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Abstract

How much of past economic growth is due to automation, and what does this

imply about the effects of A.I. and automation in the coming decades? We perform

growth accounting using a task-based model for key sectors in the U.S. economy.

Historically, TFP growth is largely due to improvements in capital productivity. The

annual growth rate of capital productivity is at least 5pp larger than the sum of

labor and factor-neutral productivity growth. The main benefit of automation is

that we use rapidly-improving machines instead of slowly-improving humans on

an increasing set of tasks. Looking to the future, we develop an endogenous growth

model in which the production of both goods and ideas is endogenously auto-

mated. We calibrate this model based on our historical evidence. Two key findings

emerge. First, automation leads economic growth to accelerate over the next 75

years. Second, the acceleration is remarkably slow. By 2040, output is only 4%

higher than it would have been without the growth acceleration, and by 2060 the

gain is still only 19%. A key reason for the slow acceleration is the prominence of

“weak links” (an elasticity of substitution among tasks less than one). Even when

most tasks are automated by rapidly improving capital, output is constrained by

the tasks performed by slowly-improving labor.

*We are grateful to seminar participants at the 2025 SED, the CEPR Macro/Growth meeting, LBS, LSE,
and the Stanford-Berkeley Macro Conference for helpful comments.



Important Disclaimer: This paper is very preliminary and the numbers in the paper

are likely to change. The key “weak link” in our results so far is the use of ChatGPT to

estimate the automation rate xt. We plan to improve this margin and the results could

change when we do this.

1. Introduction

Artificial intelligence is the latest form of automation, a process that has been ongoing

for centuries. Farmers once threshed grain by hand; now a single combine harvester

replaces dozens of workers. Elevator operators, typists, and travel agents were once

ubiquitous; today, software and simple robots handle most of these tasks. In auto-

mobile plants, spot-welding and spray-painting have moved from human workers to

industrial robots. Bookkeeping, payroll calculation, and even routine document draft-

ing are increasingly automated. Now LLMs are increasingly able to write computer

code to replace some of the tasks of software engineers. Specialized A.I. models can

even automate parts of the research process — think of AlphaFold solving the protein-

folding problem or an A.I. model that assists researchers in making new discoveries

(Bubeck et al., 2025).

How much of past economic growth is due to automation? Theoretical models

of automation have advanced our conceptual understanding of the automation pro-

cess (Zeira, 1998; Acemoglu and Restrepo, 2018). There has, however, been much less

progress on measuring the empirical contribution of automation to economic growth.

The first half of this paper fills that gap for the aggregate U.S. economy over the past 70

years and for select industries over the past 40 years. Next, we build a model in which

both goods and idea production are endogenously automated over time. We calibrate

the model based on our historical evidence and simulate the future to shed light on the

possible consequences of continued automation through artificial intelligence.

Our model features three types of productivity. Output is a constant elasticity of

substitution (CES) aggregation of complementary tasks. The production of task i is

Yit = ψkitKit + ψℓitLit. Each task can be produced with capital or labor as perfect sub-

stitutes. Each factor has its own productivity term that can change in a heterogeneous

way over time, and this is true for each task. Automation is the process of switching task

1



production from using labor to using capital, which occurs when the productivity of

capital rises by enough relative to the productivity of labor. In addition, the production

function is multiplied by an overall productivity index Zt that captures other sources of

TFP, for example due to quality improvements or changes in misallocation. Thus, the

model features a rich structure of heterogeneity and multiple sources of productivity

growth that could be driving past TFP growth.

Our accounting framework requires readily available production account data, a

measure of the fraction of tasks automated in each sector, and an assumption on the

pattern of automation. We obtain standard measures of output, TFP, and factor shares

from the BEA, BLS, and the Department of Agriculture. We measure the fraction of tasks

automated in each sector at different points in time through ChatGPT queries. We place

no restriction on the level or growth of any of the productivity variables other than, on

the margin, expensive tasks with a high cost share are more likely to be automated than

inexpensive tasks.

With this accounting framework, we derive several results:

1. When the automation process is continuous, firms switch from using labor to

using capital to produce a task at exactly the point where the costs are equal. This

means that the switching process itself generates no productivity growth.

2. Instead, the key gain from automation is that it allows production of a task to shift

away from slowly-improving human labor to rapidly-improving machines.

3. Our historical analysis suggests that the sum of “other” TFP growth and the av-

erage rate at which people are getting more productive, Ẑt + ψ̂ℓt, is small or even

negative. In contrast, the excess rate at which machines are getting better, ψ̂kt −

ψ̂ℓt, is large. Across sectors and in the aggregate the gap in growth rates is at least

5 percentage points per year.

4. Finally, we calculate how much TFP growth would have been lost if the set of

tasks that are automated had been “frozen” at some point in the distant past, but

capital, labor, and other productivity growth occurred at their historical rates. For

the private business sector, if we fix the set of automated tasks to their 1950 values,

essentially all TFP growth between 1950 and 2023 would have been eliminated.

Automation is a key driver of long-run economic growth.
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Our accounting results highlight the importance of tasks being complements. Intu-

itively, our model features “weak links” and total output is constrained by the weakest

links. When we freeze the set of automated tasks we dramatically reduce TFP growth,

even though the already-automated tasks benefit from the rapid excess growth of cap-

ital productivity. Freezing the share of tasks that are automated, we do not switch to

making rapid progress on enough of our weak links. The remaining, slowly improving,

weak links hinder growth. Historically, long-run growth occurred because we found

ways to rapidly improve the productivity of machines and because we increased the set

of tasks that benefited from this rapid growth, strengthening more of our weak links.

The final part of the paper augments our historical accounting framework to en-

dogenize the automation process by incorporating the production of new ideas that

raise ψkit and ψℓit. This idea production function itself is a task model that benefits

from automation. We calibrate the model to our historical evidence and simulate the

model into the future to consider the possible consequences of continued automation

— including via A.I. — for economic growth. While the results of this simulation are

inherently speculative, they are at least grounded in evidence from historical automa-

tion.

Simulating the endogenous automation model forward in time we find:

1. Despite the stability of past economic growth, future growth accelerates for at

least the next 75 years as the automation process endogenously speeds up. Growth

rates rise to at least 5% per year in all the scenarios we consider. The calibrated

parameter values are such that the model exhibits dynamic increasing returns —

increasing returns beyond the knife-edge needed for fully endogenous growth —

once automation is taken into account.

2. The acceleration is surprisingly slow. Twenty years after the start of our baseline

simulation, output per person is higher than a constant growth path by only 4%.

Forty years into the future, output is higher by 19%.

3. We consider three different paths. One features a capital share that rises to 100%,

explosive growth, and infinite income in finite time. Another assumes that a small

set of tasks are never automated and always performed by labor; in this scenario,

the labor share of GDP rises to 100% and long run growth falls to the (slow) rate
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at which humans get better as these remaining weak links permanently constrain

output. The third case is in between and features a constant capital share. In all

three paths, output per person for the next 75 years looks remarkably similar.

4. We derive an expression for the dynamic degree of increasing returns that deter-

mines the condition for a growth explosion and the rate of acceleration of eco-

nomic growth. The degree of dynamic increasing returns is limited by the com-

plementarity of tasks. Weak links tame explosive growth.

How to read this paper. This paper is long. Sections 2 – 4 present the theory and

historical accounting to make the key point that automation contributes the majority

of past economic growth by letting us switch from slowly-improving labor to rapidly-

improving capital on an increasing number of tasks. Spend half your time on these

sections, and then spend the remainder of your time on Section 5. That section en-

dogenizes growth and automation — including of the idea production function — and

simulates the future consequences of A.I. for economic growth.

Related literature

This paper contributes to the literature on task-based models of economic growth be-

gun by Zeira (1998), Acemoglu and Restrepo (2018, 2020, 2022), and Hemous and Olsen

(2022) and to the research agenda on the economic impacts of A.I. outlined by Agrawal,

Gans, and Goldfarb (2019) and Brynjolfsson, Korinek, and Agrawal (2025).

Our paper builds on Aghion, Jones, and Jones (2019) and B. Jones and X. Liu (2024).

Aghion, Jones, and Jones (2019) use the task approach to study A.I. as automation. That

paper presents a model in which the productivity of capital and labor in performing

tasks is constant, and automation follows an exogenous law of motion. The paper em-

phasizes that bottlenecks may constrain the effects of automation on growth but notes

that explosive growth is possible if A.I. fully automates both goods and idea production.

B. Jones and X. Liu (2024) incorporate heterogeneous productivity improvements

in capital into the Aghion, Jones, and Jones (2019) framework. They showed that a

balanced growth path could emerge even when automation is far from complete be-

cause automation raises the capital share while “better machines” lower the capital

share. They go on to embed this setup in a fully endogenous growth model in which

4



automation is an endogenous outcome of innovation. Farboodi, Koh, and Xia (2025)

build on this work to study an endogenous automation process driven by data.

Trammell and Korinek (2020), Davidson (2021), Erdil and Besiroglu (2023), Aschen-

brenner (2024), Korinek and Suh (2024), Davidson, Halperin, Houlden, and Korinek

(2025), and Epoch AI (2025) all highlight the possibility of explosive economic growth

that results from A.I. automating goods and idea production. B. Jones (2025) suggests

that bottlenecks may constrain the growth impact of A.I. even when automating re-

search and development.

All of these papers discussed so far highlight theoretical possibilities. Our paper is

most clearly distinguished in using theory combined with industry-level data to mea-

sure automation and to quantify its consequences, both historically and in the future.

Young (2025) estimates a nested CES production function with capital, labor, and

intermediates. He finds an elasticity of substitution between capital and labor of around

0.4–0.5. Young (2025) then finds intriguing evidence that capital-augmenting technical

change is negative and suggests that a task-based model of technical change could

drive this empirical finding. We confirm this result, but in value added terms. Our

main contribution starts from this interesting fact and performs structural growth ac-

counting to understand the nature of automation.

Although not the focus of their paper, B. Jones and X. Liu (2024) provide a time series

for the fraction of tasks that have been automated and for average task-specific capital

productivity; for manufacturing, they find that this latter series is roughly stationary

and shows little growth since 1960. They back these out from industry-level data un-

der the assumption that these are the only sources of productivity growth. Building

on B. Jones and X. Liu (2024), Caunedo and Keller (2024) quantify the role of capital-

embodied technical change for structural transformation. B. Jones and X. Liu (2024)

allow capital productivity to vary across tasks but treat labor productivity as homoge-

neous and constant. Caunedo and Keller (2024) allow labor productivity to vary across

tasks but treat capital productivity as homogeneous. This allows Cuanedo and Keller

to measure improvements to capital using the relative price of investment. Their main

finding is that CETC is the main driver of the reallocation of labor out of agriculture and

accounts for one third of the reallocation of labor into services.

Instead, we seek to answer the question how much of past economic growth was
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due to automation while allowing for a rich set of sources of productivity growth. We

allow both capital productivity and labor productivity to vary across tasks and over time

arbitrarily. In addition, we allow for factor neutral productivity improvements. While

our model is richer, identification requires more data and some alternative assump-

tions about patterns of automation. The payoff is that we provide a detailed accounting

of the sources of TFP growth.

In terms of other papers that attempt to quantify the growth impacts of automation

and A.I., Acemoglu (2024) suggests that the macroeconomic impacts of A.I. may be very

modest in the next decade, raising TFP growth by less than 0.1pp per year. Aghion and

Bunel (2024) respond by questioning some of the empirical choices made by Acemoglu

and calculate a larger impact over the next decade, raising TFP growth by 0.7pp per

year.

2. Framework

Consider the following economic environment, which we typically think of as describ-

ing a sector like agriculture or motor vehicles:

Yt = Zt

(∫ 1

0
αiY

σ−1

σ

it di

) σ
σ−1

where σ < 1 (1)

Yit = ψ̃kitKit + ψ̃ℓitLit (2)

Kt =

∫ 1

0
Kit di (3)

Lt =

∫ 1

0
Lit di (4)

where all parameters are positive.

