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Abstract

How much of past economic growth is due to automation, and what does this
imply about the effects of A.I. and automation in the coming decades? We perform
growth accounting using a task-based model for key sectors in the U.S. economy.
Historically, TFP growth is largely due to improvements in capital productivity. The
annual growth rate of capital productivity is at least 5pp larger than the sum of
labor and factor-neutral productivity growth. The main benefit of automation is
that we use rapidly-improving machines instead of slowly-improving humans on
an increasing set of tasks. Looking to the future, we develop an endogenous growth
model in which the production of both goods and ideas is endogenously auto-
mated. We calibrate this model based on our historical evidence. Two key findings
emerge. First, automation leads economic growth to accelerate over the next 75
years. Second, the acceleration is remarkably slow. By 2040, output is only 4%
higher than it would have been without the growth acceleration, and by 2060 the
gain is still only 19%. A key reason for the slow acceleration is the prominence of
“weak links” (an elasticity of substitution among tasks less than one). Even when
most tasks are automated by rapidly improving capital, output is constrained by

the tasks performed by slowly-improving labor.
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Important Disclaimer: This paper is very preliminary and the numbers in the paper
are likely to change. The key “weak link” in our results so far is the use of ChatGPT to
estimate the automation rate x,. We plan to improve this margin and the results could

change when we do this.

1. Introduction

Artificial intelligence is the latest form of automation, a process that has been ongoing
for centuries. Farmers once threshed grain by hand; now a single combine harvester
replaces dozens of workers. Elevator operators, typists, and travel agents were once
ubiquitous; today, software and simple robots handle most of these tasks. In auto-
mobile plants, spot-welding and spray-painting have moved from human workers to
industrial robots. Bookkeeping, payroll calculation, and even routine document draft-
ing are increasingly automated. Now LLMs are increasingly able to write computer
code to replace some of the tasks of software engineers. Specialized A.I. models can
even automate parts of the research process — think of AlphaFold solving the protein-
folding problem or an A.I. model that assists researchers in making new discoveries
(Bubeck et al., 2025).

How much of past economic growth is due to automation? Theoretical models
of automation have advanced our conceptual understanding of the automation pro-
cess (Zeira, 1998; Acemoglu and Restrepo, 2018). There has, however, been much less
progress on measuring the empirical contribution of automation to economic growth.
The first half of this paper fills that gap for the aggregate U.S. economy over the past 70
years and for select industries over the past 40 years. Next, we build a model in which
both goods and idea production are endogenously automated over time. We calibrate
the model based on our historical evidence and simulate the future to shed light on the
possible consequences of continued automation through artificial intelligence.

Our model features three types of productivity. Output is a constant elasticity of
substitution (CES) aggregation of complementary tasks. The production of task i is
Yit = Yrie Kit + e Liy. Each task can be produced with capital or labor as perfect sub-
stitutes. Each factor has its own productivity term that can change in a heterogeneous

way over time, and this is true for each task. Automation is the process of switching task



production from using labor to using capital, which occurs when the productivity of
capital rises by enough relative to the productivity of labor. In addition, the production
function is multiplied by an overall productivity index Z; that captures other sources of
TFP for example due to quality improvements or changes in misallocation. Thus, the
model features a rich structure of heterogeneity and multiple sources of productivity
growth that could be driving past TFP growth.

Our accounting framework requires readily available production account data, a
measure of the fraction of tasks automated in each sector, and an assumption on the
pattern of automation. We obtain standard measures of output, TFP, and factor shares
from the BEA, BLS, and the Department of Agriculture. We measure the fraction of tasks
automated in each sector at different points in time through ChatGPT queries. We place
no restriction on the level or growth of any of the productivity variables other than, on
the margin, expensive tasks with a high cost share are more likely to be automated than
inexpensive tasks.

With this accounting framework, we derive several results:

1. When the automation process is continuous, firms switch from using labor to
using capital to produce a task at exactly the point where the costs are equal. This

means that the switching process itself generates no productivity growth.

2. Instead, the key gain from automation is that it allows production of a task to shift

away from slowly-improving human labor to rapidly-improving machines.

3. Our historical analysis suggests that the sum of “other” TFP growth and the av-
erage rate at which people are getting more productive, Z;, + v, is small or even
negative. In contrast, the excess rate at which machines are getting better, ;,; —
Uy, is large. Across sectors and in the aggregate the gap in growth rates is at least

5 percentage points per year.

4. Finally, we calculate how much TFP growth would have been lost if the set of
tasks that are automated had been “frozen” at some point in the distant past, but
capital, labor, and other productivity growth occurred at their historical rates. For
the private business sector, if we fix the set of automated tasks to their 1950 values,
essentially all TFP growth between 1950 and 2023 would have been eliminated.

Automation is a key driver of long-run economic growth.



Our accounting results highlight the importance of tasks being complements. Intu-
itively, our model features “weak links” and total output is constrained by the weakest
links. When we freeze the set of automated tasks we dramatically reduce TFP growth,
even though the already-automated tasks benefit from the rapid excess growth of cap-
ital productivity. Freezing the share of tasks that are automated, we do not switch to
making rapid progress on enough of our weak links. The remaining, slowly improving,
weak links hinder growth. Historically, long-run growth occurred because we found
ways to rapidly improve the productivity of machines and because we increased the set
of tasks that benefited from this rapid growth, strengthening more of our weak links.

The final part of the paper augments our historical accounting framework to en-
dogenize the automation process by incorporating the production of new ideas that
raise y;; and 1. This idea production function itself is a task model that benefits
from automation. We calibrate the model to our historical evidence and simulate the
model into the future to consider the possible consequences of continued automation
— including via A.I. — for economic growth. While the results of this simulation are
inherently speculative, they are at least grounded in evidence from historical automa-
tion.

Simulating the endogenous automation model forward in time we find:

1. Despite the stability of past economic growth, future growth accelerates for at
least the next 75 years as the automation process endogenously speeds up. Growth
rates rise to at least 5% per year in all the scenarios we consider. The calibrated
parameter values are such that the model exhibits dynamic increasing returns —
increasing returns beyond the knife-edge needed for fully endogenous growth —

once automation is taken into account.

2. The acceleration is surprisingly slow. Twenty years after the start of our baseline
simulation, output per person is higher than a constant growth path by only 4%.

Forty years into the future, output is higher by 19%.

3. We consider three different paths. One features a capital share that rises to 100%,
explosive growth, and infinite income in finite time. Another assumes that a small
set of tasks are never automated and always performed by labor; in this scenario,

the labor share of GDP rises to 100% and long run growth falls to the (slow) rate



at which humans get better as these remaining weak links permanently constrain
output. The third case is in between and features a constant capital share. In all

three paths, output per person for the next 75 years looks remarkably similar.

4. We derive an expression for the dynamic degree of increasing returns that deter-
mines the condition for a growth explosion and the rate of acceleration of eco-
nomic growth. The degree of dynamic increasing returns is limited by the com-

plementarity of tasks. Weak links tame explosive growth.

How to read this paper. This paper is long. Sections 2 — 4 present the theory and
historical accounting to make the key point that automation contributes the majority
of past economic growth by letting us switch from slowly-improving labor to rapidly-
improving capital on an increasing number of tasks. Spend half your time on these
sections, and then spend the remainder of your time on Section 5. That section en-
dogenizes growth and automation — including of the idea production function — and

simulates the future consequences of A.I. for economic growth.

Related literature

This paper contributes to the literature on task-based models of economic growth be-
gun by Zeira (1998), Acemoglu and Restrepo (2018, 2020, 2022), and Hemous and Olsen
(2022) and to the research agenda on the economic impacts of A.I. outlined by Agrawal,
Gans, and Goldfarb (2019) and Brynjolfsson, Korinek, and Agrawal (2025).

Our paper builds on Aghion, Jones, and Jones (2019) and B. Jones and X. Liu (2024).
Aghion, Jones, and Jones (2019) use the task approach to study A.I. as automation. That
paper presents a model in which the productivity of capital and labor in performing
tasks is constant, and automation follows an exogenous law of motion. The paper em-
phasizes that bottlenecks may constrain the effects of automation on growth but notes
that explosive growth is possible if A.I. fully automates both goods and idea production.

B. Jones and X. Liu (2024) incorporate heterogeneous productivity improvements
in capital into the Aghion, Jones, and Jones (2019) framework. They showed that a
balanced growth path could emerge even when automation is far from complete be-
cause automation raises the capital share while “better machines” lower the capital

share. They go on to embed this setup in a fully endogenous growth model in which
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automation is an endogenous outcome of innovation. Farboodi, Koh, and Xia (2025)
build on this work to study an endogenous automation process driven by data.

Trammell and Korinek (2020), Davidson (2021), Erdil and Besiroglu (2023), Aschen-
brenner (2024), Korinek and Suh (2024), Davidson, Halperin, Houlden, and Korinek
(2025), and Epoch AI (2025) all highlight the possibility of explosive economic growth
that results from A.I. automating goods and idea production. B. Jones (2025) suggests
that bottlenecks may constrain the growth impact of A.I. even when automating re-
search and development.

All of these papers discussed so far highlight theoretical possibilities. Our paper is
most clearly distinguished in using theory combined with industry-level data to mea-
sure automation and to quantify its consequences, both historically and in the future.

Young (2025) estimates a nested CES production function with capital, labor, and
intermediates. He finds an elasticity of substitution between capital and labor of around
0.4-0.5. Young (2025) then finds intriguing evidence that capital-augmenting technical
change is negative and suggests that a task-based model of technical change could
drive this empirical finding. We confirm this result, but in value added terms. Our
main contribution starts from this interesting fact and performs structural growth ac-
counting to understand the nature of automation.

Although not the focus of their paper, B. Jones and X. Liu (2024) provide a time series
for the fraction of tasks that have been automated and for average task-specific capital
productivity; for manufacturing, they find that this latter series is roughly stationary
and shows little growth since 1960. They back these out from industry-level data un-
der the assumption that these are the only sources of productivity growth. Building
on B. Jones and X. Liu (2024), Caunedo and Keller (2024) quantify the role of capital-
embodied technical change for structural transformation. B. Jones and X. Liu (2024)
allow capital productivity to vary across tasks but treat labor productivity as homoge-
neous and constant. Caunedo and Keller (2024) allow labor productivity to vary across
tasks but treat capital productivity as homogeneous. This allows Cuanedo and Keller
to measure improvements to capital using the relative price of investment. Their main
finding is that CETC is the main driver of the reallocation of labor out of agriculture and
accounts for one third of the reallocation of labor into services.

Instead, we seek to answer the question how much of past economic growth was



due to automation while allowing for a rich set of sources of productivity growth. We
allow both capital productivity and labor productivity to vary across tasks and over time
arbitrarily. In addition, we allow for factor neutral productivity improvements. While
our model is richer, identification requires more data and some alternative assump-
tions about patterns of automation. The payoff is that we provide a detailed accounting
of the sources of TFP growth.

