Growth and Ideas
Romer (1990) and Jones (2005)

Chad Jones
Stanford GSB
References

Outline: How do we understand frontier growth?

- A Discussion of Ideas
- Simple Model
- Full Model, and various resource allocations
- Applications
A Discussion of Ideas
Solow and Romer

- Robert Solow (1950s)
 - Capital versus Labor
 - Cannot sustain long-run growth

- Paul Romer (1990s)
 - Objects versus Ideas
 - Sustains long-run growth
 - Wide-ranging implications for intellectual property, antitrust policy, international trade, the limits to growth, sources of “catch-up” growth

Romer’s insight: Economic growth is sustained by discovering better and better ways to use the finite resources available to us.
The Idea Diagram

Ideas → Nonrivalry → Increasing returns

Long-run growth
Problems with pure competition

Romer (1990) and Jones (2005) – p. 6
The Essence of Romer’s Insight

- **Question**: In generalizing from the neoclassical model to incorporate ideas \((A)\), why do we write the PF as

\[
Y = AK^\alpha L^{1-\alpha}
\]

instead of

\[
Y = A^\alpha K^\beta L^{1-\alpha-\beta}
\]

- Does \(A\) go **inside** the CRS or **outside**?
 - The “default” (*) is sometimes used, e.g. 1960s
 - 1980s: Griliches et al. put **knowledge capital** inside CRS
IRS and the Standard Replication Argument

- Familiar notation, but now let A_t denote the “stock of knowledge” or ideas:

$$Y_t = F(K_t, L_t, A_t) = A_t K_t^\alpha L_t^{1-\alpha}$$

- Constant returns to scale in K and L holding knowledge fixed. Why?

$$F(\lambda K, \lambda L, A) = \lambda \times F(K, L, A)$$

- But therefore increasing returns in K, L, and A together!

$$F(\lambda K, \lambda L, \lambda A) > F(\lambda K, \lambda L, A)$$

- Economics is quite straightforward:
 - Replication argument implies CRS to objects
 - Therefore there must be IRS to objects and ideas

Romer (1990) and Jones (2005) – p. 8
A Simple Model
The Simple Model

Production of final good
\[Y_t = A_t^\sigma L_Y t \]

Production of ideas
\[\dot{A}_t = \nu (A_t) L_{At} = \nu L_{At} A_t^\phi \]

Resource constraint
\[L_Y t + L_{At} = L_t = L_0 e^{nt} \]

Allocation of labor
\[L_{At} = \bar{s} L_t, \quad 0 < \bar{s} < 1 \]

\(\phi > 0 \): Standing on shoulders

\(\phi < 0 \): “Fishing out”
Solving

\(Y_t = A_t^\sigma L_{Yt} \)

\(\dot{A}_t = \nu(A_t)L_{At} = \nu L_{At} A_t^\phi \)

\(L_{Yt} + L_{At} = L_t = L_0 e^{nt} \)

\(L_{At} = \bar{s}L_t, \quad 0 < \bar{s} < 1 \)

Romer (1990) and Jones (2005) – p. 11
Discussion: $g_y = \frac{\sigma n}{1-\phi}$

- Growth rate is the product of (1) degree of increasing returns and (2) rate at which scale is rising.
- More people \Rightarrow more ideas \Rightarrow more income per capita.
- But China is huge while Hong Kong is tiny?
- But Africa has fast population growth while Europe has slow?
- What happens if \bar{s} permanently increases?

Romer (1990) and Jones (2005) – p. 12
From IRS to Growth

- **Objects**: Add one computer ⇒ make one worker more productive.

 Output per worker \sim # of computers per worker

- **Ideas**: Add one new idea ⇒ make everyone better off.

 - E.g. computer code for 1st spreadsheet or the software protocols for the internet itself

 Income per person \sim the aggregate stock of knowledge, not on the number of ideas per person.

But it is easy to make aggregates grow: population growth!

IRS ⇒ bigger is better.

