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This paper is motivated by a collection of stylized facts that, when taken

together, are puzzling from the standpoint of modern growth theory. The

stylized facts are these:

1. Growth rates in U.S. per capita GDP do not show a trend for the last

125 years; see, for example, Jones (1995b).

2. Contrary to conventional wisdom, aggregate payments to capital and

labor as a share of GDP are not constant over time, and in fact the capital

share shows a substantial trend in many countries and industries. This fact

has been documented in several recent papers and will be discussed in more

detail in Section 2 below.

3. Estimates of the elasticity of substitution between capital and labor in

production are often less than unity. Studies documenting this fact have

been surveyed by Hammermesh (1993) and Antràs (2001). Recent esti-

mates supporting this fact that also distinguish between skilled and unskilled

labor can be found in Krusell, Ohanian, Rios-Rull and Violante (2000) and

Caselli and Coleman (2000). No individual study is especially compelling,

and even the results taken as a whole are not conclusive. But the typical

result seems to be that the elasticity of substitution between capital and

labor is less than one.1

4. The price of capital goods in the “equipment” category — computers,

machine tools, turbines, mini-mills — have been falling relative to the

price of nondurable consumption. This fact was documented carefully by

Gordon (1990) and has been emphasized more recently in a series of papers

including Greenwood, Hercowitz and Krusell (1997) and Whelan (2001).

The falling relative price is taken as evidence of a faster rate of technological

change being embodied in these capital goods than in consumption, and

1Antràs (2001) provides some insight into the wide range of the estimates. In particular,
he notes that estimates close to unity typically come from time series studies that ignore
the possibility of technological change, which biases the estimate toward one.
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this phenomenon is called investment-specific technological change. One

manifestation of this declining price is a rising ratio of real capital equipment

divided by real GDP.

These stylized facts are puzzling from the standpoint of modern growth

theory. To see this, recall a well-known result, which will be referred to

as the steady-state growth theorem: if a neoclassical growth model is to

possess a steady state with positive growth and a positive capital share,

either technological change must be labor augmenting or the production

function must be Cobb-Douglas in capital and labor. (This result is stated

and proved formally in Appendix A).

Motivated by facts such as Fact 1 above, growth theorists typically

want steady states to be possible in our growth models. The presence

of investment-specific technological change and a rising equipment-output

ratio suggest that the production function should be Cobb-Douglas if this is

to be the case. However, the Cobb-Douglas production function is incon-

sistent with Fact 2, the variation and trends in capital shares, and Fact 3, the

estimates of the elasticity of substitution between capital and labor. Alter-

natively, if one chooses a non-Cobb-Douglas production function to match

Facts 2 and 3, the presence of investment-specific technological change will

render steady-state growth with a positive capital share impossible.

A literature from the 1960s approaches this tension by seeking to un-

cover economic forces that would lead technological change to be entirely

labor-augmenting in the long run. This is the approach taken originally

by Kennedy (1964), Samuelson (1965), and Drandakis and Phelps (1966)

and examined recently using the tools of new growth theory by Acemoglu

(2001). There are two important problems with this approach. First, the

spirit of the approach appears to be contradicted empirically by Fact 4: the

declining relative price of equipment suggests that there is a substantial
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amount of technological change that has been embodied in capital in recent

decades. Second, the careful microfoundations of the approach provided by

Acemoglu (2001) indicate that the outcome in which technological change

is labor augmenting only is a knife-edge case.2

This paper provides a possible resolution of this puzzle. Section 1 out-

lines the evidence supporting Fact 2 above, the trends and variation in

capital shares. Section 2 begins the resolution of the puzzle. We introduce

a new production function that is potentially consistent with the four facts

documented above. Intuitively, factor shares and estimates of the elasticity

of substitution are driven by short-run properties of the production function,

while requirements for steady-state growth are driven by the shape of the

production function in the long-run. We propose a production function that

exploits this difference. The elasticity of substitution is very low in the short

run, and it is hard to substitute capital and labor. In the long run, however,

substitution possibilities open up and production takes the Cobb-Douglas

form.

Of course, this last step is somewhat arbitrary. There are lots of rea-

sons why the short-run elasticity of substitution in production might be

smaller than the long-run elasticity. However, why should the long-run

elasticity exactly equal one? This is the analog to the question asked ear-

lier in the 1960s about the direction of technical change: why should it be

labor-augmenting? The work by Acemoglu (2001) and a consideration of

the evidence on computer prices and the price of equipment capital more

2The production functions for capital-ideas and labor-ideas must be parameterized “just
so.” In particular, let N denote the stock of labor-augmenting ideas. Then the cost of produc-
ing new labor-augmenting ideas relative to the cost of producing new capital-augmenting
ideas must decline at exactly the rate Ṅ/N . Plausible specifications — such as one in
which the output good itself is the main input into the production of new ideas (in which
case the relative cost of producing labor and capital ideas is constant) or the idea production
function employed by Jones (1995a) to remove scale effects from the growth rate (in which
case the relative cost of producing labor ideas declines with Nφ) — lead to a model that
does not exhibit a steady state with a positive capital share.
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generally suggests that there is no good answer to the labor-augmenting

question. To be consistent with steady growth, then, the production func-

tion must be Cobb-Douglas in the long-run. But why?

Section 3 provides an answer to this question. Production techniques

are ideas. A particular production technique is “appropriate” at a given

mix of inputs, but if the input mix is changed, the production technique is

substantially less effective: this is consistent with a short-run elasticity of

substitution between inputs that is less than one. In the long run, however,

an economy that wishes to produce with a different input mix (for example

because of growth in capital per worker), may discover new production

techniques that are appropriate at the new input mix. While the short-run

elasticity of substitution between inputs is driven by the properties of a

single technique, the long-run elasticity of substitution is governed by the

distribution of ideas — the ease with which new ideas appropriate for a

different input mix can be discovered.

Building on an insight from Houthakker (1955–1956), this section shows

that if ideas are distributed according to a Pareto distribution, then the long-

run elasticity of substitution between inputs is unity. That is, the long-run

production function is Cobb-Douglas.

1. THE FACTS ABOUT CAPITAL SHARES

The conventional wisdom about capital’s share of income being rela-

tively constant dates back at least to Solow (1957) and was one of the facts

emphasized by Kaldor (1961).3 At least as an approximation, it is perhaps

not too far from the mark for the United States and Great Britain. Gollin

(2002) reports employee compensation as a share of GDP for these two

3Interestingly, Solow (1958) clarifies his stand on this issue by spending an entire paper
expressing skepticism about the constancy of factor shares.
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economies going back to 1935 and argues that the conventional wisdom is

supported.

On the other hand, capital shares are clearly not constant over time,

even in advanced economies, as several recent papers have documented.

Blanchard (1997) emphasizes that capital shares in France, Germany, Italy,

and Spain exhibit large increases starting in the early 1980s and continuing

through the 1990s; the magnitude of the increase is approximately from

0.32 to 0.40. Acemoglu (2001) displays data on the capital share for the

United States and France dating back to the early 20th century. While

there is no strong trend in these data, the medium-term fluctuations can

be substantial. Harrison (2003) looks at labor’s share for a large number

of countries using the national accounts data from the United Nations and

shows that there are large movements over time for many countries.4

Apart from Harrison (2003), these papers typically do not focus on a

large number of countries. One reason is the difficulty adjusting for self-

employment income, an issue discussed at length by Gollin (2002). Gollin

shows that differences in employee compensation as a share of GDP across

countries are largely explained by differences in self-employment rates.

