Directory

Directory Blank slide Introduction Overview Outline I. Baseline Model Fig. 1: GlobalPF Simple Model Fig. 2: Direction of TC Solution Result 1. CD Result 2. LATC Proving LATC Intuition Clarifying the Result Discussion II. Microfoundations for the Model

Distribution of Y_i The Global PF Cobb-Douglas Remarks III. Discussion 1. Baseline 2. Houthakker 3. Evidence for Pareto IV. LATC V. Simulation Results Fig. 3: Cobb-Douglas Parameter Values Fig. 4: Production Fig. 5: Output over Time Fig. 6: Capital Share Fig. 7: LATC Conclusions

The Shape of Production Functions and the Direction of Technical Change

Charles I. Jones U.C. Berkeley and NBER

Introduction

- Macro/growth literatures: strong assumptions on PF and direction of technical change. Justification?
- What is a production function? y = f(k, t)
 - Leontief example.
 - Switching from low k to high k may involve very different production techniques/ideas
 - A production function is not a single technology, but rather represents the substitution possibilities across different techniques
- The global shape of the production function is determined by the distribution of ideas.

Overview

- Kortum (1997) meets Houthakker (1955): Growth and Pareto Distributions
- Results:
 - 1. A production function with
 - low EofS for any given technique
 - Cobb-Douglas global production function.
 - 2. A theory of LATC
 - Possibility of KATC in model, but
 - Economy "chooses" LATC only in LR.
 - cf Acemoglu (2003)

Outline

- 1. Baseline Model
- 2. Model w/ Microfoundations
- 3. Discussion: Role of Pareto
- 4. Embed in a growth model: LATC
- 5. Simulation Results

Baseline Model: Preliminaries

• Idea = (a_i, b_i) . Production with technique *i*:

 $Y = \tilde{F}(b_i K, a_i L) \quad \leftarrow \text{ the local production function}$

where \tilde{F} is a neoclassical PF with EofS<1.

Rewrite in per worker terms as

$$y = a_i \tilde{F}(\frac{b_i}{a_i}k, 1),$$

• Define $y_i = a_i$ and $k_i = a_i/b_i$. Then

$$y = y_i \tilde{F}\left(\frac{k}{k_i}, 1\right)$$

so that $k = k_i \Rightarrow y = y_i$.

Production Functions and Technical Change Δ – p.7/38

The Global Production Function

Simple Model

 Firm has a stock of knowledge, N, that generates a menu of ideas

$$H(a,b) = N, \quad H_a > 0, \quad H_b > 0.$$
 (1)

- Associated with any idea (a, b) is a local production technique, as above.
- The global production function gives the highest output that can be produced using this menu:

$$Y = F(K, L; N) \equiv \max_{b,a} \tilde{F}(bK, aL)$$

subject to the technology menu constraint in (1).

Fig. 2: Direction of Technical Change

Solution

First-order condition:

$$\frac{\theta_K}{\theta_L} = \frac{\eta_b}{\eta_a},$$

where $\theta_K(a,b;K,L) \equiv \tilde{F}_1 b K / Y$, $\theta_L = 1 - \theta_K$, $\eta_x \equiv \frac{\partial H}{\partial x} \frac{x}{H}$.

Key special case: Constant elasticity menu

$$H(a,b) \equiv a^{\alpha}b^{\beta} = N.$$

$$\Rightarrow \theta_K = \beta / \alpha + \beta.$$

i.e. Capital share is constant for any K, L, and N.

This leads to two results.

Result 1. Cobb-Douglas

- The capital share is constant for any K, L, N
 - \Rightarrow The global production function is Cobb-Douglas.
- Derive exact form:

$$y_i \equiv a_i$$
$$k_i \equiv \frac{a_i}{b_i}$$

Technology menu then implies:

$$y_i = (Nk_i^\beta)^{\frac{1}{\alpha+\beta}}.$$

The global production function equals this menu:

$$Y = \left(NK^{\beta}L^{\alpha} \right)^{\frac{1}{\alpha+\beta}}$$

Result 2. LATC

- Embed this production setup in a standard neoclassical growth model
- Global Cobb-Douglas implies BGP exists if N grows exponentially.
- Steady-State Growth Theorem: In a steady state, either
 - Production is Cobb-Douglas, or
 - Technical change is labor augmenting.
- Production always occurs with some local PF, and the local is not Cobb-Douglas. Therefore LATC.

Proving LATC

Rewrite the FOC as

$$\frac{bK\tilde{F}_1(bK,aL)}{aL\tilde{F}_2(bK,aL)} = \frac{\beta}{\alpha}.$$

• Define $x \equiv bK/aL$. \tilde{F} CRS \Rightarrow the marginal products are HD0:

$$\frac{x\tilde{F}_1(x,1)}{\tilde{F}_2(x,1)} = \frac{\beta}{\alpha}$$

 $\Rightarrow x$ must be constant.