A unit measure of complementary tasks are used to produce output. The heteroge-

neous share parameters αi capture the fact that some tasks are more important than

others. One unit of capital can produce ψ̃kit units of task i, while one unit of labor can

produce ψ̃ℓit units of the task. We define ψkit = α
σ

σ−1

i ψ̃kit and ψℓit = α
σ

σ−1

i ψ̃ℓit.

Our setup therefore permits three different types of productivity improvements:

higher ψkit, higher ψℓit, and higher Zt. We refer to Zt as “other productivity.” It can
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capture quality improvements in the sector, but it is also possible that new varieties or

increased misallocation could impact Zt.

2.1 Discussion of the Economic Environment

Complementarity and substitution. We set σ < 1 so that tasks are complements

in production. This restriction is important and we discuss supporting evidence at

the end of this section. Notice that the model features both complementarity and

substitution. The complementarity arises from σ < 1 while the substitution arises from

task production Yit = ψ̃kitKit + ψ̃ℓitLit. The interplay between complementarity and

substitution is what allows a simple framework to give rise to a rich set of outcomes.

It contrasts with the either/or aspect of the more traditional CES models such as Y =

F (BK,AL) which permits only complementarity or substitution rather than allowing

both.1

Weak links. With σ < 1, tasks are “weak links” in the sense of Kremer (1993) and Jones

(2011). Every task is essential to production and having infinite output of any task or

even any measure of tasks below 100% still only leads to finite production. Total output

can be no larger than the output of the weakest link — the task with the lowest output.2

Aghion, Jones, and Jones (2019) referred to this feature as “bottlenecks,” but we find the

“weak links” interpretation to be more appropriate. Many of the most important con-

ceptual insights of the paper are a direct result of the weak links production structure.

New tasks? Our model features a fixed measure of tasks, but we now have tasks such

as “repair the computer” or “enter data into a spreadsheet” that did not always exist.

In a world of substitutes, it is easy to see how adding new tasks could increase output.

Indeed, that is essentially the mechanism underlying the Romer (1990) growth model.

However, in our world of complements, adding new tasks could easily reduce output—

production involves weak links rather than love-of-variety. Our approach in this paper

to incorporating new methods of production is to add “new procedures” to our current

setup. With a fixed unit measure of tasks, each task must be something that has always

1Nested CES specifications can also feature this richness as, e.g., Krusell, Ohanian, Rı́os-Rull, and
Violante (2000) utilized.

2Strictly speaking, this requires a discrete number of tasks rather than the continuum.
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been done. In agriculture, this might be “till the soil” or “plant the seed.” Over time,

we invent new procedures for performing these tasks. For example, in the distant past

we tilled the soil with manual labor, then with an ox and a plow, and now with a fancy

GPS-enabled tractor.

Allow each task to be produced by a bunch of different procedures: Yit = ψ̃1
kitK

1
it +

· · · + ψ̃Nkt

kit K
Nkt

it + ψ̃1
ℓitL

1
it + · · · + ψ̃Nℓt

ℓit L
Nℓt

it . Adding new procedures is then isomorphic

to increasing ψ̃kit or ψ̃ℓit in the baseline model — you only use the procedure that

produces a task with the lowest cost.

We also explored adding another CES layer with love-of-variety above our current

task CES. Then new varieties of goods could be invented and production of those new

varieties could require tasks that did not previously exist. This approach complicates

the model substantially while delivering many of the same predictions as our current

setup. This would be a useful direction to explore in future research. The new proce-

dures approach yields a substantially simpler model, so we use that in this paper.

2.2 Allocating Inputs to Tasks

Resources are allocated via a competitive equilibrium. A representative firm chooses

how to allocate a given amount of capital and labor across tasks in order to maximize

profits, taking output and factor prices as given:

max
{Kit,Lit}

PtYt − wt

∫ 1

0
Lit di− rt

∫ 1

0
Kit di (5)

subject to (1), (2), (3), and (4).

It is optimal to use capital to produce task i whenever

ψkit
rt

≥
ψℓit
wt

(6)

and to use labor when the inequality goes the other way. We therefore define the set of

tasks using capital and labor as

Ωkt = {i ∈ [0, 1] | ψkit/ψℓit ≥ rt/wt}

Ωlt = {i ∈ [0, 1] | ψkit/ψℓit < rt/wt}
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Figure 1: Automation and Comparative Advantage: Examples
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(a) Single automation point
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(b) Multiple automation points

Notice that any task β that is just at the margin of being automated — that is, a task at

the boundary of the two sets — satisfies the automation condition

ψkβt
ψℓβt

=
rt
wt
. (7)

Single versus multiple points of automation. We assume that at any point in time,

there are a finite number of such indifference points. In that case, Ωkt consists of the

union of a finite number of subintervals of [0, 1]. Let βt denote the measure of tasks

that are produced with capital — the measure of Ωkt — and 1− βt denote the measure

of tasks that are produced with labor. In the special case in which ψkit

rt
= ψℓit

wt
occurs

for only a single task, βt is the task where the crossing occurs and capital is used on

the interval [0, βt] while labor is used on [βt, 1]. See the left panel of Figure 1. This is a

canonical example that is helpful to keep in mind in understanding the model.

We also allow for the more general case in which there are multiple points of au-

tomation as in the right panel of Figure 1. Let Mt denote the number of points of

automation and call those marginal tasks βmt for m = 1, . . . ,Mt.

For convenience, we make an assumption that will hold throughout the paper:

Assumption 1: Technological change is such that there is only automation and no

“de-automation.”
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This assumption states that once tasks transition from being produced with labor to

being produced with capital, they never switch back. Particularly since our empirical

work is based on time periods of a decade or longer, this strikes us as a plausible as-

sumption worth the simplification in notation and improved expositional clarity.

2.3 Production Function CES Representation

The task-basked production function can be represented as a standard CES-like pro-

duction function, which provides a link between our growth accounting framework and

traditional measures.

Proposition 1 (Reduced-form production function). In equilibrium, output Yt can

be represented as a familiar CES-like production function:

Yt = F (BtKt, AtLt)

=
(

(BtKt)
σ−1

σ + (AtLt)
σ−1

σ

) σ
σ−1

where

Bt = Zt

(∫

Ωkt

ψσ−1
kit di

) 1

σ−1

and ψkit = α
σ

σ−1

i ψ̃kit

At = Zt

(∫

Ωℓt

ψσ−1
ℓit di

) 1

σ−1

and ψℓit = α
σ

σ−1

i ψ̃ℓit.

Factor shares are

sKt ≡
rtKt

PtYt
=

(
BtKt

Yt

)σ−1

σ

and sKit ≡
rtKit

PtYt
=

(
ψkitZtKit

Yt

)σ−1

σ

sLt ≡
wtLt
PtYt

=

(
AtLt
Yt

)σ−1

σ

and sLit ≡
wtLit
PtYt

=

(
ψℓitZtLit

Yt

)σ−1

σ

According to Proposition 1, our task-based approach has a reduced-form CES-like

representation with capital-augmenting productivity Bt and labor-augmenting pro-

ductivity At, where the heterogeneous share parameters, αi, are folded into the pro-

ductivity parameters. The endogenous automation share βt enters both Bt and At.

Since βt changes whenever wt/rt changes, At and Bt change as well; in other words,

the elasticity of substitution between capital and labor is no longer given by σ when
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automation is allowed to adjust. Still, the representation remains useful since At, Bt,

and βt do not depend onKt andLt, so the standard CES factor share formulas are valid.

Are computers an At or a Bt? A question that has long been puzzling in the growth

literature is how to interpret At and Bt. For example, there is a long tradition of speci-

fying a CES production function like that in Proposition 1 as the primitive and thinking

about capital-augmenting versus labor-augmenting technical change. But this leads to

obvious questions that do not have obvious answers. For example, is a better computer

an increase in At or Bt? Is it like having twice as many old computers (↑Bt) or does

it effectively increase the user’s time endowment (↑At)? Much of the literature has

answered this question by saying that better computers and information technology

show up as investment-specific technological change — the same as an increase in Bt

for our purposes.3 This literature uses hedonics and sharply-declining information

technology prices to measure changes in Bt — examples include Greenwood, Her-

cowitz, and Krusell (1997), Herrendorf, Rogerson, and Valentinyi (2020), and Caunedo,

Jaume, and Keller (2023). But it is not obvious that this is the right thing to do.

An advantage of the task model is that it provides a framework in which the answer

to this question is clear: better computers are an increase in ψkit for the tasks that have

been automated using computers. For tasks that are performed purely with labor, a

computer does not make labor better at that task. Of course because those tasks are

complementary with other tasks that use a computer, a worker’s productivity and wage

can rise with automation. But here, a better computer is clearly an increase inψkit. This

insight will be useful in interpreting the results from our applications.

2.3.1 Growth rates ofBt andAt

Our main growth accounting exercise is in terms of growth in primitives ψkit, ψℓit, and

Z. First, we find it instructive to perform growth accounting in the more standard

3There is, of course, a difference between capital-augmenting technical change and investment-
specific technical change. The latter only affects new capital while the former affects all capital. However,
this distinction is not important for the points made here.
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F (BK,AL) representation. Recall that

Bt = Zt

(∫

Ωkt

ψσ−1
kit di

) 1

σ−1

Taking the time derivative of Bt and expressing everything in terms of growth rates

(X̂t ≡ Ẋt/Xt) leads to our next result.

Proposition 2 (Growth ofBt andAt). Under the “no de-automation” Assumption 1,

B̂t = Ẑt + ψ̂kt −
1

1− σ
ω̄kβtβ̇t where ψ̂kt ≡

∫

Ωkt

ψ̂kitωkit di (8)

Ât = Ẑt + ψ̂ℓt +
1

1− σ
ω̄ℓβtβ̇t where ψ̂ℓt ≡

∫

Ωℓt

ψ̂ℓitωℓit di (9)

where ωℓit is task i’s labor cost share, ωkit is task i’s capital cost share, ω̄kβt is the

share of capital costs for the tasks that are being automated, ω̄ℓβt is the share of

labor costs for the tasks that are being automated, and β̇t is the total flow of au-

tomation that occurs across the different automation points.

Proof. See Appendix B.

The growth rate of Bt is the sum of three terms. First is the general TFP growth via

Ẑt. Second is ψ̂kt, which is a weighted average of the growth rates of ψkit on the already

automated tasks, capturing the gains from better computers, machine tools, software,

etc. The importance of each task is given by the weight in the average, which is its cost

share. The third and final term is the automation effect associated with an increase in

the fraction of tasks that have been automated, βt. This third term is negative because

of a “capital depletion” effect: spreading a given amount of capital over a larger number

of tasks reduces capital per task and shows up as a decrease in productivity when σ < 1

(Aghion et al., 2019). For intuition from a simple model see Appendix B.3 for the special

case with homogeneous productivities.

The same logic applies to At. There are again three terms, capturing general TFP

growth (Ẑt), average productivity improvements within the tasks that use labor (ψ̂ℓt),

and an automation effect. In this case, the automation effect is positive. Mathemati-

cally, the share of tasks using labor is 1−βt, which leads to the additional negative sign.

Economically, a given amount of labor is being concentrated onto fewer tasks, so labor
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per task rises. Because the tasks are complements instead of substitutes, more labor

per task raises productivity.

2.3.2 Total Factor Productivity Growth

To see the overall growth consequences, we now turn to the growth rate of total factor

productivity. The standard Solow approach implies

Ŷt = sKt

(

B̂t + K̂t

)

+ sLt

(

Ât + L̂t

)

.

Rearranging this expression leads to TFP growth:

Ŷt − sKtK̂t − sLtL̂t
︸ ︷︷ ︸

T̂FP t

= sKtB̂t + sLtÂt. (10)

TFP growth is the weighted average of growth in Bt and At where the weights are the

production elasticities (which equal the factor shares).

