmo-
tivated. One can then proceed in two possible directions. First, one can give up on the
desire that a model exhibit steady-state growth. It is not clear where this direction leads,
however. One still wants a model to be able to match the steady exponential growth ex-
hibited in the United States for the last 125 years, and it seems likely that a model that
produces this kind of behavior will require a differential equation that is nearly linear.
Alternatively, one can see the linearity critique as an opportunity for helping us improve
our growth models. That is, if a growth model requires a linear differential equation, one
can look for an economic explanation for why linearity should hold and/or seek empir-
ical evidence supporting the linearity.

To see how this might work, consider briefly the main types of endogenous growth
models and the key differential equations of those models:

1. AK model,K̇ = sKφ .
2. Lucas model,̇h = uhφ .
3. R/AH/GH model,Ȧ = HAAφ .
4. Fertility model,Ṅ = (b − d)Nφ .

In each case, we can ask the question: “Why should we believe thatφ ≈ 1 is valid
in this model?”. In particular, we consider the following experiment. Suppose we hold
constant the individual decision variables (e.g. the investment rate in physical capital or
time spent accumulating human capital). Suppose we then double the state variable. Do
we double the change in the state variable?

In the AK model,φ is the elasticity of output with respect to capital. In the absence of
externalities, this elasticity is the share of capital in income. Narrowly interpreting the
model as applying to physical capital, one gets a benchmark value of about 1/3. Some
people prefer to include human capital as well, which can get the share a little higher.37

But then one must appeal to large externalities, and these externalities must be exactly
the right size in order to getφ ≈ 1.

Now turn to the human capital model ofLucas (1988). Consider a representative
agent who lives forever and spends 10 hours per week studying to obtain skills. Are the
skills that are added by one period of this studying doubled if the individual’s stock of
human capital is doubled? A natural benchmark might be that studying for 10 hours a
week adds the same amount, whether one is highly skilled or has little skill. It is far
from obvious that the 10 hours of studying increases skills proportionately over time.38

37 I personally think this is a mistake. Human capital is different from physical capital in many ways and gets
treated differently in models that are careful about the distinction, e.g.Bils and Klenow (2000).
38 A subtlety in thinking through the human capital model comes from the Mincerian wage regression ev-
idence. Each year of schooling appears to raise a worker’s wage – and hence productivity – by a constant
percentage. One might be tempted to use this to argue thatφ = 1 in the human capital case.Bils and Klenow
(2000)suggest instead that a human capital accumulation equation of the formḣ = eθuhφ is the right way to
capture this evidence.
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This chapter has already discussed the Romer/AH/GH assumption ofφ = 1. Recall
that one can make a case forφ < 0 if it gets harder over time to find new ideas orφ > 0
if knowledge spillovers increase research productivity, or evenφ = 0 if researchers
produce a constant number of ideas with each unit of effort. The case ofφ = 1 appears
to have little in the way of intuition or evidence to recommend it.

Finally, the last case above suggests placing the linearity in the equation for popula-
tion growth, as was done implicitly in the models discussed earlier in the chapter. It can
be thought of in this way: Letb andd denote the birth rate and the mortality rate for
an individual, respectively. Hold constant an individual’s fertility behavior, and suppose
we double the number of people in the population. A natural benchmark assumption is
that we double the number of offspring. This is the intuition for why a linear differential
equation makes sense as a benchmark for the population growth equation.

More generally, I would make the claim that population growth is the least objection-
able place to locate a linear differential equation in a growth model, for two reasons.
First, if we take population as exogenous and feed in the observed population growth
rates into an idea-based growth model, we can explain sustained exponential growth. No
additional linearity is needed. Second, the intuition above suggests that it is not crazy to
think this differential equation might be close to linear: people reproduce in proportion
to their number.39

This is one example of how the linearity critique can be used productively. Propo-
nents of particular endogenous growth models can seek evidence and economic insights
supporting the hypothesis that the particular engine of growth in a model does indeed
involve a differential equation that is close to linear.

6.3. Other contributions

There are a number of other very interesting papers that I have not had time to discuss.
These should be given more attention than simply the brief mention that follows, but
this chapter is already too long.

Kortum (1997)andSegerstrom (1998)are two important papers that present growth
models that exhibit weak scale effects. Both are motivated in part by the stylized fact
that total U.S. patents granted to U.S. inventors does not show a large time trend for
nearly a century, from roughly 1910 until 1990. If patents are a measure of useful ideas,
this fact suggests that the number of new ideas per year might have been relatively stable
during a time when per capita income was growing at a relatively constant rate. How
can this be? In the models provided above, the stock of ideas grows at a constant rate,
just like output.Kortum (1997)andSegerstrom (1998)solve this puzzle by supposing
that ideas, at least on average, representproportional improvements in productivity. The

39 This does not mean that fertility behavior,b, will ensure a positive rate of population growth forever. That
is a different question. Indeed,Jones (2001)supposes that a demographic transition ultimately leads to zero
population growth in attempting to explain growth over the very long run.
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papers also assume that new ideas are increasingly difficult to obtain, so that in steady
state, a growing number of researchers produce a constant number of new ideas, which
in turn leads to a constant rate of exponential growth.