When he corrects the employee compensation shares for differences in

self-employment, he finds significantly smaller differences in labor shares

across countries.5

Still, in some ways this is a question of the glass half-full versus half-

empty. While the shares move closer together when one makes Gollin’s

correction, they are still substantially different. The purpose of this sec-

tion of the paper is to present some evidence on capital’s share for OECD

4See also Caballero and Hammour (1998), Batini, Jackson and Nickell (2000), and
Bentolila and Saint-Paul (2003).

5The working paper version of Gollin’s paper suggested that the same finding applied
over time: trends in employee compensation as a share of GDP often disappear when one
corrects for self-employment. However, he had limited data in the time series dimension.
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countries. We begin with the United Nations National Accounts data on

employee compensation as a share of GDP. We then follow Gollin’s pre-

ferred correction by dividing this share by the fraction of total employment

accounted for by employees. The implicit assumption is that the aver-

age wage of the self-employed is equal to the average wage of employees.

Finally, we compute the capital share as one minus this labor share.6

The evidence on capital’s share for OECD countries is reported in Fig-

ure 1. The solid line in the figure is the preferred measure, which incor-

porates the correction for self-employment. The dashed line is the naive

measure, constructed as one minus employee compensation divided by

GDP.

Several features of the figure stand out. First, while the capital share

for the United States and Canada are relatively smooth, this is not the case

for capital shares in most other countries. In many countries there is an

upward trend in the capital share, and the medium-frequency movements

are often large. Denmark’s capital share, for example, rises from about 0.3

to about 0.4 over the last quarter of the century. And the rises identified by

Blanchard (1997) for France, Italy, and Spain are noteworthy. The large

negative trend in the naive version of the capital share for Japan gets undone

by a large decline in the fraction of the population that is self-employed,

but there are still significant movements over time.

Another useful piece of evidence on variation in capital shares comes

from looking at industry-level data in the United States, as reported in Ta-

ble 1. Of the 35 two-digit industries, 22 (63%) exhibit significant trends

in the capital share of at least a tenth of a percent per year, while 16 (46%)

exhibit significant trends of at least two-tenths of a percent per year. Over-

all, there is a slight upward trend in the capital share in manufacturing and

a slight downward trend in services. Agriculture, Petroleum, and Leather

6See Appendix B for more detail on the data sources.
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FIGURE 1. Capital Shares in OECD Countries
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Note: Solid line = With self-employment correction. Dashed line = Without correction. Capital
shares are calculated as one minus the labor share. For the dashed line, the labor share is employee
compensation as a share of GDP. For the solid line, this labor share is corrected by dividing by the
employee share of total employment, as suggested by Gollin (2002). See the Appendix B for more
detail.
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TABLE 1.
Capital Shares for 2-Digit U.S. Industries

Industry 1960 1970 1980 1990 1996 Trend t-stat

Motor vehicles 40.9 29.3 23.7 23.4 21.7 -0.5425 -5.52
Stone, clay, glass 32.1 24.1 19.1 18.4 24.2 -0.3730 -8.58
Other Services 32.7 32.4 29.7 28.1 25.2 -0.2544 -8.78
Primary metal 31.1 24.7 21.6 22.2 22.3 -0.2113 -4.72
Transportation 31.1 27.2 24.8 22.9 25.1 -0.1876 -8.01
Instruments 17.9 19.4 17.0 18.0 13.4 -0.1573 -3.79
Machinery, non-electi 23.0 25.1 22.4 24.4 26.8 -0.1452 -3.62
Finance Insurance and 59.3 59.0 54.7 55.2 58.1 -0.1273 -2.12
Electric utilities 68.1 65.2 60.9 66.0 64.3 -0.0884 -2.70
Rubber and misc plast 23.7 18.3 16.0 19.0 25.7 -0.0851 -2.64
Chemicals 45.6 40.5 35.2 44.0 47.8 -0.0728 -1.48
Transportation equipm 8.9 11.1 9.3 9.2 12.7 -0.0383 -1.34
Trade 20.8 21.9 22.2 19.9 22.7 -0.0276 -1.42
Textile mill products 21.7 25.3 18.6 22.9 25.3 -0.0015 -0.04
Oil and gas extractio 72.3 72.2 73.2 78.9 72.1 0.0037 0.10
Construction 8.5 12.3 14.2 12.4 9.4 0.0080 0.35
Furniture and fixture 15.8 16.2 16.8 14.1 21.5 0.0117 0.34
Gas utilities 67.7 66.2 65.4 69.0 71.1 0.0747 3.85
Paper and allied 35.5 30.1 28.7 38.1 40.7 0.0817 1.59
Printing, publishing 20.4 21.4 20.6 25.4 23.4 0.0993 3.36
Communications 49.0 48.0 45.3 53.2 51.7 0.1101 2.59
Coal mining 22.0 38.6 22.9 32.1 34.3 0.1121 1.22
Non-metallic mining 40.8 39.3 47.0 43.5 49.8 0.1505 3.38
Metal mining 41.7 37.8 43.6 46.8 47.6 0.2383 3.19
Government enterprise 31.9 30.5 42.2 37.9 48.4 0.2415 4.16
Lumber and wood 22.0 21.9 27.5 29.9 31.3 0.2648 4.76
Apparel 9.6 14.0 14.3 19.4 18.4 0.2868 13.31
Fabricated metal 15.8 16.8 22.2 25.7 36.0 0.3070 9.20
Electrical machinery 21.5 19.5 21.3 33.7 42.6 0.3916 5.06
Agriculture 24.5 30.2 37.6 41.3 41.5 0.4151 6.36
Tobacco 61.7 64.8 62.8 77.8 75.4 0.4183 6.22
Food and kindred prod 26.8 29.7 28.1 42.8 46.1 0.4558 10.03
Petroleum and coal pr 43.2 45.6 69.8 67.7 63.1 0.5533 6.46
Misc. manufacturing 17.5 18.7 20.5 40.8 41.1 0.5875 10.71
Leather 12.8 12.8 24.0 34.9 45.9 0.8074 12.50

Manufacturing 26.1 24.5 24.0 30.0 33.2 0.0808 2.97
Services 33.8 34.5 33.1 32.5 32.7 -0.0822 -3.33
Total 30.9 31.0 31.6 33.1 33.6 0.0347 2.32

Note: These capital shares are calculated as payments to capital as a share of value-added,
using Dale Jorgenson’s data on 35 2-digit industries. According to Jorgenson, Ho and
Stiroh (2002, p. 11), these data include a correction for self-employment. Data down-
loaded from Jorgenson’s web page on 11/28/01.
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are examples of industries with large positive trends in the capital share

(for example, the capital share in agriculture rises from about 25 percent

to more than 40 percent). Stone, clay and glass, Primary metals, Motor

vehicles, and Transportation are examples of industries with large negative

trends. More generally, this evidence on sectoral variation is supported by

Bentolila and Saint-Paul (2003) who document large sectoral movements

in labor shares for the OECD countries.

Overall, both the country-level and the industry-level evidence — in this

paper and in other papers — sharply call into question the stylized fact that

capital shares are smooth, stable, and do not exhibit medium-run trends.

This fact is roughly true for some countries, but it is strongly contradicted

in others. Even in the United States, a country typically used to justify

the stylized fact, the industry-level evidence suggests there are substantial

changes in capital shares over time.