2.4 Data and Empirics

Our baseline data source is the BEA/BLS Integrated Industry-level Production Account

(KLEMS) that covers around 60 sectors of the U.S. economy from 1987 to 2021. For the

aggregate economy, we use the private business sector multifactor productivity data

from 1950 to 2023 from U.S. Bureau of Labor Statistics (2025). For agriculture, our data

are from the U.S. Department of Agriculture for 1950 to 2021 (Wang et al., 2024) . Table 1

lists the sources of the data for the various sectors.

The elasticity of substitution, σ. The elasticity of substitution, σ, is a key parameter

of the model. For our baseline calculation, we assume a value of σ = 0.5 (and explore

robustness to this choice). This is a common choice in the task literature; for example,

used by Acemoglu and Restrepo (2022). But two further comments are also warranted.

First, as discussed above surrounding our near-CES representation result in Propo-

sition 1, σwould be the elasticity of subtitution between capital and labor in our reduced-

form representation if the automation set were held fixed. Allowing the automation set

to change means that the elasticity of substitution between capital and labor is greater
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Table 1: Data and Sources

NAICS

Short name code Sector full name Years

Private business — Private business sector 1950–2023

Agriculture — Agriculture 1950–2021

Computers 334 Computer and electronic products 1987–2017

Motor vehicles 3361–63 Motor vehicles, bodies and trailers, and parts 1987–2017

Retail trade 44–45 Retail trade 1987–2017

Software 511, 516 Publishing industries (includes software) 1987–2017

than σ. A large literature estimating the elasticity of substitution between capital and la-

bor almost invariably finds values less than one. Surveys of the literature, e.g. Gecherta

et al. (2022), typically find median estimates around 0.5. Recent papers support this

view. Oberfield and Raval (2021) estimates values between 0.5 and 0.7, while Young

(2025) finds estimates of around 0.4-0.5. This evidence suggests that the appropriate

value for our σ is 0.5 or lower.

Second, it is useful to consider the following question: We know that the share of

factor income paid to capital has risen in recent years. What has happened to the share

of factor income paid to computers? On the one hand, computers are everywhere. The

number of transistors on a computer chip today is 50 million times more than it was

in the 1970s. On the other hand, the price of compute has plummeted, suggesting that

the marginal product of computing power has as well. Which effect dominates?

Figure 2 shows the answer. During the dot-com era of the late 1990s, the factor

share of income for computers rose from around 3.7 percent to 4.3 percent. But since

2000, the share has fallen substantially to 3.0 percent. In other words, even though

the amount of computing power has exploded, we pay less of our GDP as a return to

computers today than in the past. This is exactly what a production function with an

elasticity of substitution less than one would predict. And this fact may itself be very

informative about the effects of future A.I.-driven automation on the economy.
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Figure 2: The Share of Factor Income Paid to Computers
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Note: The factor income share of information technology in the private business sector has
declined over the past 25 years. Source: Bureau of Labor Statistics (2024).

Measurement. We identify and measure the key variables as follows. First, our data

sources provide us with a measure of total factor productivity growth, labor productiv-

ity, and the share of factor payments to capital and labor.

Second, we assume there is perfect competition in markets so that the production

function elasticities are equal to the shares of factor payments. With our reduced-form

CES production function, this means that

sLt ≡
wtLt
PtYt

=
∂ log Yt
∂ logLt

=

(
AtLt
Yt

)σ−1

σ

(11)

We therefore recover At from data as

At = s
σ

σ−1

Lt ·
Yt
Lt

(12)

In other words, At is just labor productivity adjusted by the labor share. Then we

recover the growth rate of Bt so that the TFP growth accounting equation (10) holds

exactly. We emphasize this point so that it is transparent that the calculation of the

factor augmenting growth rates of At and Bt is straightforward.

15



Table 2: TFP Growth: Basic Data

Growth Growth Factor share Factor share

Sector TFP growth in Bt in At of capital of labor

Private business 1.2 -1.2 2.4 0.35 0.65

Agriculture 3.3 2.4 4.6 0.57 0.43

Computers 12.8 8.6 15.6 0.41 0.59

Motor vehicles 1.7 -0.8 3.5 0.43 0.57

Retail trade 1.7 -2.9 2.8 0.20 0.80

Software 1.8 -1.4 4.8 0.47 0.53

Note: Growth rates are average annual log changes. Agriculture and the private business sector start in
1950. For the other sectors, the data cover 1987 to 2017. Factor shares are averages over the entire period.

Growth in TFP, At, and Bt. Table 2 shows the growth in total factor productivity, At,

and Bt for the various sectors as well as the average factor shares.

The first row shows the data for the “aggregate” sector, corresponding to the private

business sector in the BLS multifactor productivity data. TFP growth between 1950

and 2023 averaged 1.2% per year. The capital share averaged 0.35 and the labor share

averaged 0.65.

More interesting is the breakdown into growth in At versus Bt. For the private

business sector, the growth rate of labor augmenting productivityAt was 2.4% per year,

a conventional number. However, the growth rate of Bt, the capital augmenting com-

ponent, was -1.2% per year, a number that may initially seem surprising. But it is not.

Essentially, it comes from the calculation that 1.2 = .35 · (−1.2) + .65 · 2.4. And notice

that to the extent that factor shares are stable, this calculation would be invariant to the

elasticity of substitution, σ.

Looking at the sectoral data in Table 2, several results are worth noting. First, TFP

growth ranges from a low of 1.7% per year in motor vehicles and retail trade to a high

of 12.8% per year in the computer sector. Second, the growth rate of At is always

substantially higher than TFP growth, which means that the growth rate of Bt will be

lower. For agriculture and computers, the growth rate of Bt is positive, while for the

other sectors the growth rate ofBt is negative, as it was for the aggregate. Finally, factor
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shares vary substantially across sectors.

Young (2025) first provided detailed empirical evidence for negative growth in Bt

and positive growth in At using gross output KLEMS data for the United States. Our

evidence confirms his result for value-added based TFP measures.

The model developed so far — especially Proposition 2 — helps us make sense of

the negative growth in Bt that we often observe. As in Aghion, Jones, and Jones (2019),

automation is simultaneously labor augmenting (↑At) and capital depleting (↓Bt). De-

clining Bt can be a sign of automation: average capital per automated task declines,

which reduces “effective capital” and therefore reduces Bt. The positive growth in Bt

for agriculture and computers can be explained by the neutral productivity term Zt —

positive growth inZt will increase both B̂t and Ât — or by rapidψkt growth and a modest

increase in the share of tasks that are automated.

3. Automation Growth Accounting: Theory and Evidence

We now use the structure of the model to uncover the consequences of automation for

total factor productivity growth, both in the theory and in the data.

Combining equation (10) with equations (8) and (9) yields our main decomposition:

T̂FP t = Ẑt + sKtψ̂kt

Better

capital

+ sLtψ̂ℓt

Better

labor

+
β̇t

1− σ
(sLtω̄ℓβt − sKtω̄kβt)

Automation effect

(13)

Total factor productivity growth can be decomposed into four terms: “other” pro-

ductivity growth Ẑt, improvements in the productivity of capital ψ̂kt, improvements in

the productivity of labor ψ̂ℓt, and the overall effect of automation (the sum of the two

automation terms). Each term is weighted by its cost share.

The automation term. We now show that when automation is smooth, the automa-

tion effect in the TFP decomposition is zero. Automation is smooth when the time

derivatives ψ̇kit, ψ̇ℓit, ṙt, and ẇt exist, which ensures the automation indifference condi-

tion (7) holds at all points of automation. In particular, use the definition of the weights

in Proposition 2 to notice that at any point of automation, β, the automation effect term
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depends on

sLtωℓβt − sKtωkβt =
wtLt
PtYt

·
wtLβt
wtLt

−
rtKt

PtYt
·
rtKβt

rtKt
(14)

=
wtLβt
PtYt

−
rtKβt

PtYt
(15)

That is, the automation term depends on the cost of doing the marginally-automated

task with labor versus the cost of doing it with capital. But at the margin, these costs

must be the same, so this difference is zero. This is true at any point of automation and

so it is also true for the sum over all the points. Hence, the overall automation effect

term is zero as well.

We therefore have the following useful result:

Proposition 3 (Zero TFP growth from smooth automation). When the marginal

task that is automated satisfies the indifference condition (7), the automation effect

in the TFP decomposition in equation (13) is zero. Therefore, TFP growth equals

T̂FP t = sKtB̂t + sLtÂt

= sKtψ̂kt

Capital

productivity

+ sLtψ̂ℓt

Labor

productivity

+ Ẑt

Other TFP

growth

(16)

Discussion. This proposition states that the contribution of automation to TFP growth

is zero. What is going on? To understand, notice that the ψkit and ψℓit are the funda-

mental primitives of the problem and βt is an endogenous variable. As the ψ’s change,

tasks get automated. When automation is continuous, there will be marginal tasks for

which it is equally costly to use capital or labor. This is the indifference condition in (7)

that implicitly pins down βt. But that means that whenever automation occurs, this

indifference condition is satisfied, and therefore each instant of automation cannot

lead to TFP growth.

Instead, the proposition states that, apart from other sources in Ẑt, TFP growth is

simply the weighted average of productivity improvements on the capital tasks and the

labor tasks. It is entirely the “within” terms and there is no composition effect. The

weights, in turn, are the standard factor cost shares, sKt and sLt.
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So one of our key answers to the question “How much of growth is due to automa-

tion?” is zero! We will provide alternative definitions of automation below that lead to

different answers, but this result makes clear that the answer depends on what precisely

we mean by automation.

There is a parallel here between the firm dynamics literature and the contribution of

new entrants to growth. How much of growth is due to the entry of firms that turn out

to be superstars, such as Apple or Google? Well, the answer depends on how much of

these firms subsequent growth is attributed to entry. For example, if all new firms since

the year 1900 are counted as entrants, then entry accounts for nearly 100% of growth.

On the other hand, if the growth of new entrants is counted only during the first year

(and after that Apple and Google are treated as “incumbents”), then very little growth is

due to new entry. The issue is similar here: how much of the subsequent growth from

better computers gets included in the automation term? If none, then the contribution

of automation is zero. But in this alternative decomposition, the length of a period

determines how much of the “better computers” gets attributed to automation. In

empirical case studies that compare a treatment firm that automated to a control firm

that did not automate, the measured effect of automation reflects the improvements

in the productivity of capital since the point of automation (plus the initial jump in

productivity if automation is not smooth). We provide an alternative measurement of

the effect of automation on growth drawing on this perspective in Section 4.

3.1 The Effect of Automation on TFP Growth

Given that the automation “composition effect” is zero, it is helpful to consider what

else in our environment might be related to automation and contribute to TFP growth.

To see our next important result, it is helpful to substitute sLt = 1 − sKt into the TFP

decomposition in Proposition 3 to get

T̂FP t = Ẑt + ψ̂ℓt

Baseline

TFP growth

+ sKt (ψ̂kt − ψ̂ℓt)

Automation effect:

boost from machines

getting better

(17)
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Equation (17) is one of the key equations of the paper. TFP growth is the sum of

two terms. The first reflects baseline TFP growth from “other” sources (Ẑt) and the

minimum improvement on all tasks from people getting better (ψ̂ℓt). The second term

is the additional boost that comes from automation: machines may get better at a faster

rate than humans, boosting TFP growth by ψ̂kt − ψ̂ℓt. But this boost only applies to a

fraction of the tasks. Intuitively, the proper way to measure this fraction is by the cost

share of tasks using capital — the factor income share sKt.

3.2 Identification

To implement equation (17) empirically, we need to identify the terms on the right-

hand side. From the previous section, we have measures of TFP growth, Ât, B̂t, and

factor income shares. We now explain how we identify the remaining variables.

