Directory

Blank slide
Introduction Overview
Outline
I. Baseline Model
Fig. 1: GlobalPF
Simple Model
Fig. 2: Direction of TC
Solution
Result 1. CD
Result 2. LATC
Proving LATC
Intuition
Clarifying the Result
Discussion
II. Microfoundations for the Model

Distribution of Y_i
The Global PF
Cobb-Douglas Remarks
III. Discussion
1. Baseline
2. Houthakker
3. Evidence for Pareto
IV. LATC
V. Simulation Results
Fig. 3: Cobb-Douglas Parameter Values
Fig. 4: Production
Fig. 5: Output over Time
Fig. 6: Capital Share
Fig. 7: LATC
Conclusions
The Shape of Production Functions and the Direction of Technical Change

Charles I. Jones
U.C. Berkeley and NBER
Introduction

- Macro/growth literatures: strong assumptions on PF and direction of technical change. Justification?
- What is a production function? $y = f(k, t)$
 - Leontief example.
 - Switching from low k to high k may involve very different production techniques/ideas.
 - A production function is not a single technology, but rather represents the substitution possibilities across different techniques.
- The global shape of the production function is determined by the distribution of ideas.
Overview

- Results:
 1. A production function with
 - low EofS for any given technique
 - Cobb-Douglas global production function.
 2. A theory of LATC
 - Possibility of KATC in model, but
 - Economy “chooses” LATC only in LR.
 - cf Acemoglu (2003)
Outline

1. Baseline Model
2. Model w/ Microfoundations
3. Discussion: Role of Pareto
4. Embed in a growth model: LATC
5. Simulation Results
Baseline Model: Preliminaries

- Idea = \((a_i, b_i)\). Production with technique \(i\):
 \[Y = \tilde{F}(b_i K, a_i L) \quad \leftarrow \text{the local production function} \]
 where \(\tilde{F}\) is a neoclassical PF with EofS < 1.

- Rewrite in per worker terms as
 \[y = a_i \tilde{F}\left(\frac{b_i}{a_i}, 1\right), \]

- Define \(y_i = a_i\) and \(k_i = a_i / b_i\). Then
 \[y = y_i \tilde{F}\left(\frac{k}{k_i}, 1\right) \]
 so that \(k = k_i \Rightarrow y = y_i\).
The Global Production Function
Simple Model

- Firm has a stock of knowledge, N, that generates a menu of ideas
 \[H(a, b) = N, \quad H_a > 0, \quad H_b > 0. \]
 (1)

- Associated with any idea (a, b) is a local production technique, as above.

- The global production function gives the highest output that can be produced using this menu:
 \[Y = F(K, L; N) \equiv \max_{b, a} \tilde{F}(bK, aL) \]

subject to the technology menu constraint in (1).
Fig. 2: Direction of Technical Change

\[H(a, b) = N \]

\[Y = Y^* \]
First-order condition:

\[
\frac{\theta_K}{\theta_L} = \frac{\eta b}{\eta a},
\]

where \(\theta_K(a, b; K, L) \equiv \tilde{F}_1 bK/Y\), \(\theta_L = 1 - \theta_K\), \(\eta_x \equiv \frac{\partial H}{\partial x} \frac{x}{H}\).

Key special case: Constant elasticity menu

\[
H(a, b) \equiv a^\alpha b^\beta = N.
\]

\[\Rightarrow \theta_K = \beta/\alpha + \beta.\]

i.e. Capital share is constant for any \(K, L\), and \(N\).

This leads to two results.
Result 1. Cobb-Douglas

- The capital share is constant for any K, L, N

 \Rightarrow The global production function is Cobb-Douglas.