2. A RESOLUTION OF THE PUZZLE

At first glance, matching the four facts that began this paper appears dif-

ficult. Steady growth in the presence of investment-specific technological

change, like that which drives down equipment prices, requires a Cobb-

Douglas production function. However, the evidence of large movements

in capital shares documented in the previous section is inconsistent with the

constant-share prediction of a Cobb-Douglas function, as are the empirical

estimates of elasticities of substitution in the literature.

One possible resolution of this puzzle, at least if one is willing to ignore

the not-entirely-persuasive evidence on elasticities of substitution, is that

production functions are Cobb-Douglas but wages are not equal to marginal

products. In this case, changes in factor shares could reflect changes in the

markup or changes in bargaining power. Blanchard and Giavazzi (2002)

explore an explanation along these lines.
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If one wishes to maintain the connection between factor prices and

marginal products, a second possible resolution is suggested by the in-

sight that capital shares and substitution elasticity estimates are driven by

the short-run properties of the production function. In contrast, the require-

ment that production take a Cobb-Douglas form in order for steady growth

to be possible in the presence of investment-specific technological change

is really a statement about the shape of the production function in the long

run.

What is needed, therefore, is a production function that (a) makes a

distinction between the short-run elasticity of substitution (σSR) and the

the long-run elasticity of substitution (σLR), and (b) has a long-run elasticity

of substition equal to one (σLR = 1).

A class of models that meets the first requirement are the putty-clay

vintage capital models of Caballero and Hammour (1998) and Gilchrist

and Williams (2000). In these models, the technology level and the capital-

labor ratio get embodied in a machine when the machine is built, and the

technology for a given machine is ex post Leontief. Ex ante, however,

the capital-labor ratio is a choice variable and a more flexible production

function applies. If an economy with an existing stock of machines wants to

adjust its aggregate capital-labor ratio, then, the presence of a large number

of Leontief machines gives it a relatively low elasticity of substitution in

the short-run. Over the long-run, this elasticity is much higher. These

putty-clay vintage capital models, then can potentially reconcile the body

of facts that began the paper, at least if we are willing to assume that the

long-run elasticity in the model is equal to one (see Section 3 below).7

7Blanchard (1997) has a related model. Instead of the putty-clay structure, he assumes a
firm consists of one unit of capital and n units of labor. There are ad hoc costs of adjustment
for labor and capital (the number of firms) that create a wedge between the marginal revenue
product of labor and the wage, allowing the capital and labor shares to vary over time even
if the technology is Cobb-Douglas.
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The remainder of this section will consider briefly an alternative story

for this distinction between σSR and σLR, and there are surely others. The

story told here is useful for three reasons. First, it is perhaps an interesting

economic alternative. Second, it is much more tractable than the putty-clay

vintage capital approach. And third, it is related to some microfoundations

that follow later in the paper. Note, however, that nothing in the paper

requires this particular story to be true, and I am equally happy with the

bargaining explanation and the putty-clay explanation.

The story is as follows. Consider the following production function:

Yt = F (Kt, Lt; K
∗

t , L∗

t , A
∗

t )

=

(

α

(

Kt

K∗

t

)ρ

+ (1 − α)

(

Lt

L∗

t

)ρ)1/ρ

K∗α
t (A∗

t L
∗

t )
1−α, (1)

where ρ < 0. In this setup, quantities without an asterisk represent output,

capital, etc., used in the economy. Quantities with an asterisk are parameters

of the production technology. For example, K∗ and L∗ indicate the levels

of capital and labor that are most “appropriate” for this technology at time

t, and A∗ denotes the productivity level of this technology.8

The CES term in equation (1) represents the short-run production func-

tion. If the economy changes its inputs, this CES term indicates how output

varies. With ρ < 0, this production function exhibits a (short-run) elasticity

of substitution that is less than one. On the other hand, at the “appropriate”

levels of the inputs, this CES term is equal to one and the level of output is

determined solely by the Cobb-Douglas function of K∗ and L∗.

It is useful to rewrite this production function in per worker terms, as

yt =

(

α

(

kt

k∗

t

)ρ

+ 1 − α

)1/ρ

y∗t , (2)

where yt ≡ Yt/Lt, kt ≡ Kt/Lt, k∗

t ≡ K∗

t /L∗

t , and y∗t ≡ k∗α
t A∗1−α

t .

When the capital-labor ratio is equal to its appropriate value k∗, output

8This use of “appropriate” technologies builds on Basu and Weil (1998).
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FIGURE 2. The Production Function
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The solid line plots the production function for a fixed value of k∗.
The dashed line represents the Cobb-Douglas relation with slope α.

per worker is equal to y∗. When the capital-labor ratio varies from this

appropriate value, output per worker varies from y∗ according to a CES

relation with a substitution elasticity less than one.

Figure 2 shows this production function graphically. Notice that the

axes in this figure are log y and log k. The dashed line, then, shows a

Cobb-Douglas production relation with slope α. The solid line plots log y

as a function of log k for a given level of k∗. Because the elasticity of

substitution is less than one, this production function lies below the Cobb-

Douglas relation everywhere, except obviously at the point at which the

technology is appropriate.

Notice also that the slope of this production function in log-space corre-

sponds to the capital share ∂ log y/∂ log k = ∂y
∂k

k
y = 1

1+ 1−α
α

(
kt
k∗
t
)−ρ

. Below

the appropriate capital-labor ratio, the capital share is higher than α, and
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above k∗ the share is lower than α.9 If the economy increases its capital-

labor ratio for a given technology, the capital share declines because of the

low substitution elasticity. In the long run, however, suppose that k∗ itself

rises. In this case, the decline in the capital share that would occur if the

same technology were used is offset by an improvement in technology. By

using a new technology that is appropriate at the higher capital-labor ratio,

the capital share can be supported.

3. WHY MIGHT PRODUCTION FUNCTIONS BE
COBB-DOUGLAS IN THE LONG RUN?

The previous section suggests a resolution to the puzzle that began the

paper. For various reasons, the elasticity of substitution between capital and

labor may be substantially lower in the short run than it is in the long run. If

it happens to be equal to one in the long run, so that the long-run production

function is Cobb-Douglas, then the facts can be reconciled. Factor shares

and estimates of the elasticity of substitution are driven by the short-run

production function, while the possibility of a steady state is ensured by the

long-run Cobb-Douglas form. Of course a key unresolved question in this

story is why the long-run elasticity of substitution should happen to equal

unity. Why might production functions take the Cobb-Douglas form in the

long run?

Consider for a moment what a production function is. At its most prim-

itive level, one could imagine a Leontief production technology that says

“for each unit of labor, take k∗ units of capital, and you will get out y∗ units

of output.” The values k∗ and y∗ are parameters of this production technol-

ogy, and this production technology might be thought of as an idea. If one

wants to produce with a very different capital-labor ratio, it may well be the

case that this idea is not particularly helpful, and one needs to discover a

9Recall that since the elasticity of substitution is less than one, we have ρ < 0.
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new idea “appropriate” at the higher capital-labor ratio. Notice that one can

replace the Leontief structure with a production technology that exhibits

a low elasticity of substitution, and this statement remains true: to take

advantage of a substantially higher capital-labor ratio, one really needs a

new technique targetted to that capital-labor ratio. According to this view,

the standard production function that we write down, mapping the entire

range of capital-labor ratios into outputs, is a reduced form. It is not a

single technology, but rather represents the substitution possibilities across

different production techniques. The elasticity of substitution for this long-

run production function depends on the ease with which new techniques

that are appropriate at higher capital-labor ratios can be discovered and

implemented. That is, it depends on the distribution of ideas.