Romer (1990) and Jones (2005) – p. 13
Romer (1990) and Scale Effects

\[\frac{\dot{A}_t}{A_t} = \nu L_{At} = \nu \bar{s} L_t \]

- Policy effect: $\uparrow \bar{s}$ raises long-run growth.

- Problem (Jones 1995): Growth in number of researchers (or population) implies accelerating growth
 - True over the very long run (Kremer 1993)
 - But not in the 20th century for the United States.
Researchers in Advanced Countries

- G-5 Researchers (1950=100)
- G-5 Employment (1950=100)
U.S. GDP per Person

Per capita GDP (ratio scale, 2005 dollars)

Year

1880 1900 1920 1940 1960 1980 2000

2.0% per year

Romer (1990) and Jones (2005) – p. 16
Scale Effects

• Strong versus weak (versus none)
 ◦ **Strong**: \(\phi = 1 \) — scale affects the *growth rate* in LR
 ◦ **Weak**: \(\phi < 1 \) — scale affects the *level* in LR

• Literature

• No role for scale? What about nonrivalry?
What happens if $\phi > 1$?
What happens if $\phi > 1$?

- Let $\phi = 1 + \epsilon$ and assume population is constant.

$$\dot{A}_t = \nu L A_t^{1+\epsilon}$$

- Integrating this differential equation from 0 to t gives

$$A_t = \left(\frac{1}{A_0^{-\epsilon} - \epsilon \nu L t} \right)^{1/\epsilon}$$

\Rightarrow There exists a finite date t^* when A becomes infinite!
The Full Romer Model
Overview of Romer Model

• All of the key insights regarding nonrivalry and increasing returns.

• In addition, a significant troubling question was how to decentralize the allocation of resources
 ◦ With increasing returns, why doesn’t one firm come to dominate?
 ◦ Imperfect competition, a la Spence (1976), Dixit-Stiglitz (1977), and Ethier (1982, production side)
The Economic Environment

Final good

\[Y_t = \left(\int_{0}^{A_t} x_{it}^\theta \, di \right)^{\alpha/\theta} L_{Yt}^{1-\alpha}, \quad 0 < \theta < 1 \]

Capital

\[\dot{K}_t = I_t - \delta K_t, \quad C_t + I_t = Y_t \]

Production of ideas

\[\dot{A}_t = \nu L^\lambda_{At} A_{At}^\phi, \quad \phi < 1 \]

Resource constraint (capital)

\[\int_{0}^{A_t} x_{it} \, di = K_t \]

Resource constraint (labor)

\[L_{Yt} + L_{At} = L_t = L_0 e^{nt} \]

Preferences

\[U_t = \int_{t}^{\infty} L_s u(c_s) e^{-\rho(s-t)} \, ds, \quad u(c) = \frac{c^{1-\zeta}-1}{1-\zeta} \]

Romer (1990) and Jones (2005) – p. 22
Allocating Resources

- Environment features
 - 9 unknowns: \(Y, A, \{ x_i \}, L_Y, L_A, K, C, I, L \)
 - 6 1/2 equations (use \(\int x_{it} \, dt = K \) to get \(\bar{x}_t \) below)
 Need 2 1/2 more equations to complete

- A rule of thumb allocation in this economy features

\[
\frac{I_t}{Y_t} = \bar{s}_K \in (0, 1)
\]

\[
\frac{L_{At}}{L_t} = \bar{s}_A \in (0, 1)
\]

\[
x_{it} = \bar{x}_t \text{ for all } i \in [0, A_t].
\]
Balanced Growth Path

A balanced growth path in this economy is a situation in which all variables grow at constant exponential rates (possibly zero) forever.
Result 1 (Rule of Thumb)

(a) Symmetry of capital goods implies

\[Y_t = A_t^\sigma K_t^\alpha L_{Yt}^{1-\alpha}, \quad \sigma \equiv \alpha \left(\frac{1}{\theta} - 1 \right) \]

(b) Along BGP, \(y \) depends on the total stock of ideas:

\[y_t^* = \left(\frac{\bar{S}K}{n + g_k + \delta} \right)^{\frac{\alpha}{1-\alpha}} A_t^* L_{At}^{\frac{\sigma}{1-\alpha}}. \]