- Derive exact form:

 $$ y_i = a_i $$

 $$ k_i = \frac{a_i}{b_i} $$

 Technology menu then implies:

 $$ y_i = (N k_i^\beta)^{\frac{1}{\alpha+\beta}}. $$

- The global production function equals this menu:

 $$ Y = \left(NK^\beta L^\alpha\right)^{\frac{1}{\alpha+\beta}}. $$
Result 2. LATC

- Embed this production setup in a standard neoclassical growth model
- Global Cobb-Douglas implies BGP exists if \(N \) grows exponentially.
- Steady-State Growth Theorem: In a steady state, either
 - Production is Cobb-Douglas, or
 - Technical change is labor augmenting.
- Production always occurs with some local PF, and the local is not Cobb-Douglas. Therefore LATC.
Proving LATC

- Rewrite the FOC as

\[
\frac{bK \tilde{F}_1(bK, aL)}{aL \tilde{F}_2(bK, aL)} = \frac{\beta}{\alpha}.
\]

- Define \(x \equiv bK/aL \). \(\tilde{F} \) CRS \(\Rightarrow \) the marginal products are HD0:

\[
\frac{x \tilde{F}_1(x, 1)}{\tilde{F}_2(x, 1)} = \frac{\beta}{\alpha}.
\]

\(\Rightarrow x \) must be constant.
Proof (continued)

- To show: x constant requires b constant in SS. Recall

$$Y_t = F(K_t, L_t; N_t) = \tilde{F}(b_t K_t, a_t L_t),$$

where b_t and a_t are the optimal choices of the technology levels.

- Because \tilde{F} exhibits constant returns, we have

$$\frac{Y_t}{a_t L_t} = \tilde{F} \left(\frac{b_t K_t}{a_t L_t}, 1 \right).$$

- $x = bK/aL$ constant \Rightarrow Y/aL constant \Rightarrow bK/Y constant.

- K/Y is constant in SS \Rightarrow b constant. QED.
Intuition

Because local PF is not Cobb-Douglas, balanced growth requires \(bK \) and \(aL \) to grow at the same rate.

- \(Y = \tilde{F}(bK, aL) \) suggests new interpretation of “balanced”
- \(bK \) and \(aL \) must balance to keep factor shares stable.

Can only happen with \(b \) constant.
- Recall, \(b \) constant means \(K/aL \) constant.
- If \(b \) grew, so would \(bK/aL \).
Clarifying the Result

- Well-known that with Cobb-Douglas production, the direction of technical change has no meaning.
- So how can we have both?
- Recall:

\[Y_t = F(K_t, L_t; N_t) = \tilde{F}(b_t K_t, a_t L_t). \]

\text{global pf} \quad \text{local pf}

- Global production function \(F(K, L; N) \) is Cobb-Douglas. Local production function \(\tilde{F}(bK, aL) \) has LATC.
Discussion

- Acemoglu (2003) has related results in a Romer-type model:
 - LATC if production function for ideas is “just so”
 - Capital share in LR is invariant to policy
Model with Microfoundations

Assume the local production function is Leontief:

\[Y = \hat{F}(b_i K, a_i L) = \min\{b_i K, a_i L\} \]

Ideas drawn from independent Pareto distributions:

\[\text{Prob} [a_i \leq a] = 1 - \left(\frac{a}{\gamma_a} \right)^{-\alpha}, \quad a \geq \gamma_a > 0 \]

\[\text{Prob} [b_i \leq b] = 1 - \left(\frac{b}{\gamma_b} \right)^{-\beta}, \quad b \geq \gamma_b > 0. \]

Then, \(G(b, a) \equiv \text{Prob} [b_i > b, a_i > a] = \left(\frac{b}{\gamma_b} \right)^{-\beta} \left(\frac{a}{\gamma_a} \right)^{-\alpha} \)
Distribution of Output from Idea \(i \)

Let \(Y_i(K, L) \) denote output with idea \(i \). Since \(\tilde{F} \) is Leontief, the distribution of \(Y_i \) is

\[
H(\tilde{y}) \equiv \text{Prob}[Y_i > \tilde{y}] = \text{Prob}[b_i K > \tilde{y}, a_i L > \tilde{y}]
\]

\[
= G \left(\frac{\tilde{y}}{K}, \frac{\tilde{y}}{L} \right)
\]

\[
= \gamma K^\beta L^\alpha \tilde{y}^{-(\alpha+\beta)},
\]

where \(\gamma \equiv \gamma_a^\alpha \gamma_b^\beta \).