Step 1. First, recall equation (9):

Ât = Ẑt + ψ̂ℓt +
1

1− σ
ω̄ℓβtβ̇t (18)

Consider the ω̄ℓβt part of the equation. From equation (32), ωℓβt =
Lβt

Lt
. That is, the

weight for a particular task is just the fraction of labor used in the newly-automated

tasks. Then, ω̄ℓβt is a weighted average of the ω’s at the points of automation (from

equation 34). That is,

ω̄ℓβt =
Lβ̄t
Lt

whereLβ̄t is a weighted average of the labor used in the tasks that are being automated.4

Step 2. Next, labor is used on the share 1 − βt of the tasks, so the average amount of

labor used per task is Lt/(1− βt). This leads to our second assumption:

Assumption 2: Lβ̄t ≥
Lt

1−βt

This assumption says that the marginal tasks that are automated on average use at least

as much labor as the average of the tasks that are not yet automated. This assumption

4In particular, Lβ̄t =
∑Mt

m=1
Lβmt

|β̇mt|

β̇t
.
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is important and it merits discussion. For the moment, let’s accept it and derive its

consequences. After stating our identification result, we will discuss the assumption in

detail.

Assumption 2 implies that ω̄ℓβt ≥
1

1−βt
. Substituting this into equation (18) gives

Ât = Ẑt + ψ̂ℓt +
1

1− σ
ω̄ℓβtβ̇t

≥ Ẑt + ψ̂ℓt +
1

1− σ

β̇t
1− βt

(19)

Step 3. Now consider the last term in the preceding equation and make the following

notational definition:

Definition 1: The automation rate is defined as

xt ≡
β̇t

1− βt
= −

d log(1− βt)

dt
(20)

The variable xt has an elegant economic interpretation as the rate of automation. No-

tice that β̇t = xt(1 − βt). That is, xt is the fraction of the labor tasks that get automated

in period t.

Substituting this definition into equation (19) and rearranging, we get

Ât −
1

1− σ
xt ≥ Ẑt + ψ̂ℓt (21)

This equation is important in that — provided we can construct an empirical measure

of the automation rate xt — it gives an upperbound on the baseline term in TFP growth

from equation (17).

Step 4. Finally, substituting this expression back into that TFP growth equation (17)

allows us to obtain a lower bound on ψ̂kt − ψ̂ℓt.

Our next proposition collects two important bounds on the terms that make up TFP

growth in equation (17):
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Proposition 4 (Identifying key bounds on ψ̂kt and ψ̂ℓt). Provided we can measure

the automation rate xt,

Ât −
1

1− σ
xt ≥ Ẑt + ψ̂ℓt

is an upper bound on the baseline component of TFP growth in equation (17) and

ψ̂kt − ψ̂ℓt ≥
1

sKt

(

T̂FP t −

[

Ât −
1

1− σ
xt

])

is a lower bound on the automation boost associated with the average rate at which

machines are getting better.

The intuition for how the proposition works can be seen most easily by considering

the homogeneous case in which ψℓit = ψℓt:

Ahomogt =

(
1

1− βt

) 1

1−σ

Ztψℓt

The
(

1
1−βt

) 1

1−σ
term appears as a given amount of labor gets spread over 1 − βt tasks:

concentrating labor on a smaller range of tasks raises labor per task, increasing labor

productivity – the opposite of the “love of variety” effect since σ < 1. Taking logs and

derivatives of this equation we see that

Âhomogt −
1

1− σ
xt = Ẑt + ψ̂ℓt

In Proposition 4, we get a very similar relationship in the heterogeneous ψℓit case but

as an inequality. Substituting this inequality into the TFP growth equation allows us to

get a lower bound on ψ̂kt − ψ̂ℓt.

This discussion justifies the following additional result:

Corollary — In the special case in whichψℓit = ψℓt — i.e., in the case in which

the labor productivity terms are homogeneous while heterogeneity occurs

in the ψkit only — the inequalities in Proposition 4 become equalities.

Most of the remainder of the paper is devoted to applying these results empirically.

But first we need to discuss why Assumption 2 is a reasonable assumption.
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Figure 3: Moravec’s Paradox
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(b) Comparative advantage

Note: Tasks that are hard for humans tend to be easy for machines and tasks that are easy for humans tend
to be hard for machines. Comparative advantage is also therefore negatively related to ψℓ.

3.3 Discussion of Assumption 2

Assumption 2 requires that among the tasks that we have not yet automated, we first

automate the tasks that have high labor costs, at least on average.

This assumption turns out to be a natural consequence of what is known as Moravec’s

Paradox: tasks that are hard for humans tend to be easy for machines and tasks that

are easy for humans tend to be hard for machines (Moravec, 1988). Evolution opti-

mized walking, dexterity, and vision in humans over millions of years, so it is hard for

machines to do better, while evolution did not optimize for playing chess or solving

complex math problems. Figure 3a illustrates this stylized fact by showing a negative

relationship between ψkit and ψℓit.

Because automation is about comparative advantage, it is helpful to make the same

plot but with ψki/ψℓi on the vertical axis. Notice that a negative relationship in Fig-

ure 3a implies the negative relationship in Figure 3b: dividing by ψℓ only reinforces the

negative relationship.

In the case in which there is only a single automation point, Assumption 2 states
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that

ωℓβt ≡
ψσ−1
ℓit

∫

Ωℓt
ψσ−1
ℓit di

=
Lβt
Lt

≥
1

1− βt

With σ < 1, this is a natural consequence of Moravec’s Paradox. The marginal task that

is automated has the lowest ψℓi and therefore the highest ψσ−1
ℓi .

One final point of clarification relates to another difference between comparative

and absolute advantage. In our initial setup (e.g., see Proposition 1), ψℓit = α
σ

σ−1

i ψ̃ℓit

where the αi is a common share parameter on task i regardless of whether or not it

is performed by humans or machines whereas the ˜ variables are the input-specific

productivity terms.

The discussion so far implicitly assumed that αi = 1 for all tasks. To generalize to

the case in which these share parameters are present, notice two things. First, because

the share parameters enter both ψk and ψℓ, they do not affect comparative advantage:

ψki

ψℓi
= ψ̃ki

ψ̃ℓi
. But the share parameters do affect absolute advantage: ψℓit = α

σ
σ−1

i ψ̃ℓit.

A natural assumption is that αi is uncorrelated with ψ̃ℓit. In that case, the presence

of the share parameters simply causes the curve in Figure 3b to “flatten,” making the

inequality in Assumption 2 less tight (closer to equality).

The bottom line is that Moravec’s Paradox suggests that Assumption 2 is a reason-

able assumption. Importantly, this is also an assumption that future empirical work

can seek to measure and test.

3.4 Measuring βt

Almost all of the terms in Proposition 4 can be measured with our BEA/BLS data. The

exception is the share of tasks that have been automated, βt, and in particular, the

automation rate xt ≡
β̇t

1−βt
.

This brings us to a crucial part of our analysis: how we measure the share of tasks

that have been automated at each point in time. We considered hiring a team of RA’s to

scour the voluminous literature for each of our sectors to construct this measure. How-

ever, this would have been a major undertaking and we would have had to iteratively

develop a detailed rubric to keep the RA’s methods uniform across people, time, and

tasks. It then occurred to us that this is a perfect task for OpenAI’s Deep Research state-
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Figure 4: Share of Tasks that are Automated, βt
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Note: See Appendix A for the details of how we measure βt.

of-the-art LLM. The instructions we used for this task are reported in Appendix A.5

Figure 4 show the data on the share of tasks that are automated, βt, by sector and

over time. There is substantial heterogeneity, both across sectors and over time. For

example, in recent years, retail trade has the lowest share of tasks that have been auto-

mated — around 50% — whereas computers/electronics has the highest share — more

than 85%. In contrast, in 1950, less than half of tasks in agriculture were automated and

only around 1/3 of tasks in the private business sector were automated.

Finally, Figure 5 shows the automation rate. Recall that xt ≡
β̇t

1−βt
, so the automation

rate measures the fraction of tasks performed by labor that get automated during a

particular period of time. Automation rates for the private business sector and for

agriculture are relatively stable over time since 1950 and equal to around 2% per year,

having slowed slightly since 2000. For the BEA/BLS sectors, automation rates range

from a low of under 1% for retail trade to a high of more than 4% for software and

5In the future, we will refine these instructions and repeat the exercise many times to ensure consis-
tency and create bootstrap standard errors. Also, recall that in equation (1), there are share parameters (αi)
that govern the importance of each task. Some tasks can be very important while others can be relatively
minor. These share parameters get combined with the levels of the technology parameters (in ψkit and
ψℓit), so in constructing the fraction of tasks that are automated, our model implies we should focus on an
equally-weighted average of tasks; we do not need to adjust here for how important each task is.
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Figure 5: Automation Rates, xt ≡
β̇t

1−βt
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Note: See Appendix A for the details of how we measure βt.

computers/electronics. Interestingly, software shows a substantial increase in the au-

tomation rate over time.

3.5 Empirics: The Contribution of ψ̂kt and ψ̂ℓt to TFP Growth

We can now turn to the empirical analysis of the contribution of ψ̂kt and ψ̂ℓt to TFP

growth using Proposition 4. In particular, that proposition derives an upper bound on

Ẑt + ψ̂ℓt and a lower bound on ψ̂kt − ψ̂ℓt. Now that we’ve measured the automation rate

xt, we can calculate these bounds.

Table 3 shows the empirical implementation of these two key bounds. The left side

of the table begins by calculating the upper bound on Ẑt+ ψ̂ℓt given by Ât−
1

1−σxt. The

striking finding here is that the upper bound on Ẑt + ψ̂ℓt is negative for 5 out of 7 of

our sectors for our benchmark case of σ = 0.5. For example, for the private business

sector, the upper bound is -0.9% per year. The implication is that for much of the

economy, the rate at which people are getting better is small unless other TFP growth,

Ẑt, is substantially negative. It is possible that humans are getting worse at tasks so

that ψ̂ℓt is negative and this could be offsetting some growth in Zt. Alternatively, a rise
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Table 3: Bounds on Ẑt + ψ̂ℓt and ψ̂kt − ψ̂ℓt

Growth Automation Upperbound TFP Capital Lowerbound

Sector rate of At rate, xt on Ẑt + ψ̂ℓt Growth share, sKt on ψ̂kt − ψ̂ℓt

Private business 2.4 1.7 -0.9 1.2 0.35 6.2

Agriculture 4.6 2.0 0.6 3.3 0.57 4.9

Computers 15.6 4.2 7.1 12.8 0.41 14.1

Motor vehicles 3.5 2.4 -1.2 1.7 0.43 7.2

Retail trade 2.8 1.6 -0.5 1.7 0.20 12.1

Software 4.8 3.2 -1.7 1.8 0.47 7.3

Note: See Proposition 4 for the equations describing the bounds.

in misallocation could make Ẑt negative. Either way, it is noteworthy that these two

sources of growth combine to contribute little to TFP growth.

The right side of the Table 3 calculates the lower bound on ψ̂kt − ψ̂ℓt as in Proposi-

tion 4, basically by subtracting the upper bound on Ẑt + ψ̂ℓt from the TFP growth rate

and scaling by the capital share. The key finding is that the lower bound on ψ̂kt − ψ̂ℓt

is large. For the private business sector, the rate is 6.2% per year, and the lower bound

is at least 4.9% per year across all sectors. In other words, the average rate at which

machines are getting better across automated tasks is substantially higher than task-

specific labor productivity growth. Machines get better much faster than people do.

These two finding are of course related. The fact that the Ẑt+ ψ̂ℓt is a small number,

possibly even negative, means that the ψ̂kt − ψ̂ℓt term must explain the bulk of TFP

growth.

4. Counterfactual: Freezing automation in the initial year

In this section, we consider a counterfactual in which automation is “frozen” in place in

some early year. That is, the set of tasks that are automated is fixed after some point in

time: Ωkt = Ωk0. How much lower would TFP growth have been in this counterfactual

world?
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4.1 Theory

To answer this question, recall our key equation for TFP growth:

T̂FP t = sKt(ψ̂kt − ψ̂ℓt) + Ẑt + ψ̂ℓt (22)

For the counterfactual, we need to make assumptions about what happens to ψ̂kt, ψ̂ℓt,

and Ẑt. We make a natural assumption:

Assumption 3 (Counterfactual growth rates): In the counterfactual world in which

automation is frozen in some early year (Ωkt = Ωk0), the average of the task-specific

growth rates ψ̂kt and ψ̂ℓt are unchanged, as is Ẑt.