(c) Along BGP, the stock of ideas depends on the number of researchers

\[A_t^* = \left(\frac{\nu}{g_A} \right)^{\frac{1}{1-\phi}} L_{At}^{\frac{\lambda}{1-\phi}}. \]
(d) Combining these last two results (b) and (c),

\[y_t^* \propto L_{At}^{*\gamma} = (\bar{s}_A L_t)^\gamma, \quad \gamma \equiv \frac{\sigma}{1 - \alpha} \cdot \frac{\lambda}{1 - \phi} \]

(e) Finally, TLAD gives the growth rates

\[g_y = g_k = \frac{\sigma}{1 - \alpha} g_A = \gamma g_L = g \equiv \gamma n. \]
The Optimal Allocation

- The optimal allocation features time paths \(\{c_t, s_{At}, \{x_{it}\}\}_{t=0}^{\infty} \) that maximize utility \(U_t \) at each point in time given the economic environment.
- Using symmetry of \(x_{it} \):

\[
\max_{\{c_t, s_{At}\}} \int_{0}^{\infty} L_t u(c_t) e^{-\rho t} \, dt
\]

subject to

\[
y_t = A_t^\sigma k_t^\alpha (1 - s_{At})^{1-\alpha}
\]

\[
\dot{A}_t = \nu (s_{At} L_t)^\lambda A_t^\phi
\]

\[
\dot{k}_t = y_t - c_t - (n + \delta)k_t
\]

Romer (1990) and Jones (2005) – p. 27
The Maximum Principle in the Romer Model

- The Hamiltonian for the optimal allocation is

\[H_t = u(c_t) + \mu_{1t}(y_t - c_t - (n + \delta)k_t) + \mu_{2t}\nu S_{At}^\lambda N_t^\lambda A_t^\phi, \]

where \(y_t = A_t^\sigma k_t^\alpha (1 - s_A t)^{1-\alpha} \).

- First order necessary conditions

\[\frac{\partial H_t}{\partial c_t} = 0, \quad \frac{\partial H_t}{\partial s_A t} = 0 \]

\[\bar{\rho} = \frac{\partial H_t}{\partial k_t} \frac{\mu_{1t}}{\mu_{1t}} + \frac{\dot{\mu}_{1t}}{\mu_{1t}}, \quad \bar{\rho} = \frac{\partial H_t}{\partial A_t} \frac{\mu_{2t}}{\mu_{2t}} + \frac{\dot{\mu}_{2t}}{\mu_{2t}} \]

\[\lim_{t \to \infty} \mu_{1t} e^{-\bar{\rho}t} k_t = 0, \quad \lim_{t \to \infty} \mu_{2t} e^{-\bar{\rho}t} A_t = 0 \]
Result 2 (Optimal Allocation)

(a) All of Result 1 continues to hold.
 ◦ Same long-run growth rate!

(b) Optimal consumption satisfies the Euler equation

\[
\frac{\dot{c}_t}{c_t} = \frac{1}{\zeta} \left(\frac{\partial y_t}{\partial k_t} - \delta - \rho \right)
\]

(c) Optimal saving along BGP

\[
s_{K}^{op} = \frac{\alpha (n + g + \delta)}{\rho + \delta + \zeta g}
\]

Romer (1990) and Jones (2005) – p. 29
(d) Optimal labor allocation equates marginal products

\[
\frac{s_{At}^{op}}{1 - s_{At}^{op}} = \frac{\frac{\mu_{2t}}{\mu_{1t}} \lambda \dot{A}_t}{(1 - \alpha) y_t}
\]

Along the BGP, this implies

\[
\frac{s_{A}^{op}}{1 - s_{A}^{op}} = \frac{\frac{\sigma Y_t/A_t}{r^* - (g_Y - g_A) - \phi g_A} \lambda \dot{A}_t}{(1 - \alpha) Y_t}
\]
Equilibrium in the Romer Model
Market Equilibrium with Imperfect Competition

- Increasing returns means a perfectly competitive equilibrium does not exist.