In terms of other papers that attempt to quantify the growth impacts of automation
and A.L.,, Acemoglu (2024) suggests that the macroeconomic impacts of A.I. may be very
modest in the next decade, raising TFP growth by less than 0.1pp per year. Aghion and
Bunel (2024) respond by questioning some of the empirical choices made by Acemoglu
and calculate a larger impact over the next decade, raising TFP growth by 0.7pp per

year.

2. Framework

Consider the following economic environment, which we typically think of as describ-

ing a sector like agriculture or motor vehicles:

1 o—1 o—1
Y, =27, (/ ;Y ° di) where o < 1 (D
0
Yie = pie Kit + Yuie Lit (2)
1
Ky = / K di (3)
0
1
L, —/ L di 4
0

where all parameters are positive.

A unit measure of complementary tasks are used to produce output. The heteroge-
neous share parameters «; capture the fact that some tasks are more important than
others. One unit of capital can produce Vi units of task i, while one unit of labor can
produce ¢; units of the task. We define ;; = a;’% Upir and gy = ag’% Doit-

Our setup therefore permits three different types of productivity improvements:

higher vy, higher 1, and higher Z;,. We refer to Z, as “other productivity.” It can
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capture quality improvements in the sector, but it is also possible that new varieties or

increased misallocation could impact Z;.

2.1 Discussion of the Economic Environment

Complementarity and substitution. We set ¢ < 1 so that tasks are complements
in production. This restriction is important and we discuss supporting evidence at
the end of this section. Notice that the model features both complementarity and
substitution. The complementarity arises from o < 1 while the substitution arises from
task production Y;; = &MtKit + QZJgitLit. The interplay between complementarity and
substitution is what allows a simple framework to give rise to a rich set of outcomes.
It contrasts with the either/or aspect of the more traditional CES models such as Y =
F(BK, AL) which permits only complementarity or substitution rather than allowing
both.!

Weak links. With o < 1, tasks are “weak links” in the sense of Kremer (1993) and Jones
(2011). Every task is essential to production and having infinite output of any task or
even any measure of tasks below 100% still only leads to finite production. Total output
can be no larger than the output of the weakest link — the task with the lowest output.?
Aghion, Jones, and Jones (2019) referred to this feature as “bottlenecks,” but we find the
“weak links” interpretation to be more appropriate. Many of the most important con-

ceptual insights of the paper are a direct result of the weak links production structure.

New tasks? Our model features a fixed measure of tasks, but we now have tasks such
as “repair the computer” or “enter data into a spreadsheet” that did not always exist.
In a world of substitutes, it is easy to see how adding new tasks could increase output.
Indeed, that is essentially the mechanism underlying the Romer (1990) growth model.
However, in our world of complements, adding new tasks could easily reduce output—
production involves weak links rather than love-of-variety. Our approach in this paper
to incorporating new methods of production is to add “new procedures” to our current

setup. With a fixed unit measure of tasks, each task must be something that has always

'Nested CES specifications can also feature this richness as, e.g., Krusell, Ohanian, Rios-Rull, and
Violante (2000) utilized.
%Strictly speaking, this requires a discrete number of tasks rather than the continuum.



been done. In agriculture, this might be “till the soil” or “plant the seed.” Over time,
we invent new procedures for performing these tasks. For example, in the distant past
we tilled the soil with manual labor, then with an ox and a plow, and now with a fancy
GPS-enabled tractor.

Allow each task to be produced by a bunch of different procedures: Y;; = z/?,};itKé +
o R K b DL 4 -+ e LY. Adding new procedures is then isomorphic
to increasing Vit OF Yy in the baseline model — you only use the procedure that
produces a task with the lowest cost.

We also explored adding another CES layer with love-of-variety above our current
task CES. Then new varieties of goods could be invented and production of those new
varieties could require tasks that did not previously exist. This approach complicates
the model substantially while delivering many of the same predictions as our current
setup. This would be a useful direction to explore in future research. The new proce-

dures approach yields a substantially simpler model, so we use that in this paper.

2.2 Allocating Inputs to Tasks

Resources are allocated via a competitive equilibrium. A representative firm chooses
how to allocate a given amount of capital and labor across tasks in order to maximize

profits, taking output and factor prices as given:

1 1
max RgY;g — Wt / Lit di — Tt / Kit di (5)
{Kit,Lit} 0 0

subject to (1), (2), (3), and (4).
It is optimal to use capital to produce task i whenever
Vit Yeit

>
Tt Wwe

(6)

and to use labor when the inequality goes the other way. We therefore define the set of

tasks using capital and labor as

Qe = {1 € [0,1] | Y/ Veir > re/wi}
Qe ={i €[0,1] | Ygit/Veie < re/w:}



Figure 1: Automation and Comparative Advantage: Examples
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Notice that any task § that is just at the margin of being automated — that is, a task at

the boundary of the two sets — satisfies the automation condition
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Single versus multiple points of automation. We assume that at any point in time,
there are a finite number of such indifference points. In that case, €2, consists of the
union of a finite number of subintervals of [0,1]. Let 5; denote the measure of tasks
that are produced with capital — the measure of (2;; — and 1 — 5; denote the measure
of tasks that are produced with labor. In the special case in which % = %t occurs
for only a single task, f; is the task where the crossing occurs and capital is used on
the interval [0, ;] while labor is used on [5;, 1]. See the left panel of Figure 1. This is a
canonical example that is helpful to keep in mind in understanding the model.

We also allow for the more general case in which there are multiple points of au-
tomation as in the right panel of Figure 1. Let M; denote the number of points of
automation and call those marginal tasks 3,,,; form = 1,..., M.

For convenience, we make an assumption that will hold throughout the paper:

Assumption 1: Technological change is such that there is only automation and no

“de-automation.”



This assumption states that once tasks transition from being produced with labor to
being produced with capital, they never switch back. Particularly since our empirical
work is based on time periods of a decade or longer, this strikes us as a plausible as-

sumption worth the simplification in notation and improved expositional clarity.

2.3 Production Function CES Representation

The task-basked production function can be represented as a standard CES-like pro-
duction function, which provides a link between our growth accounting framework and

traditional measures.

Proposition 1 (Reduced-form production function). In equilibrium, output Y; can

be represented as a familiar CES-like production function:

Yy = F(BiKy, AcLy)

o
a—1 o—1

- ((Bth) 7 4 (A L)% )ﬁ

where

1

@

=1 .
By =7 < / iy di) and Yri = o Yy
Qg
1
o—1 &
Ay =7y </ Vg di> and g = o7 Py
Qpy

Factor shares are

o—1 o—1
Sy = redy _ BiKy\ o ST G = e K _ Vit Ze K \ @
“TRY T\ Y TRY, Y,
g=1 o=1
[ w Ly _ ALy \ e il e = wi Ly _ YeirZeLit \ 7
"TRY, Y TRy, Y,

According to Proposition 1, our task-based approach has a reduced-form CES-like
representation with capital-augmenting productivity B; and labor-augmenting pro-
ductivity A;, where the heterogeneous share parameters, «;, are folded into the pro-
ductivity parameters. The endogenous automation share ; enters both B; and A,.
Since 3; changes whenever w;/r; changes, A; and B, change as well; in other words,

the elasticity of substitution between capital and labor is no longer given by ¢ when
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automation is allowed to adjust. Still, the representation remains useful since A;, By,

and 3; do not depend on K; and L,, so the standard CES factor share formulas are valid.

Are computers an A; or a B;? A question that has long been puzzling in the growth
literature is how to interpret A, and B;. For example, there is a long tradition of speci-
fying a CES production function like that in Proposition 1 as the primitive and thinking
about capital-augmenting versus labor-augmenting technical change. But this leads to
obvious questions that do not have obvious answers. For example, is a better computer
an increase in A; or B;? Is it like having twice as many old computers (1B;) or does
it effectively increase the user’s time endowment (1 A;)? Much of the literature has
answered this question by saying that better computers and information technology
show up as investment-specific technological change — the same as an increase in B;
for our purposes.® This literature uses hedonics and sharply-declining information
technology prices to measure changes in B; — examples include Greenwood, Her-
cowitz, and Krusell (1997), Herrendorf, Rogerson, and Valentinyi (2020), and Caunedo,
Jaume, and Keller (2023). But it is not obvious that this is the right thing to do.

An advantage of the task model is that it provides a framework in which the answer
to this question is clear: better computers are an increase in ;;; for the tasks that have
been automated using computers. For tasks that are performed purely with labor, a
computer does not make labor better at that task. Of course because those tasks are
complementary with other tasks that use a computer, a worker’s productivity and wage
canrise with automation. But here, a better computer is clearly an increase in ;. This

insight will be useful in interpreting the results from our applications.

2.3.1 Growth rates of B; and A;

Our main growth accounting exercise is in terms of growth in primitives v, 1, and

Z. First, we find it instructive to perform growth accounting in the more standard

3There is, of course, a difference between capital-augmenting technical change and investment-
specific technical change. The latter only affects new capital while the former affects all capital. However,
this distinction is not important for the points made here.
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F(BK, AL) representation. Recall that

1
o—1
By =7 < / 7t di>
Qpy

Taking the time derivative of B; and expressing everything in terms of growth rates

(X; = X;/X,) leads to our next result.

Proposition 2 (Growth of B; and A;). Under the “no de-automation” Assumption 1,

A . A 1
Bt:Zt+¢kt—1

— 0

oty where iy = / Yritwhit di (8)
Qe

A A A 1
At:Zt+Wt+1

— 0

@ﬁtﬁt where 1y = / Dosswois di 9)
Qg

where wy;; is task i’s labor cost share, wy,; is task i’s capital cost share, wg; is the
share of capital costs for the tasks that are being automated, wg; is the share of
labor costs for the tasks that are being automated, and §; is the total flow of au-

tomation that occurs across the different automation points.

Proof. See Appendix B.

The growth rate of B, is the sum of three terms. First is the general TFP growth via
Z;. Second is 1y, which is a weighted average of the growth rates of v/;; on the already
automated tasks, capturing the gains from better computers, machine tools, software,
etc. The importance of each task is given by the weight in the average, which is its cost
share. The third and final term is the automation effect associated with an increase in
the fraction of tasks that have been automated, ;. This third term is negative because
of a “capital depletion” effect: spreading a given amount of capital over a larger number
of tasks reduces capital per task and shows up as a decrease in productivity when o < 1
(Aghion et al., 2019). For intuition from a simple model see Appendix B.3 for the special
case with homogeneous productivities.

The same logic applies to A;. There are again three terms, capturing general TFP
growth (Z,), average productivity improvements within the tasks that use labor (1),
and an automation effect. In this case, the automation effect is positive. Mathemati-
cally, the share of tasks using labor is 1 — ;, which leads to the additional negative sign.

Economically, a given amount of labor is being concentrated onto fewer tasks, so labor
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per task rises. Because the tasks are complements instead of substitutes, more labor

per task raises productivity.

2.3.2 Total Factor Productivity Growth

To see the overall growth consequences, we now turn to the growth rate of total factor

productivity. The standard Solow approach implies
Vi = sk <Bt + f(t) + Srt (z‘it + f/t) .
Rearranging this expression leads to TFP growth:

Vi — sxi Kt — spiLy = s Br + spi Ay (10)

TFP,

TFP growth is the weighted average of growth in B; and A; where the weights are the

production elasticities (which equal the factor shares).