In a structural model with endogenous technological change, this need not be the case:

research effort presumably shifts when tasks are automated. However, given that we are

using averages across a large number of tasks and given the difficulty of doing anything

else, this seems like a reasonable starting point.

Under this assumption, notice that equation (22) implies that the only way TFP

growth is altered in the counterfactual is because the factor share sKt changes. In

particular, comparing actual TFP growth to counterfactual TFP growth, T̂FP
cf

t , we

have

T̂FP t − T̂FP
cf

t =
(

sKt − scfKt

)

(ψ̂kt − ψ̂ℓt) (23)

So the key thing to understand is how the capital factor income share sKt changes

in the counterfactual. In our CES task setup, the capital share is given by

sKt
1− sKt

=

(
Bt
At

wt
rt

)σ−1

Intuitively, the idea behind the counterfactual is to freeze the set of tasks that are au-

tomated at the set that prevailed in 1950 or 1987. This will affect the time path of Bt

and At through their laws of motion, as in Proposition 2. In particular, β̇t > 0 lowers Bt

and raises At. So it lowers Bt/At in the actual data we observe, which will have raised

the capital share since σ < 1. In the counterfactual, we set β̇cft = 0 to shut down this

channel. This means the capital share in the counterfactual will decline over time: the
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“machines getting better” force lowers the capital share and we’ve turned off the “more

tasks get automated” force that historically raised the capital share.

The evolution of the capital share in the counterfactual is6

scfKt

1− scfKt
≤

sKt
1− sKt

exp

(

−

∫ t

0

1

sKτ
xτdτ

)

(24)

Intuitively, the counterfactual capital share will be lower than the actual capital share

to the extent that in the historical data there was automation — i.e., to the extent that xt

was positive. The counterfactual capital share starts with the actual capital share and

then “undoes” the contribution from automation.

Putting all this together, we have the following proposition:

Proposition 5 (Counterfactual contribution of automation). Under Assumptions 1

– 3, the lost TFP growth from “freezing” the set of automated tasks in some histori-

cal year satisfies

T̂FP t − T̂FP
cf

t =
(

sKt − scfKt

)

(ψ̂kt − ψ̂ℓt)

≥
(

sKt − upperbound on scfKt)
)

× lower bound on (ψ̂kt − ψ̂ℓt)

where the upper bound on scfKt is given by equation (24) and the lower bound on

ψ̂kt − ψ̂ℓt is given in Proposition 4.

4.2 Results: Freezing Automation Substantially Reduces Growth

To implement Proposition 5 empirically, we assume that automation is frozen in place

in the initial year for each sector (1950 for private business and agriculture; and 1987

for the other sectors). Table 4 shows the results.

The first two columns of the table show the actual and counterfactual capital shares

in the final year (e.g., 2017 or 2023). The actual capital shares are relatively high, rang-

ing from about 25% to 65%. The second column shows the capital share in the final

year under the assumption that automation has been frozen since 1950 or 1987. As

6The derivation of the result is shown in Appendix D. For the sectoral calculations, we assume rt/wt

follows an unchanged path since the sectors are small relative to the aggregate economy; for the private
business sector, we allow rt/wt to change endogenously, which changes the equation slightly.
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Table 4: Counterfactual Contribution of Automation

Capital share Lost Growth TFP Lost Growth

Sector sK,T scfK,T ψ̂kt − ψ̂ℓt T̂FP t − T̂FP
cf

t Growth Share of T̂FP t

Automation set frozen in 1950:

Private business 0.420 0.004 6.2 1.5 1.2 134%

Agriculture 0.655 0.127 4.9 1.3 3.3 39%

Automation set frozen in 1987:

Computers 0.459 0.033 14.1 3.9 12.8 30%

Motor vehicles 0.524 0.161 7.2 1.3 1.7 74%

Retail trade 0.259 0.022 12.1 1.2 1.7 73%

Software 0.463 0.102 7.3 1.7 1.8 95%

Note: The counterfactual contribution of automation supposes the set of tasks that are automated is
frozen in some inital year and is calculated according to Proposition 5. As in the proposition, scfK,T is

an upper bound, ψ̂kt − ψ̂ℓt is a lower bound, and T̂FP t − T̂FP
cf

t and the final share column are lower
bounds. Growth rates are r percents per year, averaged over the relevant time period.

expected, the counterfactual capital shares are much lower because the automation

set is frozen while machines continue to get better. For the private business sector, the

counterfactual capital share is 0.4% versus an actual share of 42.0%. The reason for this

is shown in the next column, which reports ψ̂kt− ψ̂ℓt (which we already showed back in

Table 3). In particular, capital productivity growth is very fast.

The fourth column in Table 4 implements Proposition 5 to compute a lower bound

on the “lost growth” that comes from freezing automation in the initial year. For the

private business sector, this lost growth is 1.5 percent per year. This can be compared

to the actual TFP growth rate of 1.2 percent. This means that freezing automation in

place in 1950 would have cost the economy the entirety (134%) of growth in the private

business sector.

Across the other sectors of the economy, the missing growth ranges from 1.2 percent

per year to 3.9 percent per year. The last column expresses this as a share of TFP growth.

Across the BEA sectors, freezing automation in 1987 would have cost the economy 30%

of growth in the computer sector and more than 70% in motor vehicles, retail trade, and

software.
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A natural question to ask is “Why is the private business sector share of lost growth

so much higher than for the component sectors?” The main reason for this is that

we freeze automation in 1950 for the private business sector but only in 1987 for the

component sectors. Like the firm-entry analogy given earlier, the closer to today that

we freeze automation, the less time there is for lost growth to accumulate. The lost

growth comes from the product of two terms: the ψ̂kt − ψ̂ℓt captures the productivity

growth boost from automation, and the importance of this boost is governed by the

capital share sKt. The higher is the growth boost, the more rapidly the capital share

declines in the counterfactual, as machines are getting better but automation is frozen.

In addition, note that Ẑt+ ψ̂ℓt is negative for the private business sector; this is why it is

possible for the automation boost term to overexplain TFP growth.7

If we do not increase the share of tasks that are automated, we do not switch over

to making rapid progress on enough of our weak links, and those remaining, slowly

improving, weak links tank growth. Even if capital productivity skyrocketed to infinty

on the tasks that were already automated in 1950, that would not have delivered infinite

growth because tasks are complements. Historically, long-run growth occurred be-

cause we found ways to rapidly improve the productivity of machines and because we

increased the set of tasks that benefited from this rapid growth—strengthening more

of our weak links. The bottom line from this exercise is that historical automation has

been tremendously important to TFP growth in the U.S. economy.

4.3 Robustness

The results just given assume σ = 1/2 and assume that ChatGPT provides a valid esti-

mate of the automation rate for the different sectors. Here, we relax these assumptions.

The three panels of Table 5 show a set of results for the upper bound on Ẑt+ ψ̂ℓt, the

lower bound on ψ̂kt − ψ̂ℓt, and the lower bound on the share of TFP growth that would

be lost if automation were frozen in 1950 or 1987. The robustness checks cover different

values of σ and an automation rate xt that is only half of what ChatGPT reports.

The “worst case” numbers in the robustness table occur in the Leontief case in

7One might also ask about agriculture, where automation is also frozen in 1950 but the share of lost
growth is much smaller at 39%. There are two reasons for this. First, the capital share is much higher —
65.5% in the data in 2021, so it is harder for this share to decline to zero. Second, the automation boost
ψ̂kt − ψ̂ℓt is actually lowest in agriculture, at just 4.9% versus 6.2% for the private business sector.
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Table 5: Robustness of Automation Results

Sector σ = 0 σ = 0.25 σ = 0.5 σ = 0.75 xt halved

Upper bound on Ẑt + ψ̂ℓt

Private business 0.7 0.2 -0.9 -4.3 0.7

Agriculture 2.6 1.9 0.6 -3.4 2.6

Computers 11.3 9.9 7.1 -1.4 11.3

Motor vehicles 1.1 0.4 -1.2 -6.0 1.1

Retail trade 1.2 0.6 -0.5 -3.7 1.2

Software 1.5 0.5 -1.7 -8.1 1.5

Lower bound on ψ̂kt − ψ̂ℓt

Private business 1.2 2.8 6.1 15.8 1.2

Agriculture 1.3 2.4 4.8 11.8 1.3

Computers 3.7 7.1 14.0 34.7 3.7

Motor vehicles 1.4 3.2 7.0 18.2 1.4

Retail trade 2.4 5.1 10.4 26.4 2.4

Software 0.6 2.9 7.5 21.2 0.6

Lost TFP growth – freeze automation (percent share; lower bound)

Private business 45 79 134 284 45

Agriculture 19 26 39 77 19

Computers 12 18 30 66 12

Motor vehicles 44 54 74 133 44

Retail trade 32 46 73 154 32

Software 16 42 95 254 16

Note: The table shows the robustness of our automation results to alternative parameter
choices. The first four columns consider different values of the elasticity of substitution
across tasks, σ. The final column assumes the automation rate xt is one half of what we
have measured.
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which σ = 0 or in the case in which the automation rate is only 50% of what ChatGPT

estimates. (These two cases turn out to be identical because our baseline value is

σ = 1/2 and the way this shows up in the calculations is as 1
1−σ xt = 2xt; so cutting

xt is half is the same as setting σ = 0.)

For these “worst case” scenarios, the lower bound on Ẑt − ψ̂ℓt is 0.7% for the private

business sector. The lower bound on ψ̂kt − ψ̂ℓt is 1.2% for the private business sector

and even larger than that amount in all sectors other than software. Finally, at least 45

percent of TFP growth in the private business sector would be lost if automation were

frozen in 1950.

5. The Future of A.I.

This section develops an endogenous growth model with automation and calibrates it

based on our evidence from past automation. The spirit of the exercise is that A.I. is just

the latest form of an automation process that has been ongoing for at least a century. A

key feature of the model is that the production of ideas can also be automated, and this

is a place where A.I. can play an important role.

To understand the results of the full dynamic model, however, it is helpful to begin

with some warm-up exercises that consider extreme versions of automation.

5.1 Static Effects: What if A.I. fully automates software?

Consider an extreme version of automation: what if some fixed set of tasks are au-

tomated with infinite productivity? A first instinct is that this would produce infinite

output. But that instinct comes from production functions with an elasticity of substi-

tution of at least unity. With an elasticity below one, we are in the “weak links” setting.

Being infinitely good at some tasks does not lead to infinite output because production

is constrained by the the weakest links.8

Start with our familiar CES production function but collect tasks into two groups:

those we will infinitely automate (labeled ∞) and those we will leave unchanged (la-

beled∅). These could be software and non-software, or manufacturing and non-manufacturing,

8Related points appear in Aghion, Jones, and Jones (2019) and B. Jones and X. Liu (2024), but the result
is stated in terms of the fraction of tasks that are infinitely automated, which is hard to observe. Like us,
B. Jones (2025) focuses on cost shares, but that paper studies automating the idea production function.
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or cognitive and non-cognitive.

Y
σ−1

σ
t =

∫ 1

0
αiY

σ−1

σ

it di

=

∫

Ω∅

αiY
σ−1

σ

it di+

∫

Ω∞

αiY
σ−1

σ

it di

= α∅Y
σ−1

σ
∅t + α∞Y

σ−1

σ
∞t

where α∅ ≡
∫

Ω∅

αidi and α∞ ≡
∫

Ω∞
αidi.

Perfect competition and first order conditions imply the usual factor share equa-

tion:

sjt ≡
PjtYjt
PtYt

= αj

(
Yjt
Yt

)σ−1

σ

(25)

Implementing infinite automation. Now consider a counterfactual in which the tasks

in the ∞ sector are automated with infinite ψK — extreme but useful. Y∞ goes to

infinity, so Y
σ−1

σ
∞ goes to zero. Intuitively, infinite automation eliminates some of the

weak links.