- Romer (1990) adds infinitely lived patents on ideas to set up an equilibrium with imperfect competition as in Spence (1976), Dixit-Stiglitz (1977), Ethier (1982).

- Partial excludability associated with patents leads individuals to exert effort to discover new ideas.

- We define the decision problems first and then the equilibrium.
Households: Problem (HH)

Taking the time path of \(\{w_t, r_t\} \) as given, HHs solve

\[
\max_{\{c_t\}} \int_0^\infty u(c_t)e^{-\bar{\rho}t} \, dt
\]

subject to

\[
\dot{v}_t = (r_t - n)v_t + w_t - c_t, \quad v_0 \text{ given}
\]

\[
\lim_{t \to \infty} v_t e^{-\int_0^t (r_s - n) \, ds} \geq 0
\]

where \(v_t \) is financial wealth, \(w_t \) is the wage, and \(r_t \) is the interest rate.

Romer (1990) and Jones (2005) – p. 33
Final Goods Producers: Problem (FG)

- Perfectly competitive

- At each t, taking w_t, A_t, and $\{p_{it}\}$ as given, the representative firm chooses L_{Yt} and $\{x_{it}\}$ to solve

$$
\max_{\{x_{it}\}, L_{Yt}} \left(\frac{1}{\theta} \int_0^{A_t} x_{it}^\theta \, di \right)^{\alpha/\theta} L_{Yt}^{1-\alpha} - w_t L_{Yt} - \int_0^{A_t} p_{it} x_{it} \, di.
$$

Romer (1990) and Jones (2005) – p. 34
Monopolistic competition — a patent gives a single firm the exclusive right to produce each variety.

At each t and for each capital good i, taking r_t and $x(\cdot)$ as given, a monopolist solves

$$\max_{p_{it}} \pi_{it} \equiv (p_{it} - r_t - \delta)x(p_{it})$$

where $x(p_{it})$ is the (constant elasticity) demand from the final goods sector for variety i — from the FOC in Problem (FG).
Idea Producers: Problem (R&D)

• Perfectly competitive, seeing the idea production function as

\[\dot{A}_t = \bar{\nu}_t L_{At} \]

• The representative research firm solves

\[
\max_{L_{At}} P_{At} \bar{\nu}_t L_{At} - w_t L_{At}
\]

taking the price of an idea \(P_{At} \), research productivity \(\bar{\nu}_t \), and the wage rate \(w_t \) as given.
Market Equilibrium

An equilibrium with imperfect competition is \(\{c_t, \{x_{it}\}, Y_t, K_t, I_t, v_t, \{\pi_{it}\}, L_{Yt}, L_{At}, L_t, A_t, \bar{\nu}_t\}_{t=0}^{\infty} \) and prices \(\{w_t, r_t, \{p_{it}\}, P_{At}\}_{t=0}^{\infty} \) such that for all \(t \):

1. \(c_t, v_t \) solve Problem (HH).
2. \(\{x_{it}\} \) and \(L_{Yt} \) solve Problem (FG).
3. \(p_{it} \) and \(\pi_{it} \) solve Problem (CG) for all \(i \in [0, A_t] \).
4. \(L_{At} \) solves Problem (R&D).
5. \((r_t) \) The capital market clears: \(V_t \equiv v_t L_t = K_t + P_{At} A_t \).
6. \((w_t) \) The labor market clears: \(L_{Yt} + L_{At} = L_t \).
7. \((\bar{\nu}_t) \) The idea production function is satisfied: \(\bar{\nu}_t = \nu L_{At}^{\lambda-1} A_t^\phi \).
8. \((K_t) \) The capital resource constraint is satisfied: \(\int_0^{A_t} x_{it} di = K_t \).
9. \((P_{At}) \) Assets have equal returns: \(r_t = \frac{\pi_{it}}{P_{At}} + \frac{\dot{P}_{At}}{P_{At}} \).
10. \(Y_t, A_t, L_t, I_t \) are determined by their production functions

(16 equations, 16 unknowns. Goods market clears by Walras' Law: \(C_t + I_t = Y_t \))
Result 3 (Market Equilibrium Allocation)

(a) All of Result 1 continues to hold:
 ◦ Same long-run growth rate!