2.4 Dataand Empirics

Our baseline data source is the BEA/BLS Integrated Industry-level Production Account
(KLEMS) that covers around 60 sectors of the U.S. economy from 1987 to 2021. For the
aggregate economy, we use the private business sector multifactor productivity data
from 1950 to 2023 from U.S. Bureau of Labor Statistics (2025). For agriculture, our data
are from the U.S. Department of Agriculture for 1950 to 2021 (Wang et al., 2024) . Table 1

lists the sources of the data for the various sectors.

The elasticity of substitution, 0. The elasticity of substitution, o, is a key parameter
of the model. For our baseline calculation, we assume a value of 0 = 0.5 (and explore
robustness to this choice). This is a common choice in the task literature; for example,
used by Acemoglu and Restrepo (2022). But two further comments are also warranted.
First, as discussed above surrounding our near-CES representation result in Propo-
sition 1, o would be the elasticity of subtitution between capital and labor in our reduced-
form representation if the automation set were held fixed. Allowing the automation set

to change means that the elasticity of substitution between capital and labor is greater
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Table 1: Data and Sources

NAICS

Short name code Sector full name Years

Private business — Private business sector 1950-2023
Agriculture — Agriculture 1950-2021
Computers 334 Computer and electronic products 1987-2017
Motor vehicles  3361-63 Motor vehicles, bodies and trailers, and parts 1987-2017
Retail trade 44-45  Retail trade 1987-2017
Software 511,516 Publishing industries (includes software) 1987-2017

than 0. Alarge literature estimating the elasticity of substitution between capital and la-
bor almost invariably finds values less than one. Surveys of the literature, e.g. Gecherta
et al. (2022), typically find median estimates around 0.5. Recent papers support this
view. Oberfield and Raval (2021) estimates values between 0.5 and 0.7, while Young
(2025) finds estimates of around 0.4-0.5. This evidence suggests that the appropriate
value for our o is 0.5 or lower.

Second, it is useful to consider the following question: We know that the share of
factor income paid to capital has risen in recent years. What has happened to the share
of factor income paid to computers? On the one hand, computers are everywhere. The
number of transistors on a computer chip today is 50 million times more than it was
in the 1970s. On the other hand, the price of compute has plummeted, suggesting that
the marginal product of computing power has as well. Which effect dominates?

Figure 2 shows the answer. During the dot-com era of the late 1990s, the factor
share of income for computers rose from around 3.7 percent to 4.3 percent. But since
2000, the share has fallen substantially to 3.0 percent. In other words, even though
the amount of computing power has exploded, we pay less of our GDP as a return to
computers today than in the past. This is exactly what a production function with an
elasticity of substitution less than one would predict. And this fact may itself be very

informative about the effects of future A.I.-driven automation on the economy.
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Figure 2: The Share of Factor Income Paid to Computers
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Note: The factor income share of information technology in the private business sector has
declined over the past 25 years. Source: Bureau of Labor Statistics (2024).

Measurement. We identify and measure the key variables as follows. First, our data
sources provide us with a measure of total factor productivity growth, labor productiv-
ity, and the share of factor payments to capital and labor.

Second, we assume there is perfect competition in markets so that the production
function elasticities are equal to the shares of factor payments. With our reduced-form

CES production function, this means that

o—1

wi Ly dlogY; AL\ e
Spt = = = (11)
PY; Olog Ly Y;
We therefore recover A; from data as
2 Y
Ay =7t I, (12)

In other words, A; is just labor productivity adjusted by the labor share. Then we
recover the growth rate of B, so that the TFP growth accounting equation (10) holds
exactly. We emphasize this point so that it is transparent that the calculation of the

factor augmenting growth rates of A; and B is straightforward.
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Table 2: TFP Growth: Basic Data

Growth Growth Factorshare Factor share

Sector TFP growth  in By in Ay of capital oflabor
Private business 1.2 -1.2 2.4 0.35 0.65
Agriculture 3.3 24 4.6 0.57 0.43
Computers 12.8 8.6 15.6 0.41 0.59
Motor vehicles 1.7 -0.8 3.5 0.43 0.57
Retail trade 1.7 -2.9 2.8 0.20 0.80
Software 1.8 -1.4 4.8 0.47 0.53

Note: Growth rates are average annual log changes. Agriculture and the private business sector start in
1950. For the other sectors, the data cover 1987 to 2017. Factor shares are averages over the entire period.

Growth in TFP, A;, and B,. Table 2 shows the growth in total factor productivity, A;,
and B, for the various sectors as well as the average factor shares.

The first row shows the data for the “aggregate” sector, corresponding to the private
business sector in the BLS multifactor productivity data. TFP growth between 1950
and 2023 averaged 1.2% per year. The capital share averaged 0.35 and the labor share
averaged 0.65.

More interesting is the breakdown into growth in A, versus B;. For the private
business sector, the growth rate of labor augmenting productivity A; was 2.4% per year,
a conventional number. However, the growth rate of B,, the capital augmenting com-
ponent, was -1.2% per year, a number that may initially seem surprising. But it is not.
Essentially, it comes from the calculation that 1.2 = .35 - (—1.2) + .65 - 2.4. And notice
that to the extent that factor shares are stable, this calculation would be invariant to the
elasticity of substitution, o.

Looking at the sectoral data in Table 2, several results are worth noting. First, TFP
growth ranges from a low of 1.7% per year in motor vehicles and retail trade to a high
of 12.8% per year in the computer sector. Second, the growth rate of A; is always
substantially higher than TFP growth, which means that the growth rate of B; will be
lower. For agriculture and computers, the growth rate of B, is positive, while for the

other sectors the growth rate of B, is negative, as it was for the aggregate. Finally, factor
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shares vary substantially across sectors.

Young (2025) first provided detailed empirical evidence for negative growth in B;
and positive growth in A; using gross output KLEMS data for the United States. Our
evidence confirms his result for value-added based TFP measures.

The model developed so far — especially Proposition 2 — helps us make sense of
the negative growth in B; that we often observe. As in Aghion, Jones, and Jones (2019),
automation is simultaneously labor augmenting (14;) and capital depleting (| B;). De-
clining B; can be a sign of automation: average capital per automated task declines,
which reduces “effective capital” and therefore reduces B;. The positive growth in B,
for agriculture and computers can be explained by the neutral productivity term 7, —
positive growth in Z; will increase both Byand A, —or by rapid ¢x; growth and a modest

increase in the share of tasks that are automated.

3. Automation Growth Accounting: Theory and Evidence

We now use the structure of the model to uncover the consequences of automation for
total factor productivity growth, both in the theory and in the data.

Combining equation (10) with equations (8) and (9) yields our main decomposition:

TFP; = Zt + SKtqﬁkt + 5Lt7$€t +

Better Better
capital labor

1 _tU (8Lt@ept — SKtWrpt) (13)

Automation effect

Total factor productivity growth can be decomposed into four terms: “other” pro-
ductivity growth Z;, improvements in the productivity of capital ¢y,, improvements in
the productivity of labor v, and the overall effect of automation (the sum of the two

automation terms). Each term is weighted by its cost share.

The automation term. We now show that when automation is smooth, the automa-
tion effect in the TFP decomposition is zero. Automation is smooth when the time
derivatives 1/'%@1, zbgit, 7+, and w; exist, which ensures the automation indifference condi-
tion (7) holds at all points of automation. In particular, use the definition of the weights

in Proposition 2 to notice that at any point of automation, 3, the automation effect term
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depends on

wely wilgs 1Ky TiKpy
BY, wiL; BY, 1K,
wiLgy 1 Kpy

= - 15
PY: PY: (15

(14)

SLtWept — SKtWkpt =

That is, the automation term depends on the cost of doing the marginally-automated
task with labor versus the cost of doing it with capital. But at the margin, these costs
must be the same, so this difference is zero. This is true at any point of automation and
so it is also true for the sum over all the points. Hence, the overall automation effect
term is zero as well.

We therefore have the following useful result:

Proposition 3 (Zero TFP growth from smooth automation). When the marginal
task that is automated satisfies the indifference condition (7), the automation effect

in the TFP decomposition in equation (13) is zero. Therefore, TFP growth equals

T/F\Pt = SKtBt + SLtAt

= SKtVkt + sLu + Z (16)
Capital Labor Other TFP
productivity productivity growth

Discussion. This proposition states that the contribution of automation to TFP growth
is zero. What is going on? To understand, notice that the v;; and v; are the funda-
mental primitives of the problem and /; is an endogenous variable. As the ¢’s change,
tasks get automated. When automation is continuous, there will be marginal tasks for
which it is equally costly to use capital or labor. This is the indifference condition in (7)
that implicitly pins down f;. But that means that whenever automation occurs, this
indifference condition is satisfied, and therefore each instant of automation cannot
lead to TFP growth.
Instead, the proposition states that, apart from other sources in 7, TFP growth is

simply the weighted average of productivity improvements on the capital tasks and the
labor tasks. It is entirely the “within” terms and there is no composition effect. The

weights, in turn, are the standard factor cost shares, sx; and sy;.
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So one of our key answers to the question “How much of growth is due to automa-
tion?” is zero! We will provide alternative definitions of automation below that lead to
different answers, but this result makes clear that the answer depends on what precisely
we mean by automation.

There is a parallel here between the firm dynamics literature and the contribution of
new entrants to growth. How much of growth is due to the entry of firms that turn out
to be superstars, such as Apple or Google? Well, the answer depends on how much of
these firms subsequent growth is attributed to entry. For example, if all new firms since
the year 1900 are counted as entrants, then entry accounts for nearly 100% of growth.
On the other hand, if the growth of new entrants is counted only during the first year
(and after that Apple and Google are treated as “incumbents”), then very little growth is
due to new entry. The issue is similar here: how much of the subsequent growth from
better computers gets included in the automation term? If none, then the contribution
of automation is zero. But in this alternative decomposition, the length of a period
determines how much of the “better computers” gets attributed to automation. In
empirical case studies that compare a treatment firm that automated to a control firm
that did not automate, the measured effect of automation reflects the improvements
in the productivity of capital since the point of automation (plus the initial jump in
productivity if automation is not smooth). We provide an alternative measurement of

the effect of automation on growth drawing on this perspective in Section 4.

3.1 The Effect of Automation on TFP Growth

Given that the automation “composition effect” is zero, it is helpful to consider what
else in our environment might be related to automation and contribute to TFP growth.
To see our next important result, it is helpful to substitute s;; = 1 — sk, into the TFP

decomposition in Proposition 3 to get

TFP; = Zs + s + sxt (Vrt — Yaz) (17)
Baseline Automation effect:
TFP growth boost from machines
getting better
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Equation (17) is one of the key equations of the paper. TFP growth is the sum of
two terms. The first reflects baseline TFP growth from “other” sources (Z;) and the
minimum improvement on all tasks from people getting better (1;). The second term
is the additional boost that comes from automation: machines may get better at a faster
rate than humans, boosting TFP growth by ¢, — 1. But this boost only applies to a
fraction of the tasks. Intuitively, the proper way to measure this fraction is by the cost

share of tasks using capital — the factor income share sy;.