Assuming no other changes,

Ycf = α
σ

σ−1

∅ Y∅t.

Now divide both sides by initial GDP, Yt and use equation (25):

Ycf
Yt

= α
σ

σ−1

∅

Y∅t
Yt

= s
σ

σ−1

∅t

=

(
1

1− s∞t

) σ
1−σ

≈ 1 +
σ

1− σ
s∞t (26)

where the approximation is valid when the factor’s cost share is small. When σ = 1/2,

this approximation tells us that the percent gain in output from automating the factor’s

tasks with infinite productivity is simply equal to the factor’s cost share itself, s∞t. When

σ = 1/4, the gain is 1/3 · s∞t, and when σ = 3/4, the gain is 3 · s∞t. Finally, if σ = 0 the

gain is zero and if σ = 1 — so that no factor is essential — the gain is infinite.
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Figure 6: Automating Software, s = 2%
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Note: The figure implements equation (26) to show the proportional gain in GDP from
automating with infinite productivity all the tasks currently performed by software,
assuming that software accounts for 2% of current GDP.

Automating software. Given the advances in LLMs at coding, software is generally

thought to the one of the first industries that will be largely automated by A.I. The share

of software in GDP is around 2%.9 This means that automating all the tasks that are

currently done by software with infinite productivity would only raise GDP by about

2% when σ = 1/2. Figure 6 shows how this result changes for different values of σ. The

effects are remarkably small.

Automating all cognitive tasks. More speculatively, transformative A.I. is thought to

move on to automating all cognitive tasks — anything that could be done by a remote

worker with a computer could potentially be done by an A.I. agent. Around two thirds

of GDP is paid to labor. We consider what would happen if half of this were fully

automated with infinite productivity. With σ = 1/2, equation (26) gives a gain of 1/(1−

1/3) = 1.5; that is, infinitely automating 1/3 of GDP would only raise GDP by 50%. At

some level, this number seems quite small; after all we have infinite productivity on

9For example, the share of NAICS 511, 516 (Publishing industries, except internet (includes software))
in 2021 was less than 1.7% of nominal GDP.
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Figure 7: Automating All Cognitive Tasks, s = 1/3
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Note: The figure implements equation (26) to show the proportional gain in GDP from
automating with infinite productivity all the tasks currently performed by cognitive labor,
assuming that currently accounts for 1/3 of GDP.

a third of current GDP. However, the logic is again one of weak links. The economy is

constrained by the other two-thirds of tasks that are not automated.

But an alternative way to view the 50% gain is that if it were to occur over a decade,

this would correspond to an increase in GDP growth of around 5% per year; over two

decades it would correpond to more than 2pp of extra annual growth.

Figure 7 shows how this result changes for different values of σ. In this case, the

values start to get large, e.g., when σ = 3/4.

5.2 Long-Run Growth with Infinite Automation

The static calculations so far freeze the set of tasks that are infinitely automated. We

now consider what happens in the long run when this set increases.

Figure 8 shows three possibilities for automation in the long run. In the green line,

some fraction of tasks — say 5% — can never be automated. In this case, the infinite

automation of the other 95% of tasks removes a large number of weak links, but the

economy is still constrained by the 5% of tasks that cannot be automated. This scenario
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Figure 8: Three Types of Automation in the Long Run
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= f(i, t)
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Note: The figure shows three possibilities for automation in the long run: (a) In the green line,
some fraction of tasks can never be automated, so that f(β, ·) = 0 for β > β̄. (b) In the purple
line, f(1, ·) > 0 so that 100% of tasks are automated in finite time. (c) In the middle blue line,
f(1, ·) = 0 so that there is always some task that is not automated, but the fraction of tasks using
labor vanishes to zero asymptotically.

captures the intuition that some tasks seem likely to be performed by people for at

least several decades: helping an elderly patient with dementia through a confused

night, rewiring the electrical system in a renovated building, running a kindergarten

classroom, negotiating a delicate business deal, or playing professional sports. In this

case, the production function eventually converges to Yt = AtLt where Ât = ψ̂ℓt.

The infinite automation of 95% of tasks raises output considerably (by 20
σ

1−σ ), but the

remaining weak links have two important consequences. First, output remains finite

even with the infinite automation, and second, growth eventually slows to the rate at

which people get better on the weak links that are never eliminated. The economy

ultimately succumbs to the Baumol cost disease.

The purple line provides the other extreme: in this case, 100% of tasks will be auto-

mated in finite time (i.e., when the wage rises enough to make capital cheaper on every

task). Production converges to Yt = BtKt where B̂t = ψ̂kt. This is an “AK” style model in

which the productivity of capital itself grows. So this case results in explosive growth.

Finally, the blue line provides an intermediate case in which f(1, ·) = 0. That is,

the productivity of capital on the last task is always zero. Labor will therefore always
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be used in at least this task, even as the share of tasks using labor vanishes toward zero

over time. It is not obvious what happens in this intermediate case, but we have con-

structed various examples with a range of outcomes, including both explosive growth

and growth that is finite. We will explore this case in more detail in the next section.

5.3 Dynamics: Automating the Idea Production Function

The previous two subsections show (a) what happens in a static setting in which some

tasks are infinitely automated, and (b) what happens to long-run growth depending on

whether or not all tasks are eventually automated.

Here we consider the full dynamics of automation and growth when tasks in both

the goods production function and the idea production function can be automated.

Relative to the model in the first half of the paper, we both enrich the environment in

some dimensions and specialize it in others. First, we directly build on the automa-

tion model we’ve already developed, which is useful both directly and for calibrating

the parameters. Second, we introduce an idea production function that allows us to

endogenize ψkit and ψℓit as well as the automation process itself. Third, the model is a

“lab equipment” version of an (either fully- or semi-) endogenous growth model with

endogenous automation. Ideas are produced using units of the final good, so that a

single automation process incorporates the automation of tasks for producing both

goods and ideas. The full model is summarized in Table 6.

In terms of simplifications relative to the model in the first part of the paper, we

assume a convenient functional form f(i) for the comparative advantage of capital and

labor at different tasks:

f(i) =
(1− i)µ

1 + µ0(1− i)µ
+ f̄ (27)

This functional form permits an “S” shape for f(i). Importantly, the f̄ parameter also

allows us to control what happens to automation in the long run since f(1) = f̄ . If

f̄ > 0, then f(1) > 0 so that all tasks are automated in finite time. Conversely, if f̄ < 0,

then there is a positive set of tasks that are never automated. Finally, the setup permits

the intermediate case of f(1) = f̄ = 0 so that the fraction of tasks using labor vanishes

to zero asymptotically. These correspond to the cases shown earlier in Figure 8.
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Table 6: The Dynamic Model: Automating Goods and Ideas

CES task model Same as before ⇒Yt and Ωkt

Idea PF Q̇t = q̄RλtQ
φ
t

Resource constraint Ct + It +Rt = Yt

Ideas ⇒ψkit ψkit = Qθkt f(i)

Ideas ⇒ψℓit ψℓit = Qθℓt (homogeneous)

Heterogeneity f(i) = (1−i)µ

1+µ0(1−i)µ
+ f̄

Capital accumulation K̇t = It − δKt

Population growth Lt = L0e
nt

Allocations Rt = ῑRYt and It = ῑKYt

Note: The model is an endogenous growth model with endogenous automation. The “lab
equipment” structure means that automating the goods production function also auto-
mates the production function for ideas. The f(i) function incorporates heterogeneity
across tasks in the timing of automation.

This functional form is monotonically decreasing, so we get a “single crossing” in

the automation condition ψkit

ψℓit
= Qθt f(i) =

rt
wt

, where θ ≡ θk − θℓ. This means that there

is a unique equilibrium βt such that tasks below βt use capital and tasks above βt use

labor.

Calibration. We calibrate the model to match many of the facts that we documented

in the first part of the paper, as shown in Table 7. Note that because ψℓit is homogenous

across i, the inequalities in our earlier propositions hold with equality.

The parametersµ0 andµ capturing the heterogeneity in capital productivity through

f(i) are chosen so that the mapping between the automation cutoffs βt and the capital

share, sKt fits as well as possible for 1950, 1975, 2000, and 2023.10

Other key parameters are chosen to match other moments from the first half of the

10In this particular formulation of the dynamic model, there is a one-to-one mapping between the
automation cutoffs βt and the capital share, sKt:

(

sKt

1− sKt

) 1

1−σ

=
f(βt)

ξ(βt)

(

1

1− βt

) 1

1−σ

where ξ(βt) =
(

∫ βt

0
f(i)σ−1di

) 1

σ−1

.
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Table 7: Calibration of the Dynamic Model

Moment or Parameter Value Source

Moments from first half of the paper, Private Business Sector

Capital shares, sKt .35, .33, .33, .42 1950, 1975, 2000, 2023

Automation cutoffs, βt .33, .55, .72, .81 1950, 1975, 2000, 2023

Labor-aug. TFP growth, Â2020 0.024 1950 – 2023 average

Capital-aug. TFP growth, B̂2020 -0.012 1950 – 2023 average

Task TFP growth, ψ̂kt − ψ̂ℓt 5.0% 1950 – 2023 average

Labor task TFP growth, ψ̂ℓt 0.5% Consistent w/ 1950 – 2023 data

Chosen to match moments in the data / first half of paper

ψkit idea elasticity, θk 6.35 ψ̂kt − ψ̂ℓt = 5% per year

ψℓit idea elasticity, θℓ 0.5 ψ̂ℓt = 0.5% per year

“Other” TFP growth, Ẑt -1.5% To match Ât, 1950–2023

f(i) parameters: µ, µ0 5.43, 6.90 To match capital share, sKt, given

βt, 1950 – 2023

Initial ideas, Q0 1.59 To match B2020/A2020

Initial “other TFP”, Z0 4.63 To match B2020

Initial idea productivity, q̄ῑλR 0.0004 To match Q̂ = 1% in 2020

Fraction never automated, f̄ 3%, 0, -3% Values for 1 − β̄ chosen to illus-

trate different possibilities

Chosen from the literature

Elasticity of substitution, σ 0.5 First half of paper

Idea PF parameters, λ, φ 1, -2 BJVW (2020)

Population growth, n 0.01 1% per year

Investment rate, ῑK 0.20 20% of GDP

Depreciation rate, δ 0.05 5% per year

Initial capital-output ratio 3 Stylized fact

Initial labor force, L0 1 Normalization

40



paper, represented by the averages we see for the private business sector during 1950–

2023. For example, we choose θk and θℓ — the elasticities of ψkit and ψℓit to the stock of

ideas Qt — to match the task TFP growth rates ψ̂kt − ψ̂ℓt = 5% per year and ψ̂ℓt = 0.5%

per year. This latter value is chosen via introspection to be consistent with the low

values of Ẑt + ψ̂ℓt in the data.11

As anticipated earlier in Figure 8, we consider three values of the fraction of tasks

that are never automated: 3%, 0%, and −3%. Our thinking is that we can choose the

parameters of the comparative advantage function f(i) to match historical data on βt

and sKt. However, this does not necessarily tell us what happens in the long run. To be

agnostic, we consider these three cases, which permits a “Yt = BtKt” explosive growth

case, a “Yt = AtLt” case in which weak links are a permanent feature of the economy,

and a case in between.

Results. Figure 9 shows the evolution of the capital share sKt over time for the three

cases. As expected, there is a full automation case in which the capital share rises

to 100% because all tasks are automated in finite time. Conversely, there is also the

“permanent weak links” case in which the capital share falls to zero. Our functional

form for f(i) with f̄ = 0 turns out to deliver a stable capital share around 37%— it is not

literally constant along the transition path, but nearly so.

Figure 10 shows the evolution of economic growth over time for the three cases. As

anticipated, the full automation case results in explosive growth, and the incomplete

automation case results in growth that ultimately falls to ψ̂ℓ = 0.5%. This is the case

in which some weak links can never be automated away. We eventually have infinite

effective capital on the automated tasks, so production settles down to Yt = AtLt and

growth is limited to the rate at which people get better.