This insight is formalized below. We develop conditions under which the

long-run production function is asymptotically Cobb-Douglas and interpret

these conditions.

3.1. Setup

Let a particular production technique (call it technique i) be indexed by

two parameters, ai and bi. With this technique, output can be produced

according to a production function

Y = F (biK, aiL). (3)

Following the motivation given above, we assume that F (·, ·) exhibits a

low elasticity of substitution between K and L.

This production function can be rearranged to give

Y = aiLF (
biK

aiL
, 1), (4)

so that in per worker terms we have

y = aiF (
bi

ai
k, 1). (5)
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Now, define yi ≡ ai and ki ≡ ai/bi, and the production function can be

written as

y = yiF (
k

ki
, 1). (6)

If we choose our units so that F (1, 1) = 1, then we have the nice property

that k = ki implies that y = yi; an example of such a relation is that given

earlier in equation (2). Therefore, we can think of technique i as being

indexed by ai and bi, or, equivalently, by ki and yi.

As described above, in the long-run, the shape of the production function

is driven by the discovery of new techniques rather than by the shape of

the short-run production function that applies for a single technique. For

this reason — and because it results in a more tractable problem that yields

analytic results — we will make the extreme assumption that the short-run

production function is Leontief. In the simulation results that follow the

theory, we show how this requirement can be relaxed.

Assumption 3.1. The production function for a given technique is

Leontief. That is,

Y = F (biK, aiL) = min{biK, aiL}.

With this assumption, the per worker production function in (6) simplifies

nicely: in per worker terms, we have

y = yi min{
k

ki
, 1}.

That is, ki units of capital for each worker produces yi units of output for

each worker, and with a given technique, additional capital is unproductive.

Research results in the discovery of new techniques. Let N denote the

total number of techniques that have been discovered, and let i denote the

ith technique. This discovery process can be thought of as the drawing of
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balls out of a hat, where each ball has two numbers written on it, an ai and

a bi. We make the following important assumption about the distribution

of these numbers:

Assumption 3.2. A research draw i results in the discovery of a new

technique i, characterized by two numbers, ai and bi. These numbers are

random variables drawn from independent Pareto distributions:

ai ∼ G1(a) = 1 −

(

a

γa

)

−α

, a ≥ γa > 0, α > 0 (7)

and

bi ∼ G2(b) = 1 −

(

b

γb

)

−β

, b ≥ γb > 0, β > 0. (8)

This research technology features two desirable properties: First, a tech-

nique that is parameterized by a high level of capital per worker ki = ai/bi

tends to produce a high level of output per worker yi = ai. Second, such

productive techniques are relatively hard to come by; it is easier to discover

less productive techniques.

These properties yield a familiar-looking production set, as shown by

the example in Figure 3. The circles denote techniques that have been

discovered — the set of (ki, yi) pairs — and the lines joining the circles at

the edge of the production set fill in the convex hull (these are production

outcomes that could be obtained by using two techniques at once in varying

proportions).

The key question we’d like to answer is this. With this setup, what is the

functional relation y∗ = f(k∗)? That is, given a particular level of capital

per worker k∗, what is the maximum amount of output per worker that can

be produced using the available techniques?

Again so that we can derive analytic results, we will actually be slightly

more restrictive. First, we will answer this question assuming only one
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FIGURE 3. An Example of the Long-Run Production Function

k

y

k
0
 

y
0
 

technique can be used at a time. In Figure 3, for example, the answer to

this question if k∗ = k0 is given by y0 (notice that free disposal is allowed,

so that we can throw away some capital to take advantage of a superior

technique). Second, while we allow free disposal of capital, we assume

that all labor must be employed.10 We will show in the simulations that

follow the theory that these simplifying assumptions are not crucial.

3.2. Derivation

Formalizing these insights, let this production function y∗ = f(k∗) be

defined as follows

y∗ = f(k∗) = max
i

{ai :
ai

bi
≤ k∗}, 0 ≤ i ≤ N. (9)

10By forcing firms to use a single technique, they may want to throw away labor or
capital. If they are allowed to choose, then we must value the labor and capital, so that
prices and general equilibrium come into the problem, making it much more complicated.
Importantly, notice that if we were not ignoring the convex hull, this would not be an issue.
Assuming that only one factor can be thrown away mimics the full problem in that prices
do not enter the calculation.
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FIGURE 4. The Model’s Two Cases
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That is, y∗ is given by the highest level of ai from among the set of tech-

niques with ki ≤ k∗.

The argument proceeds in the following way. We first characterize the

distribution of the ai’s in equation (9). Then we apply a result from Extreme

Value Theory to characterize the distribution of the maximum. This yields

the Cobb-Douglas result.

To begin, define the conditional distribution of the ai’s as

F (y; k∗) ≡ Prob {ai ≤ y |
ai

bi
≤ k∗}. (10)

Given the setup of the model, there are two separate cases that need to be

considered. These are described in Figure 4. All of the draws of techniques

satisfy two inequalities. First yi ≥ γa. This is straightforward since yi ≡ ai

and ai ≥ γa as part of Assumption 4.1. Second, yi/ki ≥ γb. This is

true since yi/ki = bi and bi ≥ γb. This means that all techniques that

are discovered will lie either in the region labeled “Case 1” or the region

labeled “Case 2” in Figure 4.
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For expositional purposes, we will develop the results first for Case 1 and

then show that one gets an identical long-run production function in Case 2.

To begin, we have the following result (all proofs are given in Appendix C):

Proposition 3.1. For k∗ > γa/γb and y ≥ γa (Case 1), the distribu-

tion of ai conditional on the set of techniques that can be used with capital

per worker k∗ is given by

F (y; k∗) = 1 − θ(k∗)y−(α+β),

where

θ(k) ≡

α
α+β γα

a γβ
b kβ

1 − β
α+β

(

γa

γb

)α
k−α

.

This proposition says that the distribution of output per worker that can

be produced using appropriate technologies with capital per worker below

k∗ is a Pareto distribution. It is straightforward to show that θ′(k) > 0 in

the relevant range: if a particular technique is associated with a high level

of capital per worker, it is more likely to produce a high value of output per

worker.

The next proposition characterizes the distribution of k∗

i ≡ ai/bi itself.

Proposition 3.2. Define G(k∗) ≡ Prob {ai/bi ≤ k∗}. Then for

k∗ > γa/γb (Case 1),

G(k∗) = 1 −
β

α + β

(

γa

γb

)α

k∗−α.

That is, the distribution of the “appropriate” capital requirements for

ideas is also Pareto. The associated density function is decreasing in k,

so that it is more difficult to find ideas that work with a larger amount of

capital per worker.11

11One might wonder about the intuition for why the exponent in the distribution depends
only on α rather than on some combination of α and β. Since ki ≡ ai/bi, in order to get
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Together, these two propositions characterize the research process. It

is hard to find ideas that use a large amount of capital per worker. But

conditional on finding one of these ideas, it is likely to produce a large

amount of output per worker when used.