3.2 Identification

To implement equation (17) empirically, we need to identify the terms on the right-
hand side. From the previous section, we have measures of TFP growth, A, B;, and

factor income shares. We now explain how we identify the remaining variables.

Step 1. First, recall equation (9):

. .. 1 .
Ay = Zy + g + 1 Wept Bt (18)

— 0
Consider the wy; part of the equation. From equation (32), weg: = LL—i" That is, the
weight for a particular task is just the fraction of labor used in the newly-automated
tasks. Then, ws, is a weighted average of the w’s at the points of automation (from
equation 34). That is,
Lot

Wept = I
t

where L, is aweighted average of the labor used in the tasks that are being automated.*

Step 2. Next, labor is used on the share 1 — f3; of the tasks, so the average amount of

labor used per taskis L, /(1 — ;). This leads to our second assumption:

Assumption 2: L, > 157}%

This assumption says that the marginal tasks that are automated on average use at least

as much labor as the average of the tasks that are not yet automated. This assumption

4 : _ _N\M Bm
In particular, Lz, = > ", Lg,,¢ ‘ Btt"
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is important and it merits discussion. For the moment, let’s accept it and derive its
consequences. After stating our identification result, we will discuss the assumption in
detail.

Assumption 2 implies that w,g; > 1%& Substituting this into equation (18) gives

A A A 1
At:ZH‘Wt—Fl

o
— 08t Bt

(19)

Step 3. Now consider the last term in the preceding equation and make the following

notational definition:

Definition 1: The automation rate is defined as

B _ _dlog(l —B)

=1-5 di (20)

Tt

The variable z; has an elegant economic interpretation as the rate of automation. No-
tice that 8, = x¢(1 — B¢). That s, x; is the fraction of the labor tasks that get automated
in period t.

Substituting this definition into equation (19) and rearranging, we get

x> Zy +1/A1£t (21)

- 1
A, —
t 1—
This equation is important in that — provided we can construct an empirical measure
of the automation rate z; — it gives an upperbound on the baseline term in TFP growth

from equation (17).

Step 4. Finally, substituting this expression back into that TFP growth equation (17)
allows us to obtain a lower bound on ¥y — V.
Our next proposition collects two important bounds on the terms that make up TFP

growth in equation (17):
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Proposition 4 (Identifying key bounds on Uyt and g). Provided we can measure

the automation rate z;,

A~

1
At—l

T > Zy +?Z)£t

is an upper bound on the baseline component of TFP growth in equation (17) and

Kt

. « 1 — A 1
¢kt—¢etZ<TFPt—[At— $t:|>
S l1—0

is alower bound on the automation boost associated with the average rate at which

machines are getting better.

The intuition for how the proposition works can be seen most easily by considering

the homogeneous case in which ¢y;; = 1y;:

1
1 l1—0o
Ahomog _ 7
t <1 — Bt) twﬁt

1
The (ﬁ) "7 term appears as a given amount of labor gets spread over 1 — 3, tasks:

concentrating labor on a smaller range of tasks raises labor per task, increasing labor
productivity — the opposite of the “love of variety” effect since o < 1. Taking logs and

derivatives of this equation we see that

2 homo 5 7
A, 9 — Ty = Zt + Y

In Proposition 4, we get a very similar relationship in the heterogeneous ;; case but
as an inequality. Substituting this inequality into the TFP growth equation allows us to
get a lower bound on &kt — zﬂgt.

This discussion justifies the following additional result:

Corollary —In the special case in which vy;; = 1y —1i.e., in the case in which
the labor productivity terms are homogeneous while heterogeneity occurs

in the v;;; only — the inequalities in Proposition 4 become equalities.

Most of the remainder of the paper is devoted to applying these results empirically.

But first we need to discuss why Assumption 2 is a reasonable assumption.
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Figure 3: Moravec’s Paradox
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(a) Moravec’s Paradox (b) Comparative advantage

Note: Tasks that are hard for humans tend to be easy for machines and tasks that are easy for humans tend
to be hard for machines. Comparative advantage is also therefore negatively related to ;.

3.3 Discussion of Assumption 2

Assumption 2 requires that among the tasks that we have not yet automated, we first
automate the tasks that have high labor costs, at least on average.

This assumption turns out to be a natural consequence of what is known as Moravec's
Paradox: tasks that are hard for humans tend to be easy for machines and tasks that
are easy for humans tend to be hard for machines (Moravec, 1988). Evolution opti-
mized walking, dexterity, and vision in humans over millions of years, so it is hard for
machines to do better, while evolution did not optimize for playing chess or solving
complex math problems. Figure 3a illustrates this stylized fact by showing a negative
relationship between vy;; and ¥y;;.

Because automation is about comparative advantage, it is helpful to make the same
plot but with v, /1y on the vertical axis. Notice that a negative relationship in Fig-
ure 3a implies the negative relationship in Figure 3b: dividing by ¢, only reinforces the
negative relationship.

In the case in which there is only a single automation point, Assumption 2 states
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that

-1
wept = Wi Lev,
Jo Vo' di - Lo~ 1=F

With o < 1, this is a natural consequence of Moravec’s Paradox. The marginal task that
is automated has the lowest ¢;; and therefore the highest 1/12_1.

One final point of clarification relates to another difference between comparative
and absolute advantage. In our initial setup (e.g., see Proposition 1), ¥y = alf’%l Q;git
where the «; is a common share parameter on task i regardless of whether or not it
is performed by humans or machines whereas the ~ variables are the input-specific
productivity terms.

The discussion so far implicitly assumed that «; = 1 for all tasks. To generalize to
the case in which these share parameters are present, notice two things. First, because
the share parameters enter both v, and 1, they do not affect comparative advantage:

g _

% = ﬁ—’; But the share parameters do affect absolute advantage: vy; = ai"*lvf)ﬁt.
A natural assumption is that «; is uncorrelated with ;. In that case, the presence
of the share parameters simply causes the curve in Figure 3b to “flatten,” making the
inequality in Assumption 2 less tight (closer to equality).

The bottom line is that Moravec’s Paradox suggests that Assumption 2 is a reason-
able assumption. Importantly, this is also an assumption that future empirical work

can seek to measure and test.

3.4 Measuring j,

Almost all of the terms in Proposition 4 can be measured with our BEA/BLS data. The
exception is the share of tasks that have been automated, 3;, and in particular, the
automation rate x; = lf—tﬁt

This brings us to a crucial part of our analysis: how we measure the share of tasks
that have been automated at each point in time. We considered hiring a team of RA’s to
scour the voluminous literature for each of our sectors to construct this measure. How-
ever, this would have been a major undertaking and we would have had to iteratively
develop a detailed rubric to keep the RA's methods uniform across people, time, and

tasks. It then occurred to us that this is a perfect task for OpenAl’'s Deep Research state-
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Figure 4: Share of Tasks that are Automated, 3;
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Note: See Appendix A for the details of how we measure £;.

of-the-art LLM. The instructions we used for this task are reported in Appendix A.°

Figure 4 show the data on the share of tasks that are automated, 3;, by sector and
over time. There is substantial heterogeneity, both across sectors and over time. For
example, in recent years, retail trade has the lowest share of tasks that have been auto-
mated — around 50% — whereas computers/electronics has the highest share — more
than 85%. In contrast, in 1950, less than half of tasks in agriculture were automated and
only around 1/3 of tasks in the private business sector were automated.

Finally, Figure 5 shows the automation rate. Recall that z; = f—tﬁt, so the automation
rate measures the fraction of tasks performed by labor that get automated during a
particular period of time. Automation rates for the private business sector and for
agriculture are relatively stable over time since 1950 and equal to around 2% per year,
having slowed slightly since 2000. For the BEA/BLS sectors, automation rates range

from a low of under 1% for retail trade to a high of more than 4% for software and

°In the future, we will refine these instructions and repeat the exercise many times to ensure consis-
tency and create bootstrap standard errors. Also, recall that in equation (1), there are share parameters («;)
that govern the importance of each task. Some tasks can be very important while others can be relatively
minor. These share parameters get combined with the levels of the technology parameters (in v;; and
1eit), SO in constructing the fraction of tasks that are automated, our model implies we should focus on an
equally-weighted average of tasks; we do not need to adjust here for how important each task is.
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Figure 5: Automation Rates, z; = 12 5
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Note: See Appendix A for the details of how we measure £;.

computers/electronics. Interestingly, software shows a substantial increase in the au-

tomation rate over time.

3.5 Empirics: The Contribution of 12% and g@gt to TFP Growth

We can now turn to the empirical analysis of the contribution of Uy and 1)y to TFP
growth using Proposition 4. In particular, that proposition derives an upper bound on
7+ Qﬁgt and a lower bound on &kt — &gt. Now that we've measured the automation rate
x¢, we can calculate these bounds.

Table 3 shows the empirical implementation of these two key bounds. The left side
of the table begins by calculating the upper bound on Z; + v, given by A, — ﬁxt. The
striking finding here is that the upper bound on Z, + 1y is negative for 5 out of 7 of
our sectors for our benchmark case of o = 0.5. For example, for the private business
sector, the upper bound is -0.9% per year. The implication is that for much of the
economy, the rate at which people are getting better is small unless other TFP growth,
Z,, is substantially negative. It is possible that humans are getting worse at tasks so

that ¢ is negative and this could be offsetting some growth in Z,. Alternatively, a rise
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Table 3: Bounds on Z; + zﬁgt and Qﬁkt - @gt

Growth  Automation Upperbound TFP Capital  Lowerbound
Sector rate of A, rate, x; onZ, + 1/3& Growth share, sg; on zﬁkt — 1/3“
Private business 2.4 1.7 -0.9 1.2 0.35 6.2
Agriculture 4.6 2.0 0.6 3.3 0.57 4.9
Computers 15.6 4.2 7.1 12.8 0.41 14.1
Motor vehicles 3.5 2.4 -1.2 1.7 0.43 7.2
Retail trade 2.8 1.6 -0.5 1.7 0.20 12.1
Software 4.8 3.2 -1.7 1.8 0.47 7.3

Note: See Proposition 4 for the equations describing the bounds.

in misallocation could make Z; negative. Either way, it is noteworthy that these two
sources of growth combine to contribute little to TFP growth.

The right side of the Table 3 calculates the lower bound on z[zkt — zﬂgt as in Proposi-
tion 4, basically by subtracting the upper bound on Z; + v, from the TEP growth rate
and scaling by the capital share. The key finding is that the lower bound on ¢y, — ¥y
is large. For the private business sector, the rate is 6.2% per year, and the lower bound
is at least 4.9% per year across all sectors. In other words, the average rate at which
machines are getting better across automated tasks is substantially higher than task-
specific labor productivity growth. Machines get better much faster than people do.

These two finding are of course related. The fact that the Zi+ 1[1& is a small number,
possibly even negative, means that the @Zkt — @@gt term must explain the bulk of TFP

growth.