Romer (1994a)makes an interesting point that appears (at least based on citations)
to have been under appreciated in the literature. The paper considers the welfare cost of
trade restrictions from the standpoint of models in which ideas play an important role.
In neoclassical models, trade restrictions, like other taxes, typically have small effects
associated with Harberger triangles that depend on the square of the tax rate. In contrast,
Romer shows that if trade restrictions reduce the range of goods (ideas) available within
a country, the welfare affect is proportional to the level of the tax rate rather than its
square. As a result, distortions that affect the use of ideas can have much larger welfare
effects than those same distortions in neoclassical models.

Acemoglu (2002)surveys a number of important results that come from thinking
about the direction of technological change. In this general framework, researchers can
choose to search for ideas that augment different factors. For example, they may search
for ideas that augment capital or skilled labor or unskilled labor. Other things equal,
a market size effect suggests that research will be targeted toward augmenting factors
that are in greater supply, especially when these factors can be easily substituted for
other factors of production.

Greenwood, Hercowitz and Krusell (1997)and Whelan (2001)focus on the rapid
technological change that is associated with the declines in the relative prices of con-
sumer and producer durables (driven in large part by the rapid declines in the quality-
adjusted price of semiconductors).Greenwood, Hercowitz and Krusell (1997)show that
investment-specific technological change can account for roughly half of per capita in-
come growth in the United States in recent decades.Whelan (2001)extends this analysis
by tying it to the introduction of chained indexes in the national income and product ac-
counts.

Finally, it is worth mentioning again that this chapter has largely omitted a very im-
portant part of the literature on growth and ideas, that associated with the Schumpeterian
models ofAghion and Howitt (1992)andGrossman and Helpman (1991). These models
were applied in detail to international trade inGrossman and Helpman (1991). Aghion
and Howitt (1998)contain a rich analysis of an even wider range of applications, to
such topics as unemployment, the effects of increases in competition, patent races, and
leader-follower effects in R&D. In addition to these excellent treatments, a separate
Handbookchapter by Aghion and Howittsurveys some of these important topics.

7. Conclusions

Thinking carefully about the way in which ideas are different from other economic
goods leads to a profound change in the way we understand economic growth. The
nonrivalry of ideas implies that increasing returns to scale is likely to characterize pro-
duction possibilities. This leads to a world in which scale itself can serve as a source

http://dx.doi.org/10.1016/S1574-0684(05)01002-6
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of long run growth. The more inventors we have, the more ideas we discover, and the
richer we all are. This also leads to a world where the first fundamental welfare theorem
no long necessarily holds. Perfectly competitive markets may not lead to the optimal
allocation of resources. This means that other institutions may be needed to improve
welfare. The patent system and research universities are examples of such institutions,
but there is little reason to think we have found the best institutions – after all these
institutions are themselves ideas.

While we have made much progress in understanding economic growth in a world
where ideas are important, there remain many open, interesting research questions. The
first is “What is the shape of the idea production function?” How do ideas get produced?
The combinatorial calculations ofRomer (1993)andWeitzman (1998)are fascinating
and suggestive. The current research practice of modeling the idea production function
as a stable Cobb–Douglas combination of research and the existing stock of ideas is el-
egant, but at this point we have little reason to believe that it is correct. One insight that
illustrates the incompleteness of our knowledge is that there is no reason why research
productivity in the idea production function should be a smooth, monotonic function of
the stock of ideas. One can easily imagine that some ideas lead to a domino-like un-
raveling of phenomena that were previously mysterious, much like the general purpose
technologies ofHelpman (1998). Indeed, perhaps the decoding of the human genome
or the continued boom in information technology will lead to a large upward shift in
the production function for ideas.40 On the other hand, one can equally imagine situ-
ations where research productivity unexpectedly stagnates, if not forever then at least
for a long time. Progress in the time it takes to travel from New York to San Francisco
represents a good example of this.

A second unresolved research question is “What is the long-run elasticity of output
per worker with respect to population?”. That is, how large are increasing returns to
scale. This parameter (labeledγ in the main models of this chapter) is crucially related
to the long-run rate of growth of the economy. Estimating it precisely would not only
provide confirmation of idea-based growth theory but would also help us in accounting
for the sources of economic growth.

Finally, a policy-related question: “What are better institutions and policies for en-
couraging the efficient amount of research?”. There is a large, suggestive literature on
social rates of return to research and on the extent to which firms might underinvest
in research. Still, none of these individual studies is especially compelling, and more
accurate estimates of these gaps would be valuable. To the extent that the returns to
research do not reflect the marginal benefit to society, better institutions might improve
allocations.

40 Dale Jorgenson, in his Handbook chapter, suggests that the information technology revolution may do just
this.

http://dx.doi.org/10.1016/S1574-0684(05)01010-5
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