Proof (continued)

• To show: x constant requires b constant in SS. Recall

$$Y_t = F(K_t, L_t; N_t) = \tilde{F}(b_t K_t, a_t L_t),$$

where b_t and a_t are the optimal choices of the technology levels.

• Because \tilde{F} exhibits constant returns, we have

$$\frac{Y_t}{a_t L_t} = \tilde{F}\left(\frac{b_t K_t}{a_t L_t}, 1\right)$$

- x = bK/aL constant $\Rightarrow Y/aL$ constant $\Rightarrow bK/Y$ constant.
- K/Y is constant in SS $\Rightarrow b$ constant. QED.

Intuition

- Because local PF is not Cobb-Douglas, balanced growth requires bK and aL to grow at the same rate.
 - $Y = \tilde{F}(bK, aL)$ suggests new interpretation of "balanced"
 - bK and aL must balance to keep factor shares stable.
- Can only happen with b constant.
 - Recall, b constant means K/aL constant.
 - If *b* grew, so would bK/aL...

Clarifying the Result

- Well-known that with Cobb-Douglas production, the direction of technical change has no meaning.
- So how can we have both?
- Recall:

$$Y_t = F(K_t, L_t; N_t) = \tilde{F}(b_t K_t, a_t L_t).$$

global pf local pf

• Global production function F(K, L; N) is Cobb-Douglas. Local production function $\tilde{F}(bK, aL)$ has LATC.

Discussion

- Related to World Technology Frontier problem in Caselli-Coleman (2004).
- Early literature on direction of TC chose growth rates: Kennedy (1964), Samuelson (1965), Drandakis and Phelps (1966).
- Acemoglu (2003) has related results in a Romer-type model:
 - LATC if production function for ideas is "just so"
 - Capital share in LR is invariant to policy

Model with Microfoundations

Assume the local production function is Leontief:

$$Y = \tilde{F}(b_i K, a_i L) = \min\{b_i K, a_i L\}$$

Ideas drawn from independent Pareto distributions:

$$\operatorname{Prob}\left[a_{i} \leq a\right] = 1 - \left(\frac{a}{\gamma_{a}}\right)^{-\alpha}, \quad a \geq \gamma_{a} > 0$$

$$\operatorname{Prob}\left[b_{i} \leq b\right] = 1 - \left(\frac{b}{\gamma_{b}}\right)^{-\beta}, \quad b \geq \gamma_{b} > 0.$$

• Then, $G(b,a) \equiv \operatorname{Prob}\left[b_i > b, a_i > a\right] = \left(\frac{b}{\gamma_b}\right)^{-\beta} \left(\frac{a}{\gamma_a}\right)^{-\alpha}$

Distribution of Output from Idea *i*

• Let $Y_i(K, L)$ denote output with idea *i*. Since \tilde{F} is Leontief, the distribution of Y_i is

$$\begin{split} H(\tilde{y}) &\equiv \operatorname{Prob}\left[Y_i > \tilde{y}\right] &= \operatorname{Prob}\left[b_i K > \tilde{y}, a_i L > \tilde{y}\right] \\ &= G\left(\frac{\tilde{y}}{K}, \frac{\tilde{y}}{L}\right) \\ &= \gamma K^{\beta} L^{\alpha} \tilde{y}^{-(\alpha+\beta)}, \end{split}$$

where $\gamma \equiv \gamma_a^{\alpha} \gamma_b^{\beta}$.

• That is, the distribution of Y_i is also Pareto.

The Global Production Function

- Assume only one technique can be used at a time.
- Let N denote the number of ideas, drawn independently.
- The global production function F(K, L; N) is given as

$$F(K,L;N) \equiv \max_{i \in \{1,\dots,N\}} \tilde{F}(b_i K, a_i L).$$

• Let Y = F(K, L; N). Then

$$\operatorname{Prob}\left[Y \leq \tilde{y}\right] = \left(1 - H(\tilde{y})\right)^{N} .$$
$$= \left(1 - \gamma K^{\beta} L^{\alpha} \tilde{y}^{-(\alpha+\beta)}\right)^{N}$$

(continued)

$$\operatorname{Prob}\left[Y \leq \tilde{y}\right] = \left(1 - \gamma K^{\beta} L^{\alpha} \tilde{y}^{-(\alpha+\beta)}\right)^{N}$$

• As N gets large, this probability goes to zero. \Rightarrow normalize to get a stable distribution

$$z_N \equiv \left(\gamma N K^\beta L^\alpha\right)^{\frac{1}{\alpha+\beta}}$$

Then,

$$\operatorname{Prob}\left[Y \leq z_N \tilde{y}\right] = \left(1 - \gamma K^\beta L^\alpha (z_N \tilde{y})^{-(\alpha+\beta)}\right)^N \\ = \left(1 - \frac{\tilde{y}^{-(\alpha+\beta)}}{N}\right)^N.$$

The Cobb-Douglas Result

Now, let N get large

$$\lim_{N \to \infty} \operatorname{Prob}\left[Y \le z_N \tilde{y}\right] = \exp(-\tilde{y}^{-(\alpha+\beta)})$$