4. Counterfactual: Freezing automation in the initial year

In this section, we consider a counterfactual in which automation is “frozen” in place in
some early year. That is, the set of tasks that are automated is fixed after some point in
time: Q; = Q. How much lower would TFP growth have been in this counterfactual

world?
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4.1 Theory

To answer this question, recall our key equation for TFP growth:
TFPy = sia(we — ba) + Zi + du (22)

For the counterfactual, we need to make assumptions about what happens to 1[;;%, 12)&,

and Z,. We make a natural assumption:

Assumption 3 (Counterfactual growth rates): In the counterfactual world in which
automation is frozen in some early year (2;; = Q4), the average of the task-specific

growth rates 1/3;% and @t are unchanged, as is Zs.

In a structural model with endogenous technological change, this need not be the case:
research effort presumably shifts when tasks are automated. However, given that we are
using averages across a large number of tasks and given the difficulty of doing anything
else, this seems like a reasonable starting point.

Under this assumption, notice that equation (22) implies that the only way TFP
growth is altered in the counterfactual is because the factor share sx; changes. In
particular, comparing actual TFP growth to counterfactual TFP growth, T/F\Pff, we

have
— ———cf ¢ 7 7
TFP,— TFP, = (s Kt — 8 IQ) (Vrt — Yar) (23)

So the key thing to understand is how the capital factor income share sx; changes

in the counterfactual. In our CES task setup, the capital share is given by

Skt _ EE o—1
1-— SKt At Tt

Intuitively, the idea behind the counterfactual is to freeze the set of tasks that are au-

tomated at the set that prevailed in 1950 or 1987. This will affect the time path of B;
and A; through their laws of motion, as in Proposition 2. In particular, B > 0lowers B,
and raises A;. So it lowers B;/A; in the actual data we observe, which will have raised
the capital share since o < 1. In the counterfactual, we set Btcf = 0 to shut down this

channel. This means the capital share in the counterfactual will decline over time: the
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“machines getting better” force lowers the capital share and we've turned off the “more
tasks get automated” force that historically raised the capital share.

The evolution of the capital share in the counterfactual is®

S?{f SKt t 1
L < exp —/ T dT (24)
1-— s%t 1 — skt 0 SKr

Intuitively, the counterfactual capital share will be lower than the actual capital share

to the extent that in the historical data there was automation —i.e., to the extent that x;
was positive. The counterfactual capital share starts with the actual capital share and
then “undoes” the contribution from automation.

Putting all this together, we have the following proposition:

Proposition 5 (Counterfactual contribution of automation). Under Assumptions 1
— 3, the lost TFP growth from “freezing” the set of automated tasks in some histori-

cal year satisfies

— ——cf A A
TFP; —TFP, = <3Kt — 8%) (Yt — Yer)

> (3 &+ — upperbound on s%ﬁ) x lower bound on (¢ — )

where the upper bound on s‘}é is given by equation (24) and the lower bound on

Yt — Yy 1S given in Proposition 4.

4.2 Results: Freezing Automation Substantially Reduces Growth

To implement Proposition 5 empirically, we assume that automation is frozen in place
in the initial year for each sector (1950 for private business and agriculture; and 1987
for the other sectors). Table 4 shows the results.

The first two columns of the table show the actual and counterfactual capital shares
in the final year (e.g., 2017 or 2023). The actual capital shares are relatively high, rang-
ing from about 25% to 65%. The second column shows the capital share in the final

year under the assumption that automation has been frozen since 1950 or 1987. As

SThe derivation of the result is shown in Appendix D. For the sectoral calculations, we assume r /w;
follows an unchanged path since the sectors are small relative to the aggregate economy; for the private
business sector, we allow r; /w; to change endogenously, which changes the equation slightly.
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Table 4: Counterfactual Contribution of Automation

Capital share Lost Growth ; TFP Lost Growth
g ~ ~ — ——— C —
Sector skr  $5'. Yw—tu TFP,—TFP, Growth Shareof TFP;

Automation set frozen in 1950:

Private business 0.420 0.004 6.2 1.5 1.2 134%
Agriculture 0.655 0.127 4.9 1.3 3.3 39%

Automation set frozen in 1987:

Computers 0.459 0.033 14.1 3.9 12.8 30%
Motor vehicles 0.524 0.161 7.2 1.3 1.7 74%
Retail trade 0.259 0.022 12.1 1.2 1.7 73%
Software 0.463 0.102 7.3 1.7 1.8 95%

Note: The counterfactual contribution of automation supposes the set of tasks that are automated is

frozen in some inital year and is calculated according to Proposition 5. As in the proposition, s;'f’T is

. o e _——cf
an upper bound, ¢x: — 1y is a lower bound, and TFP, — TFP, and the final share column are lower
bounds. Growth rates are r percents per year, averaged over the relevant time period.

expected, the counterfactual capital shares are much lower because the automation
set is frozen while machines continue to get better. For the private business sector, the
counterfactual capital share is 0.4% versus an actual share of 42.0%. The reason for this
is shown in the next column, which reports VYt — g (Which we already showed back in
Table 3). In particular, capital productivity growth is very fast.

The fourth column in Table 4 implements Proposition 5 to compute a lower bound
on the “lost growth” that comes from freezing automation in the initial year. For the
private business sector, this lost growth is 1.5 percent per year. This can be compared
to the actual TFP growth rate of 1.2 percent. This means that freezing automation in
place in 1950 would have cost the economy the entirety (134%) of growth in the private
business sector.

Across the other sectors of the economy, the missing growth ranges from 1.2 percent
per year to 3.9 percent per year. The last column expresses this as a share of TFP growth.
Across the BEA sectors, freezing automation in 1987 would have cost the economy 30%
of growth in the computer sector and more than 70% in motor vehicles, retail trade, and

software.
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A natural question to ask is “Why is the private business sector share of lost growth
so much higher than for the component sectors?” The main reason for this is that
we freeze automation in 1950 for the private business sector but only in 1987 for the
component sectors. Like the firm-entry analogy given earlier, the closer to today that
we freeze automation, the less time there is for lost growth to accumulate. The lost
growth comes from the product of two terms: the t;; — 1, captures the productivity
growth boost from automation, and the importance of this boost is governed by the
capital share sg;. The higher is the growth boost, the more rapidly the capital share
declines in the counterfactual, as machines are getting better but automation is frozen.
In addition, note that Z; + 1[% is negative for the private business sector; this is why it is
possible for the automation boost term to overexplain TFP growth.”

If we do not increase the share of tasks that are automated, we do not switch over
to making rapid progress on enough of our weak links, and those remaining, slowly
improving, weak links tank growth. Even if capital productivity skyrocketed to infinty
on the tasks that were already automated in 1950, that would not have delivered infinite
growth because tasks are complements. Historically, long-run growth occurred be-
cause we found ways to rapidly improve the productivity of machines and because we
increased the set of tasks that benefited from this rapid growth—strengthening more
of our weak links. The bottom line from this exercise is that historical automation has

been tremendously important to TFP growth in the U.S. economy.

4.3 Robustness

The results just given assume ¢ = 1/2 and assume that ChatGPT provides a valid esti-
mate of the automation rate for the different sectors. Here, we relax these assumptions.

The three panels of Table 5 show a set of results for the upper bound on Z; + 9, the
lower bound on @@kt — 1[1&, and the lower bound on the share of TFP growth that would
be lost if automation were frozen in 1950 or 1987. The robustness checks cover different
values of ¢ and an automation rate x; that is only half of what ChatGPT reports.

The “worst case” numbers in the robustness table occur in the Leontief case in

"One might also ask about agriculture, where automation is also frozen in 1950 but the share of lost
growth is much smaller at 39%. There are two reasons for this. First, the capital share is much higher —
65.5% in the data in 2021, so it is harder for this share to decline to zero. Second, the automation boost
Ut — et is actually lowest in agriculture, at just 4.9% versus 6.2% for the private business sector.
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Table 5: Robustness of Automation Results

Sector c=0 o=0.25 oc=0.5 o=0.75 z; halved
Upper bound on Zi + @t
Private business 0.7 0.2 -0.9 -4.3 0.7
Agriculture 2.6 1.9 0.6 -3.4 2.6
Computers 11.3 9.9 7.1 -1.4 11.3
Motor vehicles 1.1 0.4 -1.2 -6.0 1.1
Retail trade 1.2 0.6 -0.5 -3.7 1.2
Software 1.5 0.5 -1.7 -8.1 1.5

Lower bound on 1/3;% — 1[%

Private business 1.2 2.8 6.1 15.8 1.2
Agriculture 1.3 2.4 4.8 11.8 1.3
Computers 3.7 7.1 14.0 34.7 3.7
Motor vehicles 1.4 3.2 7.0 18.2 14
Retail trade 2.4 5.1 10.4 26.4 2.4
Software 0.6 2.9 7.5 21.2 0.6

Lost TFP growth — freeze automation (percent share; lower bound)

Private business 45 79 134 284 45
Agriculture 19 26 39 77 19
Computers 12 18 30 66 12
Motor vehicles 44 54 74 133 44
Retail trade 32 46 73 154 32
Software 16 42 95 254 16

Note: The table shows the robustness of our automation results to alternative parameter
choices. The first four columns consider different values of the elasticity of substitution
across tasks, . The final column assumes the automation rate z; is one half of what we
have measured.
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which o = 0 or in the case in which the automation rate is only 50% of what ChatGPT
estimates. (These two cases turn out to be identical because our baseline value is
o = 1/2 and the way this shows up in the calculations is as 2~ z; = 2x;; so cutting
x¢ is half is the same as setting o = 0.)

For these “worst case” scenarios, the lower bound on Z; — 1[% is 0.7% for the private
business sector. The lower bound on zﬂkt — @t is 1.2% for the private business sector
and even larger than that amount in all sectors other than software. Finally, at least 45
percent of TFP growth in the private business sector would be lost if automation were

frozen in 1950.

5. The Future of A.IL.

This section develops an endogenous growth model with automation and calibrates it
based on our evidence from past automation. The spirit of the exercise is that A.I. is just
the latest form of an automation process that has been ongoing for at least a century. A
key feature of the model is that the production of ideas can also be automated, and this
is a place where A.I. can play an important role.

To understand the results of the full dynamic model, however, it is helpful to begin

with some warm-up exercises that consider extreme versions of automation.

5.1 Static Effects: What if A.I. fully automates software?

Consider an extreme version of automation: what if some fixed set of tasks are au-
tomated with infinite productivity? A first instinct is that this would produce infinite
output. But that instinct comes from production functions with an elasticity of substi-
tution of at least unity. With an elasticity below one, we are in the “weak links” setting.
Being infinitely good at some tasks does not lead to infinite output because production
is constrained by the the weakest links.?