The production relation in equation (9) says that y∗ is an extreme value

of the F (y; k∗) distribution, as suggested back in Figure 3. Because this

distribution has an upper tail that is a power function (i.e. because the

upper tail behaves like a Pareto distribution), one can apply Theorem 2.1.1

from Galambos (1978), which says that the maximum extreme value from

a distribution with a power function tail, appropriately normalized, obeys

a Frechet distribution:

Proposition 3.3. Let N(k∗) be the number of techniques that require

capital per worker less than k∗. Then for k∗ > γa/γb (Case 1),

lim
N(k∗)→∞

Prob {(N(k∗)θ(k∗))
−

1
α+β y∗ ≤ x} = exp(−x−(α+β)). (11)

Or, stated differently,

(N(k∗)θ(k∗))
−

1
α+β y∗

a
∼ Frechet(α + β). (12)

This proposition has the following interpretation. The random variable

y∗(k∗) is the maximum amount of output that can be produced with capital

k∗. As the number of techniques that are relevant at k∗ grows, this output

goes to infinity. Hence, we need to normalized by some function of N(k∗),

and it turns out that the right normalization is N(k∗)1/(α+β). Of course,

even the normalized output will still depend on the amount of capital. But

one can imagine that there is some function of k∗ that we could divide by

a technique appropriate for a high level of k, we need a high value of ai and a low value
of bi. However, bi ≥ γb by assumption, so large values of ki ultimately depend on large
values of ai.
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to eliminate this dependence. This function turns out to be θ(k∗)1/(α+β).

By appropriately normalizing y∗, we get a stable asymptotic distribution

for the normalized random variable.

To push the interpretation further, let ε be an i.i.d. random variable drawn

from this Frechet distribution. Then the production possibilities frontier can

asymptotically be thought of as

y∗ = (N(k∗)θ(k∗))1/(α+β)ε.

The last step in getting the production function is to consolidate the

terms that depend on k∗. Since N denotes the total number of production

techniques that have been discovered,

plimN→∞

N(k∗)

N
= Prob {

ai

bi
≤ k∗} = G(k∗) = 1−

β

α + β

(

γa

γb

)α

k∗−α.

That is, the fraction of ideas that are relevant at k∗ in a sample of N draws

is, roughly speaking, G(k∗)N . But G(k∗) is just the denominator in θ(k∗),

so the long-run production function behaves asymptotically like

y∗ = AN
1

α+β k
∗

β
α+β ε (13)

or, multiplying both sides by the number of workers L,

Y ∗ = ANη/βK∗ηL∗1−ηε

where η ≡ β/(α + β) and A ≡
(

α
α+β γα

a γβ
b

)
1

α+β .

We have derived this result for the case where k∗ ≥ γa/γb, i.e. for Case 1

in Figure 4. As Proposition C.1 in Appendix C shows, however, one gets

exactly the same production function in Case 2.

3.3. Simulations

Figure 5 begins by presenting a simple numerical simulation of the pro-

duction function result. In the simulation, 300 techniques are drawn from
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FIGURE 5. Simulation of the Long-Run Production Function
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Note: In the simulation, N = 300, α = 4, β = 2, and γa = γb =
1. All 300 techniques are plotted in log-log space, and a slope is
computed between the technique that generates the highest output
and the technique that employs the least amount of capital.

the Pareto distributions, with α = 4 and β = 2. According to the model,

the convex hull of the production function should approximately be Cobb-

Douglas, with a capital elasticity of β/(α+β) = 1/3. This is indeed what

is found.

Next, we turn to a full simulation of the model. To do this in the simplest

way, we embed this approach to modeling production and ideas in a standard

Solow growth model. In addition, we relax the assumption that individual

techniques are Leontief and specify production as a CES function. The full

setup looks like:

Yt = F (biKt, aiLt) = (α(biKt)
ρ + (1 − α)(aiLt)

ρ)1/ρ (14)

Kt+1 = (1 − δ)Kt + sYt (15)
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FIGURE 6. Simulation of the Production Function
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Note: Circles indicate ideas, plus signs indicate capital-output combinations that
are actually used. The model is simulated for 100 periods with N0 = 50, α = 5,
β = 2.5, n = .10, γa = 1, γb = 0.2, k0 = 2.5, s = 0.2, δ = .05, and ρ = −1.

Nt = N0e
nt (16)

where Nt denotes the total number of techniques that have been discovered

as of date t, assumed to grow exogenously at rate n. The research process

is that specified earlier, and from among the Nt techniques available at time

t, we choose the technique that produces the highest amount of output per

worker.12

We simulate this model for 100 years and plot the results in several

figures.13 Figure 6 shows a subset of the nearly 1 million techniques that

12Computing the convex hull of the overlapping CES production functions seems to be
an extremely hard problem. To simplify, we continue to assume that firms can use only a
single technique at each point in time. To find the technique they use (from among nearly
1 million techniques by the end of the simulation), we first compute the convex hull of the
(ki, yi) points. Then, considering only these points on the convex hull, we find the highest
amount of output that can be produced using the full CES production function with each
technique.

13The parameter values used in the simulation are listed in the notes to Figure 6.
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FIGURE 7. Output per Worker over Time
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Note: See notes to Figure 6. The solid line plots output per worker yt at each
date. The dashed line in the figure plots yit, i.e. the level of yi corresponding to
the technique used at each point in time.

are discovered over these 100 periods. In particular, we plot only the 300

points with the highest values of y (these are shown with circles “o”).

Without this truncation, the lower triangle in the figure that is currently

blank but for the plus signs is filled in as solid black. In addition, the capital-

output combinations that are actually used in each period are plotted with

a plus sign (“+”). When a particular technique is used for a large number

of periods, the points trace out the CES production function. Then, as

the economy switches to a new technique, the capital-output combinations

jump upward.

Figure 7 shows output per worker over time, plotted on a log scale.

The average growth rate of output per worker in the simulation is 1.92

percent, close to the theoretical value of 2 percent implied by the parameter
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FIGURE 8. The Capital Share over Time
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Note: See notes to Figure 6.

values, given by n/α.14 The dashed line in the figure plots the level of

yi corresponding to the technique used at each point in time. Sometimes

the economy is above this level, and sometimes below, with the obvious

implication for the capital share, explored next.

Figure 8 plots the capital share FKK/Y over time. Even though the

economy grows at a stable average rate over time, the capital share exhibits

large movements over time. The movements upward are jumps, while the

movements downward are gradual. This means the model as is cannot

provide a complete explanation for the behavior of capital shares (but that

is not a primary goal of the paper).

14We compute the average growth rate by dropping the first 20 observations (to minimize
the effect of initial conditions) and then regressing the log of output per worker on a constant
and a time trend.
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3.4. Equipment Prices and Capital-Augmenting Technology

To explain the facts that began this paper — including the steady decline in

equipment prices — one needs a production function that is Cobb-Douglas

in the long-run. We have provided a theory suggesting why this might

be the case. However, the extent to which this theory really is consistent

with capital-augmenting technological change is worth discussing in more

detail.

First, notice that the production function for a given technique, as as-

sumed in equation (3), is

Y = F (biK, aiL).

If we apply the steady-state growth theorem to this production function, then

we know that in the long-run either bi must be constant or the production

function F (·, ·) must be Cobb-Douglas. Since we’ve assumed that the

production function for an individual technique is not Cobb-Douglas, we

are left with the result that bi cannot grow in the long run if we are to have

steady-state growth. But then how are we able to get a steady state in the

model in Section 3?

The answer can be seen in Figure 9. Recall that yi ≡ ai and ki ≡ ai/bi.

Therefore yi/ki = bi. If yi/ki is to be stationary, as one would expect

would be required in steady state, then the value of bi for the technique that

is chosen at each date must also be stationary, and in fact Figure 9 suggests

this is the case. Notice that this is true despite the fact that the largest value

of bi discovered goes to infinity as the number of draws goes to infinity.

What is going on? The intuition is most easily seen if the production

function for a given technique has a very low elasticity of substitution, e.g.