The baseline case is the one in which f̄ = 0 so that the share of tasks using labor

vanishes to zero, but only as t goes to infinity. Recall that this case also leads to a stable

capital share. A natural guess would be that this case would deliver stable economic

growth, but that is not what happens. Instead, the automation rate xt rises over time

and this leads growth to explode even though the capital share remains stable. We

provide more intuition for this result in the next section.12

11In simulations, we have Ẑt starting at the implied historical value but trending to zero slowly over time.
12The capital share equation in the preceding footnote can be used to see that the power functions in
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Figure 9: Simulating the Future: The Capital Share
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Note: Depending on the ultimate nature of automation, the capital share can rise to 100%, fall to
zero, or remain stable at its current value.

Figure 10: Simulating the Future: Economic Growth
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Note: If the capital share reaches 100% in finite time, then growth explodes. If the capital share
falls to zero, then growth falls to ψ̂ℓ = 0.5%. Surprisingly, even with a stable capital share, growth
explodes in the Baseline case.
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Figure 11: Simulating the Future: GDP per Person
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Note: Two surprises: (a) Even though the future are eventually very different, the paths are
indistinguishable for the next 75 years. (b) Even when growth eventually explodes, the effects of
A.I. on GDP per person are remarkably small for the next 20 to 40 years. The labels on the dots (e.g.,
1.04x) report the factor gain over the initial trend line.

Another important finding in Figure 10 is that even though the growth paths are

eventually very different, the paths are indistinguishable for the next 75 years. A rising

automation rate means that growth rates rise over time in all three cases for the next

75 years. The incomplete automation effects only become visible as we approach that

constraint in the distant future.

To see how this accelerating economic growth plays out, it is helpful to see the graph

of GDP per person, shown in Figure 11. The red dashed line shows the initial trend line

corresponding to constant economic growth. The acceleration in growth is apparent in

the rising slope on the logarithmic scale.

Despite the accelerating growth, the effects of A.I. on GDP per person are remark-

ably small for the next 20 to 40 years. The labels on the dots (e.g., 1.04x) report the factor

gain over the initial trend line. By 2040, accelerating growth only raises GDP per person

by a factor of 1.04, and even by 2060, GDP per person is only 19% higher than it would

have been without the growth acceleration.

f(i) lead to a constant capital share. To see how growth can still explode, note that the labor share equation

is 1−sKt =
(

AtLt

Yt

)
σ−1

σ
and therefore yt = (1−sKt)

σ
1−σAt and Ât = Ẑt+ψ̂ℓt+

1

1−σ
xt. A rising automation

rate xt will then raise the growth rate if the capital share is stable.
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The intuition for these modest effects is the importance of weak links. We created a

simulation in which it is distinctly possible that growth accelerates for at least the next

75 years and may indeed ultimately explode. Nevertheless, the explosion occurs very

slowly. As we saw in the software automation example, in a weak-link model of the

economy even infinite automation of parts of the economy typically has small effects.

Here, automation continues and is even accelerating, and once tasks are automated,

their productivity improves rapidly at more than 5% per year. However, the economy

remains constrained by the weak links, i.e., by the relatively few and shrinking set of

tasks for which human labor is still essential.

What if A.I. raises research productivity? The model thusfar already incorporates

automation in the idea production function. That is, A.I. making us more productive

at generating ideas is built into the simulations we’ve already run. Nevertheless, it

is possible that A.I. could speed up automation beyond what is present in historical

data. Because automation is an endogenous outcome in this model, a natural way to

incorporate such a speedup is to increase research productivity in the idea production

function.

Figure 12 augments the simulations we’ve already run by supposing that A.I. leads

additionally to a one-time increase in research productivity by 25%. This level of im-

provement is inherently somewhat arbitrary: we’ve already shown the paths suggested

by a continuation of the historical automation path. How much beyond the historical

evidence should we enhance the model? A permanent increase of research productivity

by 25% could be viewed as too large or too small. But we think it is helpful to see what

it implies.

Higher research productivity has a first-order effect on the outcomes. In 20 years,

output per person is 22% higher than it would be had growth continued at the initial

1.4% trend rate instead of the 4% gain we saw earlier. In other words, during the first

20 years, annual economic growth is around 1 percentage point faster. The increase in

research productivity brings the accelerating growth forward in time.

Intuition for slowly accelerating growth. In all the cases considered so far, economic

growth accelerates — but only gradually — for more than 75 years. One way to un-

derstand this result is to ask the following question: under what parameter conditions
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Figure 12: What if A.I. raises research productivity?
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Note: The figures show the consequences of A.I. leading to an additional one-time increase in
research productivity by 25%.

does growth not explode? Or put another way, when does the model exhibit a balanced

growth path with semi-endogenous growth?

To answer this question, it is helpful to focus on the baseline case in which f̄ = 0.

In this case, the capital share sKt stabilizes at some value s∗K rather than going off to

100% or 0%, so this is the case in which one might expect a standard BGP. Appendix C

shows this formally: as βt → 1 the capital share settles to s∗K = 1
µ(1−σ) . For µ = 5.43 and

σ = 1/2, this is indeed s∗K = 0.37.

The second main result in Appendix C is that the key measure of dynamic increasing

returns in this model is Φ, defined as

Φ ≡
λ

1− φ

(

θℓ +
s∗K

1− s∗K
θk

)

(28)

In particular, whenΦ < 1, this automation model features a BGP with semi-endogenous

growth. The long-run growth rate is given by

gy =
Φn

1− Φ
(29)

This equation has a standard form for a semi-endogenous growth model in which the

idea production function uses goods rather than labor as the main input (the so-called

“lab equipment” version). The overall degree of dynamic increasing returns, Φ, is itself

the product of two terms. The first is λ
1−φ , which is the degree of increasing returns
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in the idea production function, familiar from many SEG models. The second is θℓ +
s∗K

1−s∗K
θk, which captures the effect of ideas onψℓit andψkit. In addition, the θk parameter

gets multiplied by s∗K reflecting the cost share of the tasks that have been automated

and by 1/(1 − s∗K) to incorporate the dynamic feedback that comes from Kt → Yt →

Kt. But the bottom line is that when parameter values are such that Φ < 1, this semi-

endogenous growth model with automation features a BGP in which the growth rate is

proportional to the rate of population growth and where the factor of proportionality is

increasing in Φ.

If the degree of dynamic increasing returns is exactly unity (Φ = 1), the semi-endogenous

growth turns into fully endogenous growth. This is the knife-edge condition that gener-

ates endogenous growth when population is constant (n = 0). Of course, with positive

population growth, economic growth explodes, as suggested by equation (29).

Finally — and this is the case of interest here — if Φ > 1, then equation (29) has

no positive solution. This is the case “beyond endogenous growth” in which we get ex-

plosive growth, even with zero population growth. Plugging in our baseline parameter

values from Table 7 into equation (28) gives a value of Φ = 1.40. In other words, the

parameter values that we recover based on the historical data on automation are such

that the dynamic degree of increasing returns is larger than 1. This explains why growth

explodes even in the baseline case. And since the comparative advantage function f(i)

only differs in the three cases as βt gets close to one, it also explains why the explosion

occurs in the other two cases as well.

Quantifying the speed of explosion. With Φ = 1.4, one might naturally wonder why

the explosion does not occur even faster. After all, the value is 40% higher than it needs

to be for growth to explode, so it is not particularly close to the boundary.

Further intuition comes from a one-dimensional version of a system that exhibits

explosive growth. Consider the differential equation Ẋt = ḡXΦ
t where Φ > 1. The

growth rate of Xt then satisfies X̂t = ḡXΦ−1
t , so that with Φ > 1, the growth rate is

increasing in the level of Xt. Hence the explosion.

This differential equation can be integrated to yield:

Xt =

(

1

X1−Φ
0 − (Φ− 1)ḡt

) 1

Φ−1

46



This solution has an asymptote where Xt goes to infinity in finite time. Setting X0 = 1

as our initial condition — as we do with y2020 in our simulations — the date t∞ at which

Xt goes to infinity is given by

t∞ =
1

(Φ− 1)ḡ
(30)

We can substitute Φ = 1.40 into this expression to get a sense for how long it takes

for growth to explode. If the intial growth rate is 1.4%, then the answer is

t∞ =
1

0.40× 0.014
= 178 years

In other words, even though growth explodes and our overall degree of dynamic in-

creasing returns is well above 1 at Φ = 1.40, it takes 178 years for explosive growth to

lead to infinite income. This calculation helps us make sense of the surprisingly slow

explosion in Figure 11.

The role of weak links in leading to the slow explosion is somewhat hidden by the

way we’ve written Φ in equation (28). The expression depends on the capital share s∗K

but recall that s∗K = 1
µ(1−σ) . The higher is σ, the higher is s∗K , and as s∗K approaches one,

Φ goes to infinity, which would clearly speed up the explosion in the t∞ calculations.

Notice that this occurs well before the Cobb-Douglas case of σ = 1. In fact, for µ = 5.43,

values of σ > 0.82would cause the divergence. The magnitude of weak links is therefore

central.

6. Conclusion

How much of past economic growth is due to automation, and what does this imply

about the effects of A.I. and automation in the coming decades?

We perform growth accounting using a task-based model for agriculture, motor

vehicles, computers, software, and for the aggregate U.S. economy. Historically, TFP

growth is largely due to improvements in the productivity with which capital performs

tasks. We estimate that the task-specific growth rate of capital productivity averages at

least 5% per year across all our sectors, while the growth rate of the productivity with

which labor performs tasks is small, on the order of 0.5% annually. The key benefit
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of automation is that we switch from using slowly-improving labor to using rapidly-

improving capital. Growth is limited by how quickly we strengthen more of our weak

links.

Looking to the future, we develop an endogenous growth model in which the pro-

duction of both goods and ideas gets endogenously automated. We calibrate this model

based on our historical evidence. Two key findings emerge. First, automation leads

economic growth to accelerate over the next 75 years. Second, the acceleration is re-

markably slow. By 2040, output is only 4% higher than it would have been without the

growth acceleration, and by 2060 the gain is still only 19%. A key reason for the slow

acceleration is the prominence of weak links. Even when most tasks are automated

by rapidly improving capital, output is constrained by the tasks performed by slowly-

improving labor.
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APPENDIX

A. Instructions for the LLM to measure βt

We have a two-step process for measuring βt in each sector. First, we ask the LLM to

construct a detailed list of 150 specific tasks that are essential in the sector in the United

States over the past century. Second, we ask the LLM to indicate whether each task was

automated or not in each year from 1920 to 2020. For partially automated tasks, we ask

the LLM to break them into subtasks.

Here is the instruction we gave to the model to create the list of tasks:

** INSTRUCTIONS FOR CREATING TASK LIST**

Consider the motor vehicles sector of the U.S. economy for the

past 75 years since 1950. I am writing an economics research

paper at the PhD level on automation. Please do the following:

1. Construct a detailed list of 100 specific tasks that are

essential and important in the motor vehicles industry in the

United States over that time frame.

** CLARIFICATIONS **

(a) All tasks must in principle be able to be performed by people

. Over time , some tasks may have been automated , which means

they are performed without human involvement. But it is

crucial that the tasks be things that could be performed by

labor historically. Check carefully to ensure this is the case

.

(b) On the other hand , do not neglect tasks that are fully

mechanized now. For example , "Exterior painting" is surely an

important task historically that is now fully automated.

Prioritize tasks that are both required and essential and

economically significant in some way , at least historically.

(c) All tasks should be things that were accomplished in motor

vehicle production in the year 1950 as well as today. Make

sure that all tasks were present more than 75 years ago.

(d) Please only use excellent , reputable resources that are

specific to motor vehicles and empirical in nature. Do not use
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models or theory papers from macroeconomics or growth

economics.

(e) Examples of tasks might include "Engine assembly" or "Tire

attachment" or "Windshield installation ." Also , "Management of

the factory" is one possible high -level task that may have

subtasks; we certainly want to consider management as one of

the important categories of tasks.

** DELIVERABLES **

DELIVERABLE 1: Provide a short narrative summary of the results.