Start with our familiar CES production function but collect tasks into two groups:
those we will infinitely automate (labeled oc) and those we will leave unchanged (la-

beled @). These could be software and non-software, or manufacturing and non-manufacturing,

8Related points appear in Aghion, Jones, and Jones (2019) and B. Jones and X. Liu (2024), but the result
is stated in terms of the fraction of tasks that are infinitely automated, which is hard to observe. Like us,
B. Jones (2025) focuses on cost shares, but that paper studies automating the idea production function.
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or cognitive and non-cognitive.
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where ay = sz aidiand o, = [ adi.
Perfect competition and first order conditions imply the usual factor share equa-

tion:

P..Y, Y\ o
sjp = L :aj< ]t> (25)

Implementing infinite automation. Now consider a counterfactual in which the tasks
in the co sector are automated with infinite ¢, — extreme but useful. Y, goes to
infinity, so Y:y%l goes to zero. Intuitively, infinite automation eliminates some of the
weak links.

Assuming no other changes,

g _

}/Cf = Oég_1Ygt.

Now divide both sides by initial GDP, Y; and use equation (25):

Yoy _ 751 Yo
Y 7Y
g
1 1-o o
(1—swt> +1—US°°t (26)

where the approximation is valid when the factor’s cost share is small. When o = 1/2,
this approximation tells us that the percent gain in output from automating the factor’s
tasks with infinite productivity is simply equal to the factor’s cost share itself, s.... When
o =1/4,the gainis 1/3 - s..+, and when ¢ = 3/4, the gain is 3 - s..;. Finally, if o = 0 the

gain is zero and if o = 1 — so that no factor is essential — the gain is infinite.
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Figure 6: Automating Software, s = 2%
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Note: The figure implements equation (26) to show the proportional gain in GDP from
automating with infinite productivity all the tasks currently performed by software,
assuming that software accounts for 2% of current GDP.

Automating software. Given the advances in LLMs at coding, software is generally
thought to the one of the first industries that will be largely automated by A.I. The share
of software in GDP is around 2%.° This means that automating all the tasks that are
currently done by software with infinite productivity would only raise GDP by about
2% when o = 1/2. Figure 6 shows how this result changes for different values of o. The

effects are remarkably small.

Automating all cognitive tasks. More speculatively, transformative A.I. is thought to
move on to automating all cognitive tasks — anything that could be done by a remote
worker with a computer could potentially be done by an A.I. agent. Around two thirds
of GDP is paid to labor. We consider what would happen if half of this were fully
automated with infinite productivity. With o = 1/2, equation (26) gives a gain of 1 /(1 —
1/3) = 1.5; that is, infinitely automating 1/3 of GDP would only raise GDP by 50%. At

some level, this number seems quite small; after all we have infinite productivity on

9For example, the share of NAICS 511, 516 (Publishing industries, except internet (includes software))
in 2021 was less than 1.7% of nominal GDP.
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Figure 7: Automating All Cognitive Tasks, s = 1/3
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Note: The figure implements equation (26) to show the proportional gain in GDP from
automating with infinite productivity all the tasks currently performed by cognitive labor,
assuming that currently accounts for 1/3 of GDP.

a third of current GDP. However, the logic is again one of weak links. The economy is
constrained by the other two-thirds of tasks that are not automated.

But an alternative way to view the 50% gain is that if it were to occur over a decade,
this would correspond to an increase in GDP growth of around 5% per year; over two
decades it would correpond to more than 2pp of extra annual growth.

Figure 7 shows how this result changes for different values of ¢. In this case, the

values start to get large, e.g., when o = 3/4.

5.2 Long-Run Growth with Infinite Automation

The static calculations so far freeze the set of tasks that are infinitely automated. We
now consider what happens in the long run when this set increases.

Figure 8 shows three possibilities for automation in the long run. In the green line,
some fraction of tasks — say 5% — can never be automated. In this case, the infinite
automation of the other 95% of tasks removes a large number of weak links, but the

economy is still constrained by the 5% of tasks that cannot be automated. This scenario
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Figure 8: Three Types of Automation in the Long Run
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Note: The figure shows three possibilities for automation in the long run: (a) In the green line,
some fraction of tasks can never be automated, so that f(3,-) = 0for 8 > 3. (b) In the purple
line, f(1,:) > 0 so that 100% of tasks are automated in finite time. (c) In the middle blue line,
f(1,-) = 0 so that there is always some task that is not automated, but the fraction of tasks using
labor vanishes to zero asymptotically.

captures the intuition that some tasks seem likely to be performed by people for at
least several decades: helping an elderly patient with dementia through a confused
night, rewiring the electrical system in a renovated building, running a kindergarten
classroom, negotiating a delicate business deal, or playing professional sports. In this
case, the production function eventually converges to Y; = A;L; where A, = g/]et.
The infinite automation of 95% of tasks raises output considerably (by 207°7), but the
remaining weak links have two important consequences. First, output remains finite
even with the infinite automation, and second, growth eventually slows to the rate at
which people get better on the weak links that are never eliminated. The economy
ultimately succumbs to the Baumol cost disease.

The purple line provides the other extreme: in this case, 100% of tasks will be auto-
mated in finite time (i.e., when the wage rises enough to make capital cheaper on every
task). Production converges to Y; = B.K; where By = z[zkt. This is an “AK” style model in
which the productivity of capital itself grows. So this case results in explosive growth.

Finally, the blue line provides an intermediate case in which f(1,-) = 0. That is,

the productivity of capital on the last task is always zero. Labor will therefore always
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be used in at least this task, even as the share of tasks using labor vanishes toward zero
over time. It is not obvious what happens in this intermediate case, but we have con-
structed various examples with a range of outcomes, including both explosive growth

and growth that is finite. We will explore this case in more detail in the next section.

5.3 Dynamics: Automating the Idea Production Function

The previous two subsections show (a) what happens in a static setting in which some
tasks are infinitely automated, and (b) what happens to long-run growth depending on
whether or not all tasks are eventually automated.

Here we consider the full dynamics of automation and growth when tasks in both
the goods production function and the idea production function can be automated.
Relative to the model in the first half of the paper, we both enrich the environment in
some dimensions and specialize it in others. First, we directly build on the automa-
tion model we've already developed, which is useful both directly and for calibrating
the parameters. Second, we introduce an idea production function that allows us to
endogenize ;; and 1y;; as well as the automation process itself. Third, the model is a
“lab equipment” version of an (either fully- or semi-) endogenous growth model with
endogenous automation. Ideas are produced using units of the final good, so that a
single automation process incorporates the automation of tasks for producing both
goods and ideas. The full model is summarized in Table 6.

In terms of simplifications relative to the model in the first part of the paper, we
assume a convenient functional form f () for the comparative advantage of capital and
labor at different tasks:

(L

f(i):m+f (27)

This functional form permits an “S” shape for f(i). Importantly, the f parameter also
allows us to control what happens to automation in the long run since f(1) = f. If
f >0, then f(1) > 0 so that all tasks are automated in finite time. Conversely, if f < 0,
then there is a positive set of tasks that are never automated. Finally, the setup permits

the intermediate case of f(1) = f = 0 so that the fraction of tasks using labor vanishes

to zero asymptotically. These correspond to the cases shown earlier in Figure 8.
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Table 6: The Dynamic Model: Automating Goods and Ideas

CES task model Same as before = Y; and €,
Idea PF Q = (ij‘Qf

Resource constraint Ci+L+R =Y,

Ideas = s Yrit = Q7 f(i)

Ideas = 1y Vit = Qfé (homogeneous)
Heterogeneity f(@) = % +f
Capital accumulation Ki=1; — 0K,

Population growth L; = Loe™

Allocations R =trY;and I; = Y

Note: The model is an endogenous growth model with endogenous automation. The “lab
equipment” structure means that automating the goods production function also auto-
mates the production function for ideas. The f(i) function incorporates heterogeneity
across tasks in the timing of automation.

This functional form is monotonically decreasing, so we get a “single crossing” in
the automation condition % =Qlf(i) = i, where 6 = 0, — 0,. This means that there
is a unique equilibrium §; such that tasks below 3; use capital and tasks above ; use

labor.

Calibration. We calibrate the model to match many of the facts that we documented
in the first part of the paper, as shown in Table 7. Note that because v,;; is homogenous
across i, the inequalities in our earlier propositions hold with equality.

The parameters p and p capturing the heterogeneity in capital productivity through
f (i) are chosen so that the mapping between the automation cutoffs 3, and the capital
share, sx; fits as well as possible for 1950, 1975, 2000, and 2023.1°

Other key parameters are chosen to match other moments from the first half of the

%In this particular formulation of the dynamic model, there is a one-to-one mapping between the
automation cutoffs 3, and the capital share, sx:

(250) - (20"

1

where £(8;) = ( N f(z‘)”‘ldz‘)ﬁ.
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Table 7: Calibration of the Dynamic Model

Moment or Parameter Value

Source

Moments from first half of the paper, Private Business Sector

Capital shares, sx .35, .33, .33, .42
Automation cutoffs, j3; .33, .55,.72, .81
Labor-aug. TFP growth, Aso20 0.024
Capital-aug. TFP growth, Bag2o -0.012
Task TFP growth, T, 5.0%
Labor task TFP growth, 1) 0.5%

1950, 1975, 2000, 2023

1950, 1975, 2000, 2023

1950 - 2023 average

1950 - 2023 average

1950 - 2023 average
Consistent w/ 1950 — 2023 data

Chosen to match moments in the data / first half of paper

Vi idea elasticity, 6y 6.35
1y idea elasticity, 0, 0.5
“Other” TFP growth, A -1.5%

f (i) parameters: p, po 5.43,6.90
Initial ideas, Qg 1.59
Initial “other TFP”, Z, 4.63
Initial idea productivity, gz}, 0.0004
Fraction never automated, f 3%, 0, -3%

Vit — Yo = 5% per year
Yy = 0.5% per year
To match A, 1950-2023

To match capital share, sk, given
fBt, 1950 — 2023

To match Bsgag /Agogo
To match Bsgag
To match Q = 1% in 2020

Values for 1 — 3 chosen to illus-
trate different possibilities

Chosen from the literature

Elasticity of substitution, ¢ 0.5
Idea PF parameters, A, ¢ 1, -2
Population growth, n 0.01
Investment rate, i 0.20
Depreciation rate, § 0.05
Initial capital-output ratio 3
Initial labor force, Lg 1
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paper, represented by the averages we see for the private business sector during 1950—
2023. For example, we choose 0, and 6, — the elasticities of ¢;;; and 1;; to the stock of
ideas (); — to match the task TFP growth rates zﬁkt — z[zgt = 5% per year and zﬁgt = 0.5%
per year. This latter value is chosen via introspection to be consistent with the low
values of Z; + 1)y in the data.!?

As anticipated earlier in Figure 8, we consider three values of the fraction of tasks
that are never automated: 3%, 0%, and —3%. Our thinking is that we can choose the
parameters of the comparative advantage function f(i) to match historical data on j;
and sx. However, this does not necessarily tell us what happens in the long run. To be
agnostic, we consider these three cases, which permits a “Y; = B, K,;” explosive growth
case, a “Y; = A;L,” case in which weak links are a permanent feature of the economy,

and a case in between.