Leontief. On the one hand, a lower ki ≡ ai/bi is better since a firm can

always throw k away to take advantage of a more productive technique;

this says a high value of b is desirable. On the other hand, it is inefficient to
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FIGURE 9. b∗i Over Time
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Note: The figure plots the value of bi for the technique that is chosen
at each date. See also notes to Figure 6.

throw capital away, so an economy with a given capital-labor ratio k would

like to use a technique that is appropriate at that level, i.e. ki = k. For a

large value of k, this is more easily accomplished with a low value of bi. At

some level, it is the offsetting of these two forces that leads to a stationary

distribution of bi being chosen.

The question this issue obviously raises is whether or not the model can

be consistent with falling relative prices of equipment, such as computers.

This is especially important since falling equipment prices is one of the

motivations for the paper in the first place.

The answer to the question is “Yes,” and the answer itself raises some

interesting issues. Suppose that a particular computer technology, say the

Pentium III processor, is a particular technique — a (ki, yi) pair — and a

new computer technology, say the Itanium processor, is a new technique.

It should be clear intuitively (and playing around with some algebra can
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formalize this intuition) that the introduction of a better technique leads the

price of an existing technique to fall.

This approach suggests treating new computers as new ideas and implies

that the price of a computer incorporates the productivity improvement

associated with the idea. In equilibrium it may well be the case that the only

ideas that get used are those consistent with a stationary yi/ki, and yet the

quality-adjusted price of a particular idea can decline over time. Moreover,

ideas with higher and higher values of bi are always being discovered,

so there is no sense in which research gets restricted to only the labor-

augmenting direction.

This reasoning has an important implication for the current hedonic ap-

proach to prices used by the BEA in the construction of the National Income

and Product Accounts. The current approach treats better computers as

equivalent to more computers, so technological change leads mechanically

to a rising real ratio of equipment to GDP. The approach here suggests that

any given idea has a pair of numbers — an ai and a bi associated with it, and

that these numbers are characteristics that determine prices. There is no

reason that these characteristics should be lumped into a single dimension.

4. DISCUSSION

The basic theory result in this paper is that the long-run production func-

tion is asymptotically Cobb-Douglas under the crucial assumption that

the underlying parameters characterizing the production techniques obey

Pareto distributions. A number of remarks on this result, as well as some

important directions for further research, are appropriate.

The first main comment is that this result is related to a classic result

by Houthakker (1955–1956). Houthakker considers a world of produc-

tion units (e.g. firms) that produce with Leontief technologies where the

Leontief coefficients are distributed across firms according to a Pareto dis-
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tribution. Importantly, each firm has limited capacity, so that the only way

to expand output is to use additional firms. Houthakker then shows that the

aggregate production function across these units is Cobb-Douglas.

The result here obviously builds directly on Houthakker’s insight that

Pareto distributions can generate Cobb-Douglas production functions. The

result differs from Houthakker’s in several ways, however. First, Houthakker’s

result is an aggregation result; it applies exactly at all points in time. It

would, for example, suggest that capital shares at the 2-digit industry level

should be constant. Here, the result is an asymptotic result for a single

production unit (be it a firm, industry, or country), and the result applies to

the long-run production function, i.e. to the shape of the production func-

tion that is relevant if one looks across techniques. Second, the Leontief

restriction in Houthakker’s paper is important for the result; it allows the

aggregation to be a function only of the Pareto distributions. Here, in con-

trast, the result is really about the shape of the long-run production function,

looking across techniques. The local shape of the production function does

not really matter, so that no restriction to the Leontief form for the shape of

a particular technique is needed. Finally, Houthakker’s result relies on the

presence of capacity constraints. If one wants to expand output, one has

to add additional production units, essentially of lower “quality.” Because

of these capacity constraints, his aggregate production functions are char-

acterized by decreasing returns to scale. In contrast, the result here shows

how the nonrivalry of ideas and the constant returns to rivalrous factors that

is implied can be respected: a given technique can be used at any scale of

production.

The second main comment is that Pareto distributions are crucial to the

result. Is it plausible that the distributions for ideas are Pareto?

To begin, let’s develop some intuition for why the Pareto distribution

is important by considering a simple example. Imagine drawing social
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security numbers for the U.S. population at random, and for each person

drawn, record their income and their height. Let ymax denote the maximum

income drawn in a given sample and let hmax denote the maximum height

found in the sample. Then consider the following conditional probability:

Prob {X ≥ γxmax | X ≥ xmax} for γ > 1, where x stands for either

income or height. This probability answers the question: “Given that the

tallest person observed so far is 6 feet 6 inches tall and given that we just

found someone even taller, what is the probability that this new person is

more than 5 percent taller than our 6 foot 6 inch person?” Clearly as hmax

gets larger and larger, this conditional probability gets smaller and smaller

— there is no one in the world taller than ten feet.

In contrast, consider the income draws. Now, the probability answers the

question: “Given that the highest-earning person observed so far has an an-

nual income of $240,000 and given that we just found someone who earns

even more, what is the probability that this new person’s earnings exceed

the previous maximum by more than 5 percent?” It turns out empirically

that this probability does not depend on the level of ymax being consid-

ered. Indeed, it was exactly this observation on incomes that led Pareto to

formulate the distribution that bears his name: the defining characteristic

of the Pareto distribution is that the conditional probability given above is

invariant to xmax.

In applying this example to growth models, one is led to ask whether the

distribution of ideas is more like the distribution of heights or the distribution

of incomes. An important insight into this question was developed by

Kortum (1997). Kortum formulates a growth model where productivity

levels (ideas) are draws from a distribution. He shows that this model

generates steady-state growth only if the distribution has Pareto tails. That

is, what the model requires is that the probability of finding an idea that

is 5 percent better than the current best idea is invariant to the level of
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productivity embodied in the current best idea. Of course, this is almost the

very definition of a steady state: the probability of improving economy-

wide productivity by 5 percent can’t depend on the level of productivity.

This requirement is satisfied only if the tails of the distribution are power

functions, i.e. only if the tails look like the tails of the Pareto distribution.15

A literature in physics on “scale invariance” suggests that if a stochastic

process is to be invariant to scale, it must involve Pareto distributions.

Steady-state growth is simply a growth rate that is invariant to scale (defined

in this context as the initial level of productivity). Whether incomes are at

100 or 1000, steady-state growth requires the growth rate to be the same in

both cases.

Additional insight into this issue emerges from Gabaix (1999). Whereas

Kortum shows that Pareto distributions lead to steady-state growth, Gabaix

essentially shows the reverse in his explanation for Zipf’s Law for the size

of cities. He assumes that city sizes grow at a common exponential rate

plus an idiosynchratic shock. He then shows that this exponential growth

generates a Pareto distribution for city sizes.16

These papers by Kortum and Gabaix suggest that Pareto distributions and

exponential growth are really just two sides of the same coin. The result

in the present paper draws out this connection further and highlights the

additional implication for the shape of production functions. Not only are

Pareto distributions necessary for exponential growth, but they also imply

that the long-run production function takes a Cobb-Douglas form.

15Kortum also shows that if the tails of the distribution are thinner than Pareto, as is the
case for the log normal or exponential distributions, then exponential growth rates decline
to zero. If the tails are thicker, then presumably growth rates rise over time, but it is not
clear to me that this case is fully considered by Kortum.