DELIVERABLE 2: Provide an Excel file containing the detailed

results.

- The first sheet should be called "Overview ". It should contain

the date , the prompt , and the narrative summary.

- The second sheet should be called "Task Data". Report your task

results in the form of a table with the tasks as rows. Some

entries that explain the "category" of the task in each row

would be helpful , with one column for the high -level category

and another column for the detailed task description.

- The third sheet should be called "Sources ". Document all

sources used in a standard academic reference style. Include

hyperlinks.

Here is the instruction we gave to the model to measure βt:

** INSTRUCTIONS FOR AUTOMATION RATES**

Consider the motor vehicles sector of the U.S. economy for the

past 75 years since 1950. I am writing an economics research

paper at the PhD level on automation. I have uploaded a file

containing a list of 100 tasks that are essential in motor

vehicle production over this time frame. Please do the

following:

1. Consider a task (each row of the "Task Data" sheet in the

spreadsheet).

2. Consider the year 1957. Indicate whether the tasks was

automated or not in 1957; for partially automated , use a
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fraction such as 10% or 35% or 85%. Take into account the

fraction of farms that have automated the task in constructing

your estimate.

4. Repeat Step 2 for 1967, 1977, 1987, 1997, 2007, and 2017 for

that task and record your answer in a new column for each time

period.

5. Repeat Steps 1 to 4 for each task in the spreadsheet.

** CLARIFICATIONS **

(a) Please only use excellent , reputable resources that are

specific to motor vehicles and empirical in nature. Do not use

models or theory papers from macroeconomics or growth

economics.

** DELIVERABLES **

DELIVERABLE 1: Provide a narrative summary of the results. At the

end of this summary be sure to report what fraction of tasks ,

equally weighted across the 100 tasks (i.e. taking averages

across all cells), were automated in each year.

DELIVERABLE 2: Provide an Excel file containing the results. You

should build on the Excel file that has been provided.

- The first sheet should be called "Overview ". It should contain

the date , the prompt , and the narrative summary.

- The second sheet should be called "Task Data". Report your task

results in the form of a table with the tasks as rows and the

years as columns. Most of the entries in the table should be

numbers such as 0%, 10%, 35%, 100%, etc. (in numerical format ,

of course).

- The third sheet should be called "Sources ". Document all

sources used in a standard academic reference style. Include

hyperlinks.

B. Proof of Proposition 2
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B.1 Key Weights are Cost Shares

Notice that from the share equations in Proposition 1, the FOC for the representative

firm’s problem to allocate labor is

Lit = (ψℓitZt)
σ−1

(
wt
Pt

)−σ

Yt. (31)

Integrating this equation over all tasks yields

Lt =

∫

Ωℓt

Lit di =

∫

Ωℓt

ψσ−1
ℓit di · Zσ−1

t

(
wt
Pt

)−σ

Yt.

Taking ratios of these last two equations yields

Lit
Lt

=
wtLit
wtLt

=
ψσ−1
ℓit

∫

Ωℓt
ψσ−1
ℓit di

≡ ωℓit. (32)

By a similar argument, the same type of expression holds for capital:

Kit

Kt
=
rtKit

rtKt
=

ψσ−1
kit

∫

Ωkt
ψσ−1
kit di

≡ ωkit. (33)

That is, the key weights that will show up in our aggregation of growth rates are equal

to the cost shares of the relevant tasks.

To handle the “multiple points of automation” possibility, it is useful to define the

average of the weights across all points of automation:

ω̄kβt ≡

Mt∑

m=1

ωkβmt
|β̇mt|

β̇t
and ω̄ℓβt ≡

Mt∑

m=1

ωℓβmt
|β̇mt|

β̇t
(34)

where β̇t =
∑

m |β̇mt| is the total flow of automation that occurs across the different

automation points.

B.2 Proof

To see a simple version of the proposition, consider the case in which there is only a

single point of automation, βt, at which ψkβt/ψℓβt = rt/wt. In that case, the sets are just

the intervals [0, βt] and [βt, 1], and the derivatives in the proposition are easy to compute
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using Leibniz’s rule. In that case, ω̄kβt = ωkβt and ω̄ℓβt = ωℓβt.

ZZZ

B.3 Intuition for Automation and F (BK,AL): Homogeneous ψ’s

For intuition, it is helpful to consider an example in which there is almost no hetero-

geneity in the ψ’s. In particular, suppose ψkit = ψkt for i ∈ [0, βt] while ψkit = 0 for

i ∈ [βt, 1]. That is, only the tasks up to βt can use capital. But all tasks can use labor:

ψℓit = ψℓt for all i. Furthermore, suppose ψkt/ψℓt > rt/wt: if you can use capital then it

is profitable to automate.

In this case, the production function in (1) becomes

Yt = Zt

(

βt

(
ψktKt

βt

)σ−1

σ

+ (1− βt)

(
ψℓtLt
1− βt

)σ−1

σ

) σ
σ−1

(35)

Several insights can be gleaned from this special case. First, notice that βt and 1−βt

enter the CES reduced-form production function in two ways. Consider the Kt term.

The first βt functions as a share parameter and captures the fact that capital is used in

the fraction βt of tasks. The second way βt enters is through theKt/βt term. In this case,

the capital Kt is spread across βt tasks, so the capital per task is Kt/βt; that is, capital

per task gets smaller as we spread capital over more tasks. The net of these two effects

is shown by writing (35) as Yt = F (BtKt, AtLt), where Bt collects the first two βt terms:

Bt = Zt

(
1

βt

) 1

1−σ

ψkt (36)

Since σ < 1 so that tasks are complements, an increase in βt reduces Bt. That is,

an increase in automation is capital depleting rather than capital augmenting. Better

computers — a higher ψkt — are indeed capital augmenting. But when a given amount

of capital is spread across a larger number of tasks because of automation, one effect is

that this is capital depleting.

This is only one effect because there is a related effect working through At. The
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same logic reveals that

At = Zt

(
1

1− βt

) 1

1−σ

ψℓt (37)

In other words, an increase in βt is labor augmenting. The total laborLt is concentrated

on fewer tasks, so labor per task increases.

With homogeneousψ’s, there are two effects of automation that work in different di-

rections. Automation is simultaneously capital depleting and labor augmenting. That

is, it is a twist of the production function, a point emphasized by Aghion, Jones, and

Jones (2019).

We now return to the general case with heterogeneous ψ’s. As we see next, there are

then two additional effects from an increase in βt that need to be considered. In our full

model, βt is not an independent exogenous variable, but rather the set of tasks that are

automated changes because ψkit and ψℓit change.

C. Characterizing explosive growth when f(1) = 0

The dynamics of the idea-driven growth model when f(1) = 0 are interesting. When

f(1) > 0 the model looks like Yt = BtKt and growth explodes, while when f(1) < 0,

the model eventually looks like Yt = AtLt and growth slows to the rate at which people

improve, ψ̂ℓt. But what happens in between?

As was clear in the graphs and as we show at the end of this section, the capital

share sKt stabilizes at some value s∗K rather than going off to 100% or 0%. (In fact, as

we show at the end of this section, s∗K = 1
µ(1−σ) .) So the question is: how can growth

explode when the capital share is constant, and what are the conditions under which

that occurs?

C.1 The conditions for semi-endogenous growth

The easiest way to see the answer to these questions is to characterize the condition on

parameter values such that the model exhibits a BGP with semi-endogenous growth.

Then, if the degree of increasing returns is even larger, then growth will explode. We

now develop this characterization.
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Step 1. First, we study the growth rate of yt. From the basic labor share equation for

CES, Y = s
σ

σ−1

L AL, and since factor shares are constant, gy = gA. Also, Â = θℓQ̂+ 1
1−σx,

which implies

gy = θℓgQ +
1

1− σ
x

Step 2. Now we need x. Recall that f(β) = r
w
Q−θ where θ ≡ θk − θℓ. Focus on the

case in which f(i) ≡ (1 − i)µ (noting that as i gets close to 1, this is valid even for

our richer specification with µ0 6= 0). In addition, from the factor share equations,

w
r
= sL

sK

K
L

. Putting all this together and taking logs and derivatives with constant factor

shares gives

µg1−β = −θgQ − gk

where k ≡ K/L. The automation rate is x = −g1−β . Also, along a BGP, gk = gy.

Therefore,

x =
1

µ
(θgQ + gy)

Step 3. Combining Steps 1 and 2 gives

gy = θℓgQ +
1

µ(1− σ)
(θgQ + gy)

It is now convenient to use a result shown at the end of this section and already antici-

pated above: s∗K = 1
µ(1−σ) . Making this substitution, recalling θ ≡ θk − θℓ, and rewriting

the previous equation gives

gy =

(

θℓ +
s∗K

1− s∗K
θk

)

gQ (38)

Step 4. Now we need a separate equation for gQ. From the idea production function,

gQ ∝
Y λ
t

Q
1−φ
t

. Along a BGP,

gQ =
λ

1− φ
gY =

λ

1− φ
(gy + n)
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Combining these last two equations gives the expression for the semi-endogenous

growth rate:

gy =
Φn

1− Φ
where Φ ≡

λ

1− φ

(

θℓ +
s∗K

1− s∗K
θk

)

(39)

C.2 The Capital Share when f(1) = 0

In the dynamic model, the capital share satisfies

sKt
1− sKt

=

(
f(βt)

ξ(βt)

)1−σ

·
1

1− βt

where ξ(βt) =
(∫ βt

0 f(i)σ−1di
) 1

σ−1

.

Consider the basic functional form f(i) = (1− i)µ which implies

ξ(βt)
σ−1 =

1

µ(1− σ)− 1

[(
1

1− βt

)µ(1−σ)−1

− 1

]

Combining these equations gives

sKt
1− sKt

=
1

µ(1− σ)− 1

(
1

1− βt

)1−µ(1−σ)
[(

1

1− βt

)µ(1−σ)−1

− 1

]

=
1

µ(1− σ)− 1

[

1−

(
1

1− βt

)1−µ(1−σ)
]

→
1

µ(1− σ)− 1
as βt → 1 if µ(1− σ) > 1

which in turn implies that sKt → 1
µ(1−σ) as βt → 1. The condition µ(1 − σ) > 1 also

implies the capital share settles down to an interior point between 0 and 1.

The functional form we use in the dynamic model is slightly richer, i.e., f(i) =
(1−i)µ

1+µ0(1−i)µ
. But the two functional forms are asymptotically equivalent as i → 1, so

that the result holds with the richer functional form as well.
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D. Deriving the Counterfactual in Proposition 5
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Krusell, Per, Lee E. Ohanian, José-Vı́ctor Rı́os-Rull, and Giovanni L. Violante, “Capital-Skill

Complementarity and Inequality: A Macroeconomic Analysis,” Econometrica, 2000, 68 (5),

1029–1053.

Moravec, Hans, Mind Children: The Future of Robot and Human Intelligence, Harvard Univer-

sity Press, 1988.

Oberfield, Ezra and Devesh Raval, “Micro Data and Macro Technology,” Econometrica, 2021, 89

(2), 703–732.

Romer, Paul M., “Endogenous Technological Change,” Journal of Political Economy, October

1990, 98 (5), S71–S102.

Trammell, Philip and Anton Korinek, “Economic Growth under Transformative AI,” 2020. GPI

Working Paper No. 8-2020.

U.S. Bureau of Labor Statistics, “Multifactor Productivity,” Technical Report 2025.

https://www.bls.gov/mfp/.

Wang, Sun Ling, Eric Njuki, Roberto Mosheim, and Richard

Nehring, “Agricultural Productivity in the United States,” November

2024. US Department of Agriculture, Economic Research Service,

https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-united-states.

Young, Alwyn, “Cointegrated Factor Augmenting Productivity,” February 2025. unpublished

manuscript.

Zeira, Joseph, “Workers, Machines, And Economic Growth,” Quarterly Journal of Economics,

November 1998, 113 (4), 1091–1117.

59

https://www.bls.gov/mfp/
https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-united-states