Results. Figure 9 shows the evolution of the capital share sy; over time for the three
cases. As expected, there is a full automation case in which the capital share rises
to 100% because all tasks are automated in finite time. Conversely, there is also the
“permanent weak links” case in which the capital share falls to zero. Our functional
form for f(i) with f = 0 turns out to deliver a stable capital share around 37%— it is not
literally constant along the transition path, but nearly so.

Figure 10 shows the evolution of economic growth over time for the three cases. As
anticipated, the full automation case results in explosive growth, and the incomplete
automation case results in growth that ultimately falls to ¢, = 0.5%. This is the case
in which some weak links can never be automated away. We eventually have infinite
effective capital on the automated tasks, so production settles down to Y; = A;L; and
growth is limited to the rate at which people get better.

The baseline case is the one in which f = 0 so that the share of tasks using labor
vanishes to zero, but only as ¢ goes to infinity. Recall that this case also leads to a stable
capital share. A natural guess would be that this case would deliver stable economic
growth, but that is not what happens. Instead, the automation rate x; rises over time
and this leads growth to explode even though the capital share remains stable. We

provide more intuition for this result in the next section.!?

In simulations, we have Z; starting at the implied historical value but trending to zero slowly over time.
'2The capital share equation in the preceding footnote can be used to see that the power functions in
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Figure 9: Simulating the Future: The Capital Share

CAPITAL INCOME SHARE, s
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Note: Depending on the ultimate nature of automation, the capital share can rise to 100%, fall to
zero, or remain stable at its current value.

Figure 10: Simulating the Future: Economic Growth

GROWTH RATE, g v

25% r
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5% I
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1;820 m— ,2;4% 777777777777777777777777 autorgation
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2020 2040 2060 2080 2100 2120 2140 2160
Note: If the capital share reaches 100% in finite time, then growth explodes. If the capital share

falls to zero, then growth falls to 1), = 0.5%. Surprisingly, even with a stable capital share, growth
explodes in the Baseline case.
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Figure 11: Simulating the Future: GDP per Person

INCOME PER PERSON (RATIO SCALE) 52.1x
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Note: Two surprises: (a) Even though the future are eventually very different, the paths are
indistinguishable for the next 75 years. (b) Even when growth eventually explodes, the effects of
A1 on GDP per person are remarkably small for the next 20 to 40 years. The labels on the dots (e.g.,
1.04x) report the factor gain over the initial trend line.

Another important finding in Figure 10 is that even though the growth paths are
eventually very different, the paths are indistinguishable for the next 75 years. A rising
automation rate means that growth rates rise over time in all three cases for the next
75 years. The incomplete automation effects only become visible as we approach that
constraint in the distant future.

To see how this accelerating economic growth plays out, it is helpful to see the graph
of GDP per person, shown in Figure 11. The red dashed line shows the initial trend line
corresponding to constant economic growth. The acceleration in growth is apparent in
the rising slope on the logarithmic scale.

Despite the accelerating growth, the effects of A.I. on GDP per person are remark-
ably small for the next 20 to 40 years. The labels on the dots (e.g., 1.04x) report the factor
gain over the initial trend line. By 2040, accelerating growth only raises GDP per person
by a factor of 1.04, and even by 2060, GDP per person is only 19% higher than it would

have been without the growth acceleration.

f (@) lead to a constant capital share. To see how growth can still explode, note that the labor share equation

o—1
is1—sx: = (A;,—ft) ’ and therefore y; = (1—sx¢) 77 A; and Ay = Z; +1¢ + 1 2. Arising automation
rate x; will then raise the growth rate if the capital share is stable.
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The intuition for these modest effects is the importance of weak links. We created a
simulation in which it is distinctly possible that growth accelerates for at least the next
75 years and may indeed ultimately explode. Nevertheless, the explosion occurs very
slowly. As we saw in the software automation example, in a weak-link model of the
economy even infinite automation of parts of the economy typically has small effects.
Here, automation continues and is even accelerating, and once tasks are automated,
their productivity improves rapidly at more than 5% per year. However, the economy
remains constrained by the weak links, i.e., by the relatively few and shrinking set of

tasks for which human labor is still essential.

What if A.I raises research productivity? The model thusfar already incorporates
automation in the idea production function. That is, A.I. making us more productive
at generating ideas is built into the simulations we've already run. Nevertheless, it
is possible that A.I. could speed up automation beyond what is present in historical
data. Because automation is an endogenous outcome in this model, a natural way to
incorporate such a speedup is to increase research productivity in the idea production
function.

Figure 12 augments the simulations we’ve already run by supposing that A.I. leads
additionally to a one-time increase in research productivity by 25%. This level of im-
provement is inherently somewhat arbitrary: we've already shown the paths suggested
by a continuation of the historical automation path. How much beyond the historical
evidence should we enhance the model? A permanent increase of research productivity
by 25% could be viewed as too large or too small. But we think it is helpful to see what
it implies.

Higher research productivity has a first-order effect on the outcomes. In 20 years,
output per person is 22% higher than it would be had growth continued at the initial
1.4% trend rate instead of the 4% gain we saw earlier. In other words, during the first
20 years, annual economic growth is around 1 percentage point faster. The increase in

research productivity brings the accelerating growth forward in time.

Intuition for slowly accelerating growth. In all the cases considered so far, economic
growth accelerates — but only gradually — for more than 75 years. One way to un-

derstand this result is to ask the following question: under what parameter conditions
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Figure 12: What if A.I. raises research productivity?
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Note: The figures show the consequences of A.L. leading to an additional one-time increase in
research productivity by 25%.

does growth not explode? Or put another way, when does the model exhibit a balanced
growth path with semi-endogenous growth?

To answer this question, it is helpful to focus on the baseline case in which f = 0.
In this case, the capital share sk stabilizes at some value s} rather than going off to
100% or 0%, so this is the case in which one might expect a standard BGP. Appendix C
shows this formally: as 5; — 1 the capital share settles to s}, = (1 Zi—oy- For p=5.43 and
o = 1/2, this is indeed s}, = 0.37.

The second main result in Appendix C is that the key measure of dynamic increasing

returns in this model is ®, defined as

P = L <9g Lk 9k> (28)
—¢ Sk

In particular, when ¢ < 1, this automation model features a BGP with semi-endogenous

growth. The long-run growth rate is given by

dn

1o (29)

gy =

This equation has a standard form for a semi-endogenous growth model in which the
idea production function uses goods rather than labor as the main input (the so-called
“lab equipment” version). The overall degree of dynamic increasing returns, ®, is itself

the product of two terms. The first is ﬁ, which is the degree of increasing returns
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in the idea production function, familiar from many SEG models. The second is 6, +
%9;@, which captures the effect of ideas on ¢y;; and ;. In addition, the 6, parameter
gets multiplied by s}, reflecting the cost share of the tasks that have been automated
and by 1/(1 — s},) to incorporate the dynamic feedback that comes from K; — Y; —
K. But the bottom line is that when parameter values are such that & < 1, this semi-
endogenous growth model with automation features a BGP in which the growth rate is
proportional to the rate of population growth and where the factor of proportionality is
increasing in ®.

If the degree of dynamic increasing returns is exactly unity (» = 1), the semi-endogenous
growth turns into fully endogenous growth. This is the knife-edge condition that gener-
ates endogenous growth when population is constant (n = 0). Of course, with positive
population growth, economic growth explodes, as suggested by equation (29).

Finally — and this is the case of interest here — if ® > 1, then equation (29) has
no positive solution. This is the case “beyond endogenous growth” in which we get ex-
plosive growth, even with zero population growth. Plugging in our baseline parameter
values from Table 7 into equation (28) gives a value of & = 1.40. In other words, the
parameter values that we recover based on the historical data on automation are such
that the dynamic degree of increasing returns is larger than 1. This explains why growth
explodes even in the baseline case. And since the comparative advantage function f(7)
only differs in the three cases as ; gets close to one, it also explains why the explosion

occurs in the other two cases as well.

Quantifying the speed of explosion. With & = 1.4, one might naturally wonder why
the explosion does not occur even faster. After all, the value is 40% higher than it needs
to be for growth to explode, so it is not particularly close to the boundary.

Further intuition comes from a one-dimensional version of a system that exhibits
explosive growth. Consider the differential equation X; = gX;> where ® > 1. The
growth rate of X; then satisfies X, = ng’ —1 so that with ® > 1, the growth rate is
increasing in the level of X;. Hence the explosion.

This differential equation can be integrated to yield:

%
1 1
X, —
t (Xé“l’— (<I>—1>gt>
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This solution has an asymptote where X; goes to infinity in finite time. Setting Xy = 1
as our initial condition — as we do with y599¢ in our simulations — the date ¢, at which

X; goes to infinity is given by

1
too = m (30)

We can substitute & = 1.40 into this expression to get a sense for how long it takes

for growth to explode. If the intial growth rate is 1.4%, then the answer is

1
= - = 1
foo = Ga0 > 0,014 178 years

In other words, even though growth explodes and our overall degree of dynamic in-
creasing returns is well above 1 at & = 1.40, it takes 178 years for explosive growth to
lead to infinite income. This calculation helps us make sense of the surprisingly slow
explosion in Figure 11.

The role of weak links in leading to the slow explosion is somewhat hidden by the
way we've written ¢ in equation (28). The expression depends on the capital share sj,
butrecall that s, = ﬁ The higher is o, the higher is s}, and as s}, approaches one,
® goes to infinity, which would clearly speed up the explosion in the ¢, calculations.
Notice that this occurs well before the Cobb-Douglas case of o = 1. In fact, for y = 5.43,
values of o > 0.82 would cause the divergence. The magnitude of weak links is therefore

central.

6. Conclusion

How much of past economic growth is due to automation, and what does this imply
about the effects of A.I. and automation in the coming decades?

We perform growth accounting using a task-based model for agriculture, motor
vehicles, computers, software, and for the aggregate U.S. economy. Historically, TFP
growth is largely due to improvements in the productivity with which capital performs
tasks. We estimate that the task-specific growth rate of capital productivity averages at
least 5% per year across all our sectors, while the growth rate of the productivity with

which labor performs tasks is small, on the order of 0.5% annually. The key benefit
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of automation is that we switch from using slowly-improving labor to using rapidly-
improving capital. Growth is limited by how quickly we strengthen more of our weak
links.

Looking to the future, we develop an endogenous growth model in which the pro-
duction of both goods and ideas gets endogenously automated. We calibrate this model
based on our historical evidence. Two key findings emerge. First, automation leads
economic growth to accelerate over the next 75 years. Second, the acceleration is re-
markably slow. By 2040, output is only 4% higher than it would have been without the
growth acceleration, and by 2060 the gain is still only 19%. A key reason for the slow
acceleration is the prominence of weak links. Even when most tasks are automated
by rapidly improving capital, output is constrained by the tasks performed by slowly-

improving labor.
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APPENDIX

A. Instructions for the LLM to measure j;

We have a two-step process for measuring j; in each sector. First, we ask the LLM to
construct a detailed list of 150 specific tasks that are essential in the sector in the United
States over the past century. Second, we ask the LLM to indicate whether each task was
automated or not in each year from 1920 to 2020. For partially automated tasks, we ask
the LLM to break them into subtasks.