(b) The same Euler equation characterizes consumption

\[
\frac{\dot{c}_t}{c_t} = \frac{1}{\zeta} (r_{eq}^t - \rho)
\]

Note: Since the growth rate is the same and the Euler equation is the same, \(r_{eq} = r^* \) (steady state).
Result 3 (Market Equilibrium — continued)

(c) Capital goods are priced with the usual monopoly markup:

\[p^{eq}_{it} = p^{eq}_t = \frac{1}{\theta}(r^{eq}_t + \delta) \]

As a result, capital is paid less than its marginal product:

\[r^{eq}_t = \alpha \theta \frac{Y_t}{K_t} - \delta. \]

Same growth rate \(\Rightarrow \) same interest rate. Underpaying capital leads to low \(K/Y \):

\[s^{eq}_K = \frac{\alpha \theta (n + g + \delta)}{\rho + \delta + \zeta g} = \theta s^{op}_K \]

Romer (1990) and Jones (2005) – p. 39
(d) Free flow of labor equates marginal products

\[
\frac{s_{At}^{eq}}{1 - s_{At}^{eq}} = \frac{P_{At} \dot{A}_t}{(1 - \alpha)Y_t}
\]

Along BGP

\[
\frac{s_A^{eq}}{1 - s_A^{eq}} = \frac{\sigma \theta Y_t / A_t}{r^{eq} - (g_Y - g_A)} \dot{A}_t \frac{\dot{A}_t}{(1 - \alpha)Y_t}
\]
Compare s_A^{op} and s_A^{eq}

\[
\frac{s_A^{eq}}{1 - s_A^{eq}} = \frac{\sigma \theta Y_t/A_t}{r^{eq} - (g_Y - g_A)} \dot{A}_t, \quad \frac{s_A^{op}}{1 - s_A^{op}} = \frac{\sigma Y_t/A_t}{r^* - (g_Y - g_A) - \phi g_A \lambda} \dot{A}_t
\]

Three differences:

• $\lambda < 1$: Duplication externality

• $\phi \neq 0$: Knowledge spillover externality

• $\theta < 1$: Appropriability effect

Equilibrium may involve either too much or too little research.
Summary

- More people ⇒ more ideas ⇒ more per capita income (nonrivalry)
 - Log-difference ⇒ per capita growth is proportional to population growth, where proportionality measures increasing returns

- Long-run growth rate is independent of the allocation of resources
 - Subsides or taxes on research affect growth along the transition path and have long-run level effects (like Solow)
 - In contrast, in Romer (1990), they lead to long-run growth effects
Applications
Several Applications of this Framework

1. Endogenizing population growth
2. Growth over the very long run
3. The linearity critique
4. Growth accounting
1. Endogenizing Population Growth (Jones 2003)

 - Converts this to a fully endogenous growth model

- But policy can have odd effects: a subsidy to research shifts labor toward producing ideas but away from producing kids ⇒ lower long-run growth!

- A recent reference on some intriguing issues that arise along this line of research is Cordoba and Ripoll, “The Elasticity of Intergenerational Substitution, Parental Altruism, and Fertility Choice” (REStud 2019)
2. Growth over the Very Long Run

- **Malthus:** \(c = y = AL^\alpha, \quad \alpha < 1 \)
 - Fixed supply of land: \(L \uparrow \Rightarrow c \downarrow \) holding \(A \) fixed

- **Story (Lee 1988, Kremer 1993):**
 - 100,000 BC: small population \(\Rightarrow \) ideas come very slowly
 - New ideas \(\Rightarrow \) temporary blip in consumption, but permanently higher population
 - This means ideas come more frequently
 - Eventually, ideas arrive faster than Malthus can reduce consumption!