16An important additional requirement in the Gabaix paper is that there be some positive
lower bound to city sizes that functions as a reflecting barrier. Otherwise, for example,
normally distributed random shocks results in a log-normal distribution of city cizes.
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5. CONCLUSIONS

This paper outlines four stylized facts with which growth models should

be consistent: steady states, capital shares that are not necessarily constant,

an elasticity of substitution between capital and labor that is less than one,

and the presence of technological progress that is embodied in some kinds

of capital like computers. Superficially, these facts appear to pose a puzzle

for growth theory given the well-known theorem that steady-state growth

requires labor-augmenting technical change or Cobb-Douglas production.

This puzzle can be resolved by recognizing that the short-run and long-

run elasticities of substitution between capital and labor are likely to be

different, with the elasticity being much lower in the short run. A simple

example of a production function with these characteristics is the SR/LR

production function introduced in equation (1), which is related to the lit-

erature on appropriate technologies.

Motivated by this production function, the paper emphasizes a particu-

lar view of production functions. A production technique is an idea that

indicates how to produce with a particular amount of capital per person.

While it is possible to use the technique with a different capital-labor ratio,

diminishing returns sets in quickly as the elasticity of substitution is less

than one. If one wants to produce with a much larger capital-labor ratio,

one really needs a new technique. Therefore, the long-run shape of the

production function is intimately tied to the distribution of ideas.

Finally, the paper builds on insights by Houthakker (1955–1956) and

Kortum (1997) to show that if the distributions related to ideas are Pareto

distributions, then the long-run production function has a Cobb-Douglas

form, where the exponents in the production function depend on the pa-

rameters of the idea distributions.
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APPENDIX A

The Steady-State Growth Theorem

That steady-state growth implies either a Cobb-Douglas production func-

tion or labor-augmenting technical change is known at some level by all

growth economists. The exact nature of the result, however, is sometimes

unclear, or at least it was to me. For example, Barro and Sala-i-Martin

(1995) state and prove the result in the Appendix to Chapter 2, but only

in the following way: if there is a steady state and if technical change

is factor augmenting, then it must be labor augmenting. This seems to

open the door to the possibility that one can get steady-state growth with

non-factor-augmenting technological change. As it turns out, this is not

true.

To show what is and is not possible, we begin with the factor augmenting

version of the theorem and then explain how the more general theorem is

proved.

Theorem A.1. Suppose Yt = F (BtKt, AtLt) is the production func-

tion for a neoclassical growth model, where t indexes time and Bt and At

represent exogenous technological change at constant exponential rates.1

If the model exhibits a steady state with a constant rate of growth of Y/L,

and constant, nonzero factor shares FLL/Y and FKK/Y , then along the

balanced growth path either Bt is constant or the production function is

Cobb-Douglas.

1By neoclassical growth model, we mean that there is a standard capital accumulation
equation, requiring the growth rate of Y to equal the growth rate of K in the steady state. In
addition, the production function exhibits constant returns to scale in K and L and satisfies
FK ≥ 0, FL ≥ 0, FKK ≤ 0, FLL ≤ 0. In addition, we will require an Inada condition
limK→∞ FK = 0. This condition is needed to rule out the possibility that the production
function is asymptotically linear in capital.
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Proof of Theorem A.12

Differentiating the production function leads to the standard growth ac-

counting formula

Ŷt = αKt(B̂t + K̂t) + αLt(Ât + L̂t),

where hats denote growth rates and αxt ≡
Fxx
Y denotes the factor share for

x. Since Ŷ = K̂ in steady state and since constant returns leads to factor

shares that add to one, this equation reduces in steady state to

Ŷ =
α

1 − α
B̂ + Â + L̂ (A.1)

where α = limt→∞ αKt ∈ (0, 1) denotes the limiting value of the capital

share. Therefore

ỹt ≡
Yt

B
α/(1−α)
t AtLt

must be constant in steady state.

Since K/Y and α are constant in steady state, the marginal product

of capital must be constant as well. Indeed, this is the key to the proof:

unless either Bt is constant or the production function is Cobb-Douglas,

the marginal product will not be constant. To see this, let f(x) ≡ F (x, 1)

denote the production function describing the amount of output that can be

produced with 1 unit of labor in efficiency units and x units of capital in

efficiency units. Then, we have

∂Yt

∂Kt
= BtF1(BtKt, AtLt)

= BtF1(
BtKt

AtLt
, 1)

= Btf
′(

BtKt

AtLt
)

= Btf
′(B

1
1−α
t k̃t),

2This proof is motivated by the one in Barro and Sala-i-Martin (1995), but contains more
intuition and emphasizes the importance of nonzero factor shares.
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where k̃t ≡
Yt

B
α/(1−α)
t AtLt

.

Then the marginal product of capital can be constant in two ways. First,

Bt could be constant, in which case technical change is labor augmenting.

Second, the production function f(·) could be such that the exponential

rise in B exactly cancels. It is easy to see that this can occur only if

f ′(x) = Cx−(1−α), where C is some constant. Therefore, f(x) = C̄xα,

where C̄ = C/α.3 Since Y/AL = f(BK/AL), the production function

must, at least in steady state, be given by Y = C̄(BK)α(AL)1−α. QED.

Remarks

A couple of clarifying remarks about this result are helpful. First, the

intuition. For the capital share to be positive and constant, the marginal

product of capital must be positive and constant. The only way this can

happen is either if Bt is constant or if the production function is Cobb-

Douglas. Otherwise, the rise in Bt causes the marginal product of capital

to trend (e.g. to fall to zero if the elasticity of substitution in production is

less than one).

Second, the theorem as stated and proved shows only that if technolog-

ical change is factor-augmenting, then it must be labor-augmenting. This

seems to suggest the possibility that technological change that is not factor

augmenting might give rise to a steady state, at least under some circum-

stances. This is not correct. The correct statement of the full theorem

applies to a more general production function F (K, L, t). The full theo-

rem is proved by Uzawa (1961) in the following way. First, consider the

following definition, due to Harrod (1948):

Definition A.1. Technical change is said to be Harrod-neutral
if, holding constant K/Y , the technical change leaves factor shares (e.g.
FKK/Y ) unchanged.

3This can be proved formally by solving the implied differential equation for f(x).
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Then, if we want a steady state with constant factor shares, by definition

the technical change must be Harrod-neutral. Uzawa (1961) establishes the

now well-known equivalence between Harrod-neutral technical change and

labor-augmenting technical change. Therefore, to get a steady state with

constant factor shares, it must be possible to write the production function

so that technical change is labor augmenting.

Third, the requirement in the theorem that factor shares be nonzero is im-

portant, as the following simple example shows. Suppose the production

function is Y = F (BK, AL), where F (·, ·) is a standard CES production

function with an elasticity of substitution less than one. If B and A grow

at constant exponential rates, then a neoclassical growth model with this

production function does converge to a balanced growth path. The cap-

ital share falls to zero and the economy behaves asymptotically as if the

production function were simply Y = AL.4

APPENDIX B

Data Sources for Capital Shares

Two data sources are used for computing the capital shares. Employee

compensation as a share of GDP is calculated using the United Nations Na-

tional Accounts database, purchased from the United Nations Statistics Di-

vision. This database contains, in electronic format, the data corresponding

to the National Accounts Statistics, Part 1, Main Aggregates and Detailed

4Krusell et al. (2000) provide an interesting example of this. They assume a four-factor
production function that depends on structures, equipment, skilled labor, and unskilled
labor, with a general nested CES structure. The equipment-specific technological change
that they assume essentially means that the equipment share of factor payments goes to
zero: equipment and skill are more complementary than Cobb-Douglas, so the equipment-
specific technical change makes that particular CES function ultimately proportional to just
the quantity of skilled labor. Hence this paper gets steady state growth with a non-Cobb-
Douglas production function, but only in the limit as the equipment share of factor payments
to goes to zero.
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FIGURE 9. The Two Cases in (ai, bi) Space
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Tables for the years 1950–1997. The 1997 end date occurs because 1997

is the last year that the 1968 version of the System of National Accounts

was used. The data come from Table 103. Employee compensation is line

5, while GDP is line 13 of the table.