That is, the distribution of \(Y_i \) is also Pareto.
The Global Production Function

- Assume only one technique can be used at a time.
- Let N denote the number of ideas, drawn independently.
- The global production function $F(K, L; N)$ is given as

$$F(K, L; N) \equiv \max_{i \in \{1, \ldots, N\}} \tilde{F}(b_iK, a_iL).$$

- Let $Y = F(K, L; N)$. Then

$$\text{Prob}[Y \leq \tilde{y}] = (1 - H(\tilde{y}))^N.$$

$$= \left(1 - \gamma K^{\beta} L^{\alpha} \tilde{y}^{-(\alpha + \beta)} \right)^N.$$
(continued)

\[
\text{Prob} [Y \leq \tilde{y}] = \left(1 - \gamma K^\beta L^\alpha \tilde{y}^{-(\alpha+\beta)} \right)^N.
\]

- As \(N \) gets large, this probability goes to zero.
 \[\Rightarrow \text{normalize to get a stable distribution} \]

\[z_N \equiv \left(\gamma N K^\beta L^\alpha \right)^{\frac{1}{\alpha+\beta}}. \]

- Then,

\[
\text{Prob} [Y \leq z_N \tilde{y}] = \left(1 - \gamma K^\beta L^\alpha \left(z_N \tilde{y} \right)^{-(\alpha+\beta)} \right)^N
\]

\[= \left(1 - \frac{\tilde{y}^{-(\alpha+\beta)}}{N} \right)^N. \]
The Cobb-Douglas Result

- Now, let N get large

$$\lim_{N \to \infty} \text{Prob}[Y \leq z_N \tilde{y}] = \exp(-\tilde{y}^{-(\alpha+\beta)})$$

- Or,

$$Y \quad \frac{Y}{(\gamma N K^\beta L^\alpha)^{1/\alpha+\beta}} \overset{a}{\sim} \text{Fréchet}(\alpha + \beta).$$

- And therefore, for large N,

$$Y \approx \left(\gamma N K^\beta L^\alpha\right)^{\frac{1}{\alpha+\beta}} \epsilon$$
Remarks

\[Y \approx \left(\gamma N K^\beta L^\alpha \right)^{\frac{1}{\alpha+\beta}} \epsilon \]

1. Appendix: Poisson process for discovery of ideas yields the result for finite \(N \).

2. Cobb-Douglas exponent depends on parameters of search distributions
 - Easier to find ideas → lower exponent.
 - Intuition: EofS < 1.

3. \(\epsilon \) is an iid shock drawn from a Fréchet distribution.

4. Higher \(N \) implies Higher \(Y \).

5. Obviously Pareto assumption is crucial to result. More on this shortly.
Discussion: 1. Baseline Model

- Baseline model: constant elasticity in technology menu.
- Here, stochastic version. Consider iso-probability curve:

\[\text{Prob} \left[b_i > b, a_i > a \right] \equiv G(b, a) = C. \]

With Pareto,

\[b^\beta a^\alpha = \frac{\gamma}{C}. \]

- Stochastic version of the baseline technology menu.
 - Pareto delivers \(\eta_b = \beta \) and \(\eta_a = \alpha \)
 - \(1/C \) plays the role of \(N \)
 - Get the same form for the production function.
2. Comparison to Houthakker (1955)

- Pareto+Leontief = Cobb-Douglas is Houthakker
- Houthakker’s result is an aggregation result
 - Continuum of firms with capacity constraints.
 - Firm PF: Leontief, with requirements ~ Pareto.
 - Aggregate PF: Cobb-Douglas with DRS
- Result here:
 - Result applies for a firm/industry/country
 - Applies to global production function, i.e. across techniques.
 - No restriction to Leontief for SR PF (technique)
 - Nonrivalry of ideas ⇒ CRS
3. Evidence for Pareto Distributions

- Key property: $\text{Prob} \left[X \geq \gamma x \mid X \geq x \right]$ for $\gamma > 1$ is independent of x.