- **People produce ideas and Ideas produce people**
 - If nonrivalry > Malthus, this leads to the hockey stick

Romer (1990) and Jones (2005) – p. 46
Population and Per Capita GDP: the Very Long Run

Romer (1990) and Jones (2005) – p. 47
3. The Linearity Critique

- The result of any successful growth model is an equation like \(y_t = \bar{g} y_t \), with a story about \(\bar{g} \).

- An essential ingredient to getting this result is (essentially) some linear differential equation somewhere in the economic environment:

\[
\dot{X}_t = ___ X_t
\]

- Growth models differ according to what they call the \(X_t \) variable and how they fill in the blank.
Catalog of Growth Models: What is X_t?

Solow

\[
y_t = k^\alpha, \quad \dot{k}_t = k_t^\alpha - c_t - \delta k_t
\]

Solow

\[
\dot{A}_t = \bar{g}A_t
\]

AK model

\[
Y_t = \bar{A}K_t, \quad \dot{K}_t = AK_t - C_t - \delta K_t
\]

Lucas

\[
Y_t = K_t^\alpha (u_t h_t L)^{1-\alpha}, \quad \dot{h}_t = (1 - u_t) h_t
\]

Romer ($\phi = 1$)

\[
\dot{A}_t = \nu L_{at} A_t
\]

Romer ($\phi < 1$)

\[
\dot{L}_t = \bar{n} L_t
\]

Romer (1990) and Jones (2005) – p. 49
4. Growth Accounting

- Puzzle (earlier graphs)
 - A straight line fits log U.S. GDP per person quite well
 - But human capital and R&D investment rates appear to be rising

- Human capital: Completion rates for adult population
 - 1940: 25% high school, 5% college
 - 1993: 80% high school, 20% college

- U.S. science/eng researchers as a fraction of labor force:
 - 1950: 1/4 of 1%
 - 1993: 3/4 of 1%
How to reconcile?

• Imagine a Solow model
 ◦ What happens if the investment rate grows over time?

• Same thing could be going on in an idea model with $\phi < 1$
 ◦ Only it is human capital and R&D investment rates that rise
 ◦ Implication for the long run...
Key Equations of the Model

Production of final good

\[Y_t = A_t^{\sigma} K_t^{\alpha} H_t^{1-\alpha} yt \]

Production of ideas

\[\dot{A}_t = \nu H_{at}^{\lambda} A_t^{\phi} \]

Efficiency units of labor

\[H_{it} = h_t L_{it}, \quad h_t = e^{\psi \ell_{ht}} \]

Resource constraint

\[L_{yt} + L_{at} = (1 - \ell_{ht}) L_t \]

- Rewriting the production function

\[y_t = \left(\frac{K_t}{Y_t} \right)^{\frac{\alpha}{1-\alpha}} \ell_{yt} h_t A_t^{\frac{\sigma}{1-\alpha}} \]

- Balanced growth path: \(g_y = \gamma n \) where \(\gamma \equiv \frac{\sigma}{1-\alpha} \cdot \frac{\lambda}{1-\phi} \)
Accounting for Growth ($\gamma = 1/3$), 1950–2007

\[y^* \approx \left(\frac{K}{Y} \right)^{\beta} \cdot h \cdot (\text{R&D intensity})^{\gamma} \cdot L^{\gamma} \]

<table>
<thead>
<tr>
<th>Solow</th>
<th>Lucas</th>
<th>Romer/AH/GH</th>
<th>J/K/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>0.0</td>
<td>0.4</td>
<td>1.2</td>
</tr>
<tr>
<td>(100%)</td>
<td>(0%)</td>
<td>(20%)</td>
<td>(58%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(21%)</td>
</tr>
</tbody>
</table>

- Educational attainment rises ≈ 1 year per decade. With $\psi = .06 \Rightarrow$ about 0.6 percentage points of growth per year.

- Transition dynamics are 80 percent of growth.

- “Steady state” growth is only 20 percent of recent growth!

- Numbers from “The Future of U.S. Economic Growth” (with Fernald)
Alternative Futures?

The shape of the idea production function, $f(A)$

The past

Today

Increasing returns

GPT "Waves"

Run out of ideas

The stock of ideas, A