Here is the instruction we gave to the model to create the list of tasks:

*x INSTRUCTIONS FOR CREATING TASK LISTx*x*

Consider the motor vehicles sector of the U.S. economy for the
past 75 years since 1950. I am writing an economics research
paper at the PhD level on automation. Please do the following:

1. Construct a detailed list of 100 specific tasks that are
essential and important in the motor vehicles industry in the

United States over that time frame.

**x CLARIFICATIONS **
(a) All tasks must in principle be able to be performed by people
Over time, some tasks may have been automated, which means
they are performed without human involvement. But it is
crucial that the tasks be things that could be performed by

labor historically. Check carefully to ensure this is the case

(b) On the other hand, do not neglect tasks that are fully
mechanized now. For example, "Exterior painting" is surely an
important task historically that is now fully automated.
Prioritize tasks that are both required and essential and
economically significant in some way, at least historically.

(c) All tasks should be things that were accomplished in motor
vehicle production in the year 1950 as well as today. Make
sure that all tasks were present more than 75 years ago.

(d) Please only use excellent, reputable resources that are

specific to motor vehicles and empirical in nature. Do not use
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models or theory papers from macroeconomics or growth
economics.

(e) Examples of tasks might include "Engine assembly" or "Tire
attachment" or "Windshield installation." Also, "Management of
the factory" is one possible high-level task that may have
subtasks; we certainly want to consider management as one of

the important categories of tasks.

*x* DELIVERABLES **

DELIVERABLE 1: Provide a short narrative summary of the results.

DELIVERABLE 2: Provide an Excel file containing the detailed
results.

- The first sheet should be called "Overview". It should contain
the date, the prompt, and the narrative summary.

- The second sheet should be called "Task Data". Report your task

results in the form of a table with the tasks as rows. Some

entries that explain the "category" of the task in each row
would be helpful, with one column for the high-level category
and another column for the detailed task description.

- The third sheet should be called "Sources". Document all
sources used in a standard academic reference style. Include

hyperlinks.

Here is the instruction we gave to the model to measure g;:

*x INSTRUCTIONS FOR AUTOMATION RATES**

Consider the motor vehicles sector of the U.S. economy for the
past 75 years since 1950. I am writing an economics research
paper at the PhD level on automation. I have uploaded a file
containing a list of 100 tasks that are essential in motor
vehicle production over this time frame. Please do the
following:

1. Consider a task (each row of the "Task Data" sheet in the
spreadsheet) .

2. Consider the year 1957. Indicate whether the tasks was

automated or not in 1957; for partially automated, use a
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fraction such as 10% or 35% or 85%. Take into account the
fraction of farms that have automated the task in constructing
your estimate.

4. Repeat Step 2 for 1967, 1977, 1987, 1997, 2007, and 2017 for
that task and record your answer in a new column for each time
period.

5. Repeat Steps 1 to 4 for each task in the spreadsheet.

*x CLARIFICATIONS *x*

(a) Please only use excellent, reputable resources that are
specific to motor vehicles and empirical in nature. Do not use
models or theory papers from macroeconomics or growth

economics.

** DELIVERABLES *x*

DELIVERABLE 1: Provide a narrative summary of the results. At the
end of this summary be sure to report what fraction of tasks,
equally weighted across the 100 tasks (i.e. taking averages

across all cells), were automated in each year.

DELIVERABLE 2: Provide an Excel file containing the results. You

should build on the Excel file that has been provided.

- The first sheet should be called "Overview". It should contain

the date, the prompt, and the narrative summary.

- The second sheet should be called "Task Data". Report your task
results in the form of a table with the tasks as rows and the
years as columns. Most of the entries in the table should be

numbers such as 0%, 10%, 35%, 100%, etc. (in numerical format,
of course).

- The third sheet should be called "Sources". Document all

sources used in a standard academic reference style. Include

hyperlinks.

B. Proof of Proposition 2
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B.1 Key Weights are Cost Shares

Notice that from the share equations in Proposition 1, the FOC for the representative

firm’s problem to allocate labor is

Lit = (e Zy)" <§’;Z> Y;. (31)

Integrating this equation over all tasks yields

—0
. ol 10 o1 [ W
Lt:/ Litdz:/ o di - 7 1<Pt) Y;.
Qlt ta t

Taking ratios of these last two equations yields

o—1
Lit  wiLyg Vit

L wli fQ“ wzt_l di

Weit - (32)

By a similar argument, the same type of expression holds for capital:

o—1

Ki o TtKit o kit
- - o—1 3.
Ko~ ke Jo 05t di

= Wit (33)

That is, the key weights that will show up in our aggregation of growth rates are equal
to the cost shares of the relevant tasks.
To handle the “multiple points of automation” possibility, it is useful to define the

average of the weights across all points of automation:

_ o ‘5mt’ _ il |Bmt|
Wrpt = Z WEkBmt and wept = Z WeBmt (34)
m=1 Bt m=1 Bt

where 3, = Yoml Bme| is the total flow of automation that occurs across the different

automation points.

B.2 Proof

To see a simple version of the proposition, consider the case in which there is only a
single point of automation, j;, at which vy /1¢8: = 7 /w;. In that case, the sets are just

the intervals [0, 5;] and [3;, 1], and the derivatives in the proposition are easy to compute
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using Leibniz’s rule. In that case, wig: = wyp and wegy = wyps.
777

B.3 Intuition for Automation and F(BK, AL): Homogeneous ¢’s

For intuition, it is helpful to consider an example in which there is almost no hetero-
geneity in the ¢’s. In particular, suppose ¢;; = ¥y for i € [0, 5;] while ¢;; = 0 for
i € [Bt,1]. That is, only the tasks up to ; can use capital. But all tasks can use labor:
e = 1y for all . Furthermore, suppose vy /1 > 14 /wy: if you can use capital then it
is profitable to automate.

In this case, the production function in (1) becomes

_ AN Yl \ 57 =
Y =2, <5t < 5, > +(1—5) (1@) ) (35)

Several insights can be gleaned from this special case. First, notice that 3; and 1 — j;

enter the CES reduced-form production function in two ways. Consider the K; term.
The first 5; functions as a share parameter and captures the fact that capital is used in
the fraction j; of tasks. The second way f; enters is through the K;/3; term. In this case,
the capital K is spread across 3; tasks, so the capital per task is K;/j;; that is, capital
per task gets smaller as we spread capital over more tasks. The net of these two effects

is shown by writing (35) as Y; = F(B:K;, A:L;), where B, collects the first two j; terms:

1\ 7
By =7, (&) o (36)

Since ¢ < 1 so that tasks are complements, an increase in 3; reduces B;. That is,
an increase in automation is capital depleting rather than capital augmenting. Better
computers — a higher ¢, — are indeed capital augmenting. But when a given amount
of capital is spread across a larger number of tasks because of automation, one effect is
that this is capital depleting.

This is only one effect because there is a related effect working through A;. The
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same logic reveals that

1\ 1=
Ay =74 (1 — 5t> Yot (37)

In other words, an increase in f, is labor augmenting. The total labor L, is concentrated
on fewer tasks, so labor per task increases.

With homogeneous s, there are two effects of automation that work in different di-
rections. Automation is simultaneously capital depleting and labor augmenting. That
is, it is a twist of the production function, a point emphasized by Aghion, Jones, and
Jones (2019).

We now return to the general case with heterogeneous ¢'’s. As we see next, there are
then two additional effects from an increase in 3; that need to be considered. In our full
model, 3; is not an independent exogenous variable, but rather the set of tasks that are

automated changes because v;;; and v;; change.

C. Characterizing explosive growth when f(1) =0

The dynamics of the idea-driven growth model when f(1) = 0 are interesting. When
f(1) > 0 the model looks like Y; = B;K; and growth explodes, while when f(1) < 0,
the model eventually looks like Y; = A;L; and growth slows to the rate at which people
improve, ¢,. But what happens in between?

As was clear in the graphs and as we show at the end of this section, the capital
share sk, stabilizes at some value sj; rather than going off to 100% or 0%. (In fact, as
we show at the end of this section, s}, = ﬁ.) So the question is: how can growth
explode when the capital share is constant, and what are the conditions under which

that occurs?

C.1 The conditions for semi-endogenous growth

The easiest way to see the answer to these questions is to characterize the condition on
parameter values such that the model exhibits a BGP with semi-endogenous growth.
Then, if the degree of increasing returns is even larger, then growth will explode. We

now develop this characterization.
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Step 1. First, we study the growth rate of y;. From the basic labor share equation for

el

CES,Y = s] ' AL, and since factor shares are constant, g, = g4. Also, A = 0,Q + =,

which implies

=0
9y = 0egq + e

1

Step 2. Now we need z. Recall that f(8) = ZQ~? where 6 = 6, — 6,. Focus on the
case in which f(i) = (1 — i)* (noting that as ¢ gets close to 1, this is valid even for

our richer specification with ;y # 0). In addition, from the factor share equations,

w _ sp K

T sk L*
shares gives

Putting all this together and taking logs and derivatives with constant factor

pgi—g = —099 — g

where £ = K/L. The automation rate is = = —g;_3. Also, along a BGP, g, = g,.

Therefore,
1
T = E(GQQ +9y)
Step 3. Combining Steps 1 and 2 gives

1
9y = 0egg + ————=(0g0 + g
v = Vg0 + Ta— 5090 + 9)

It is now convenient to use a result shown at the end of this section and already antici-

1
—0o

pated above: s} = M=k Making this substitution, recalling 6 = 6, — 6,, and rewriting

the previous equation gives

S*
Gy = <9e+ K_ 9k> 9Q (38)
1-— S¥

Step 4. Now we need a separate equation for gg. From the idea production function,

9Q Q}f—ijd). Along a BGP,
t

A
9Q = 1_¢9Y:ﬂ(gy+n)
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Combining these last two equations gives the expression for the semi-endogenous

growth rate:

on A Sy
gy m Whel‘e o = ﬂ (0£+ 1— 5K9k> (39)

C.2 The Capital Share when f(1) =

In the dynamic model, the capital share satisfies

Skt (f(ﬁt))l_a 1

1_3Kt

where £(8;) = (fo L f@E)T 1d1> 7

Consider the basic functional form f(i) = (1 — 7)* which implies

o—1 _ 1 1 pim —
£(B) T u(l—o) 1 [(1—@5) 1

Combining these equations gives

ske 1 ( 1 >1u(10) ( 1 >u(10)1 .
l—sge p(l—0)—1\1-p 1-5

WD [1 (i BJUM)]

1 .
%m asﬁt—>11f,u(1—0)>1

which in turn implies that sx; — as f; — 1. The condition p(1 — o) > 1 also

(1 o)
implies the capital share settles down to an interior point between 0 and 1.

The functional form we use in the dynamic model is slightly richer, i.e., f(i) =

(-
T+po(1—3)#*

that the result holds with the richer functional form as well.

But the two functional forms are asymptotically equivalent as i — 1, so
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D. Deriving the Counterfactual in Proposition 5
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