- Empirical evidence for incomes, patent values, profitability, citations, firm size, stock returns.
 - Benchmark in literature is to test Pareto
 - Findings: Pareto (sometimes hard to distinguish from Lognormal)

- Kortum (1997):
 - Assume a production function and draw a_i only
 - Iff ideas are from a Pareto distribution, then we get exponential growth
Why is Pareto so important?

- Steady-state growth requires probability the new best idea exceeds frontier by 5% is invariant to y.
- Gabaix (1999) shows the reverse. Exponential growth delivers a Pareto distribution for city sizes (Zipf).

This suggests that Pareto Distributions and exponential growth are two sides of the same coin.

- What I add is that this same basic assumption delivers two additional results:
 1. Cobb-Douglas production
 2. Labor-augmenting technical change (next).
Embed this setup in a neoclassical growth model

\[Y_t = \left(\gamma N_t K_t^\beta L_t^\alpha \right)^{\frac{1}{\alpha + \beta}} \epsilon_t. \]

\[K_{t+1} = (1 - \delta) K_t + sY_t \]

\[N_t = N_0 e^{gt} \]

Therefore, steady-state growth in \(Y/L \):

\[E[\log \frac{y_{t+1}}{y_t}] \approx \frac{g}{\alpha}. \]

Note: depends on \(\alpha \) but not \(\beta \).
Model exhibits a stable balanced growth path, because of global Cobb-Douglas production.

However, production at date \(t \) occurs with some technique \(i(t) \):

\[
Y_t = \tilde{F}(b_i(t) K_t, a_i(t) L_t).
\]

Now use Steady-State Growth Theorem:
- The production function for a technique is not Cobb-Douglas,
- so Steady State implies that \(b_i(t) \) is stationary!

That is, technical change in this model is (asymptotically) labor-augmenting.
- This is true even though \(\max_i b_i \to \infty \).
Simulating the Model

- Relax Leontief and allow multiple techniques
- CES production technique:

\[Y_t = \tilde{F}(b_i K_t, a_i L_t) = (\lambda (b_i K_t)^\rho + (1 - \lambda)(a_i L_t)^\rho)^{1/\rho} \]

- First, show Cobb-Douglas.
 - \(N = 500, \alpha = 5, \beta = 2.5, \rho = -1. \)
 \[\Rightarrow \frac{\beta}{\alpha + \beta} = \frac{1}{3}. \]
 - Compute convex hull and sample a \((k, y)\) point randomly.
 - Repeat 1000 times and plot the sample.
Fig. 3: The Cobb-Douglas Result

\[\log y \]

![Graph showing log y vs. log k]

- OLS Slope = 0.320
- Std. Err. = 0.006
- \(R^2 \) = 0.75

Production Functions and Technical Change – p.32/38
Full Dynamic Simulation

Parameter Values: $N_0 = 50$, $g = .10$, $\alpha = 5$, $\beta = 2.5$, $\gamma_a = 1$, $\gamma_b = 0.2$, $k_0 = 2.5$, $s = 0.2$, $\lambda = 1/3$, $\delta = .05$, and $\rho = -1$.

- Growth should average 2 percent
- Cobb-Douglas capital share 1/3
Production Functions and Technical Change

Fig. 4: Production

Output per Worker, y

Capital per Worker, k
Fig. 5: Output per Worker

Output per Worker (log scale)

Time

Production Functions and Technical Change
Fig. 6: The Capital Share over Time
Fig. 7: Technology Choices

Capital–Aug. Technology, b

Labor–Augmenting Technology, a
Conclusions

- Houthakker + Kortum =
 - Exponential growth
 - Cobb-Douglas (global) production function
 - Labor-augmenting technical change.

The Pareto distribution buys us a lot!

Extensions and future work:
- Skilled versus unskilled labor?
- What about computers and ISTC? GHK, Whelan, etc.?