The correction for self-employment is done using data from the OECD

Labour Force Statistics publication. The underlying data series is wage

earners and salaried employees as a share of total civilian employment and

comes from Section IIIA of the publications. Data from three different

editions of this publication is compiled, the 1971 edition (years 1958–

1969), the 1985 edition (years 1963–1983), and the 2002 edition (years

1981–2001). Data are spliced in 1963 and in 1981, using a constant factor

of proportionality based on the values in those years.

APPENDIX C

As discussed in the text, there are two cases in general that need to be

considered in the model: k ≥ γa/γb and k < γa/γb. Figure 9 shows these

cases graphically. The first three propositions prove the results for Case 1.
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Proposition C.1 then gives the results for Case 2.

Proof of Proposition 3.1

This is the proof of the proposition that characterizes the distribution of

output per worker y that can be produced given a technique that operates

with capital per worker k, for Case 1.

By Bayes’ Law,

F (y; k) ≡ Prob {ai ≤ y |
ai

bi
≤ k}

=
Prob {ai ≤ y and ai

bi
≤ k}

Prob {ai
bi

≤ k}
. (C.1)

Call the numerator of this expression H(y, k) and call the denominator

G(k). That is, H(y, k) is the relevant joint probability and G(k) is the

unconditional probability that a technique can be used with capital per

worker equal to k. We now calculate these two probabilities.

First, consider H(y, k). Let g1(a) ≡ G′

1(a) and g2(b) ≡ G′

2(b) be the

densities of the Pareto distributions, and let g(a, b) ≡ g1(a)g2(b) be the

joint density (since the distributions are independent).

Figure 9 shows graphically how to calculate the probability. For Case 1,

we have

H(y, k) ≡ Prob {ai ≤ y |
ai

bi
≤ k}

=

∫ ∫

R1

g(a, b)dadb +

∫ ∫

R2

g(a, b)dadb

=

∫ y/k

γb

∫ kb

γa

g1(a)dag2(b)db +

∫

∞

y/k

∫ y

γa

g1(a)dag2(b)db.

Straightforward evaluation of the integrals reveals that

H(y, k) = 1 −
β

α + β

(

γa

γb

)α

k−α −
α

α + β
γα

a γβ
b kβy−(α+β). (C.2)
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Next, consider G(k). By a similar argument,

G(k) ≡ Prob {ai ≤ kbi} =

∫

∞

γb

∫ kb

γa

g1(a)dag2(b)db

=

∫

∞

γb

G1(kb)g2(b)db

= 1 −
β

α + β

(

γa

γb

)α

k−α. (C.3)

Finally, combining the results from equations (C.1), (C.2), and (C.3), we

have the desired result for Case 1:

F (y; k) = 1 − θ(k)y−(α+β), (C.4)

where

θ(k) ≡

α
α+β γα

a γβ
b kβ

1 − β
α+β

(

γa

γb

)α
k−α

. (C.5)

Q.E.D.

Proof of Proposition 3.2

This proposition provides the distribution of techniques that can work

with a capital per worker level less than k. It was proven above, as part of

the proof of Proposition 3.1; see equation (C.3) above.

Proof of Proposition 3.3

This proposition applies an extreme value theorem of Galambos (1978)

to show that the distribution of the largest amount of output per worker

y∗ that can be produced with a given quantity of capital per worker k∗ is

distributed according to the Frechet distribution. To begin, it is useful to

state the extreme value theorem itself, Theorem 2.1.1 of Galambos (1978).1

1See also Kortum (1997) and Billingsley (1986) for discussions of this theorem.
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Theorem C.1 (2.1.1 of Galambos 1978). Let x be a random vari-

able drawn from a distribution F (x), with sup{x : F (x) < 1} = +∞.

Assume there is a constant γ > 0 such that, for all x > 0,

lim
τ→∞

1 − F (τx)

1 − F (τ)
= x−γ . (C.6)

Consider n draws of x from the distribution F , and let Zn denote the

maximum value from these n draws. Then there is a sequence bn > 0 such

that,

lim
n→∞

Prob {Zn < bnx} = H1,γ(x), (C.7)

where

H1,γ =

{

exp(−x−γ) if x > 0
0 otherwise.

(C.8)

The normalizing constant bn can be chosen as

bn = inf{x : 1 − F (x) ≤
1

n
}. (C.9)

This theorem has the following interpretation. The (normalized) distri-

bution of the maximum value drawn from a distribution with a Pareto (i.e.

power function) upper tail converges to the Frechet distribution as the num-

ber of draws goes to infinity. The normalizing factor is given by bn in the

theorem.

This theorem applies directly to our problem. The distribution F (y; k)

in the upper tail (i.e. for any y ≥ kγb ≥ γa, which is just Case 1) is exactly

Pareto. Let y∗ ≡ maxi{ai : ai/bi ≤ k∗}. Let N(k∗) denote the number

of techniques that can be used with capital per worker k∗. Then, as a direct

application of the Galambos theorem,

lim
N(k∗)→∞

Prob {
1

bN
y∗ ≤ x} = exp(−x−(α+β)) (C.10)
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for x > 0.

The normalizing sequence bN is given by

bN = inf{y : 1 − F (y; k∗) ≤
1

N(k∗)
}

= inf{y : θ(k∗)y−(α+β) ≤
1

N(k∗)
}

= (θ(k∗)N(k∗))1/(α+β),

which completes the proof the proposition. Q.E.D.

The Results for Case 2

We now state and prove the proposition that derives the analogous results

in Propositions 4.1 to 4.3 for Case 2.

Proposition C.1. In Case 2, i.e. when y ≥ γa and k < γa/γb, we

have the following results:

1. The important probabilities are given by

H(y, k) ≡ Prob {ai ≤ y |
ai

bi
≤ k}

=
α

α + β

(

γb

γa

)β

kβ

(

1 −

(

y

γa

)

−(α+β)
)

. (C.11)

G(k) ≡ Prob {ai ≤ kbi}

=
α

α + β

(

γb

γa

)β

kβ . (C.12)

F (y; k) = 1 −

(

y

γa

)

−(α+β)

(C.13)

2. The Galambos theorem applies so that

lim
N(k∗)→∞

Prob {
1

bN
y∗ ≤ x} = exp(−x−(α+β)) (C.14)
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for x > 0.

The normalizing sequence bN is given by

bN = inf{y : 1 − F (y; k∗) ≤
1

N(k∗)
}

= γa(N(k∗))1/(α+β),

3. Finally, letting N denote the total number of techniques, the produc-

tion function behaves asymptotically as

y∗ = AN
1

α+β k
∗

β
α+β ε

where A ≡
(

α
α+β γα

a γβ
b

)
1

α+β , and where ε is an i.i.d. random variable

drawn from the Frechet distribution given above.

The proof of this proposition follows the same logic as the proof of

Propositions 4.1 through 4.3, and the reasoning given in the text to derive

the behavior of the production function in the long run.
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