Or,

$$\frac{Y}{(\gamma N K^{\beta} L^{\alpha})^{1/\alpha+\beta}} \stackrel{\mathrm{a}}{\sim} \mathsf{Fréchet}(\alpha+\beta).$$

• And therefore, for large N,

$$Y \approx \left(\gamma N K^{\beta} L^{\alpha}\right)^{\frac{1}{\alpha+\beta}} \epsilon$$

Remarks

$$Y \approx \left(\gamma N K^{\beta} L^{\alpha}\right)^{\frac{1}{\alpha+\beta}} \epsilon$$

- 1. Appendix: Poisson process for discovery of ideas yields the result for finite N.
- 2. Cobb-Douglas exponent depends on parameters of search distributions
 - Easier to find ideas \rightarrow lower exponent.
 - Intuition: EofS< 1.
- 3. ϵ is an iid shock drawn from a Fréchet distribution.
- 4. Higher N implies Higher Y.
- 5. Obviously Pareto assumption is crucial to result. More on this shortly.

Discussion: 1. Baseline Model

- Baseline model: constant elasticity in technology menu.
- Here, stochastic version. Consider iso-probability curve:

$$\operatorname{Prob}\left[b_i > b, a_i > a\right] \equiv G(b, a) = C.$$

With Pareto,

$$b^{\beta}a^{\alpha} = \frac{\gamma}{C}.$$

- Stochastic version of the baseline technology menu.
 - Pareto delivers $\eta_b = \beta$ and $\eta_a = \alpha$
 - 1/C plays the role of N
 - Get the same form for the production function.

2. Comparison to Houthakker (1955)

- Pareto+Leontief = Cobb-Douglas is Houthakker
- Houthakker's result is an aggregation result
 - Continuum of firms with capacity constraints.
 - Firm PF: Leontief, with requirements \sim Pareto.
 - Aggregate PF: Cobb-Douglas with DRS
- Result here:
 - Result applies for a firm/industry/country
 - Applies to global production function, i.e. across techniques.
 - No restriction to Leontief for SR PF (technique)
 - Nonrivalry of ideas $\Rightarrow \text{CRS}$

3. Evidence for Pareto Distributions

- Key property: Prob $[X \ge \gamma x \mid X \ge x]$ for $\gamma > 1$ is independent of x.
- Empirical evidence for incomes, patent values, profitability, citations, firm size, stock returns.
 - Benchmark in literature is to test Pareto
 - Findings: Pareto (sometimes hard to distinguish from Lognormal)
- Kortum (1997):
 - Assume a production function and draw a_i only
 - Iff ideas are from a Pareto distribution, then we get exponential growth

(continued)

- Why is Pareto so important?
 - Steady-state growth requires probability the new best idea exceeds frontier by 5% is invariant to y.
 - Gabaix (1999) shows the reverse. Exponential growth delivers a Pareto distribution for city sizes (Zipf).
- This suggests that Pareto Distributions and exponential growth are two sides of the same coin.
 - What I add is that this same basic assumption delivers two additional results:
 - 1. Cobb-Douglas production
 - 2. Labor-augmenting technical change (next).

The Direction of Technical Change

Embed this setup in a neoclassical growth model

$$Y_t = \left(\gamma N_t K_t^\beta L_t^\alpha\right)^{\frac{1}{\alpha+\beta}} \epsilon_t.$$

$$K_{t+1} = (1-\delta)K_t + sY_t$$

$$N_t = N_0 e^{gt}$$

• Therefore, steady-state growth in Y/L:

$$E[\log \frac{y_{t+1}}{y_t}] \approx g/\alpha.$$

Note: depends on α but not β .

(continued)

- Model exhibits a stable balanced growth path, because of global Cobb-Douglas production.
- However, production at date t occurs with some technique i(t):

$$Y_t = \tilde{F}(b_{i(t)}K_t, a_{i(t)}L_t).$$

- Now use Steady-State Growth Theorem:
 - The production function for a technique is *not* Cobb-Douglas,
 - so Steady State implies that $b_{i(t)}$ is stationary!
- That is, technical change in this model is (asymptotically) labor-augmenting.
 - This is true even though $\max_i b_i \to \infty$.

Simulating the Model

- Relax Leontief and allow multiple techniques
- CES production technique:

$$Y_t = \tilde{F}(b_i K_t, a_i L_t) = (\lambda (b_i K_t)^{\rho} + (1 - \lambda) (a_i L_t)^{\rho})^{1/\rho}$$

First, show Cobb-Douglas.

-
$$N = 500, \alpha = 5, \beta = 2.5, \rho = -1.$$

 $\Rightarrow \frac{\beta}{\alpha + \beta} = 1/3.$

- Compute convex hull and sample a (k, y) point randomly.
- Repeat 1000 times and plot the sample.

Fig. 3: The Cobb-Douglas Result

Full Dynamic Simulation

- Parameter Values: $N_0 = 50$, g = .10, $\alpha = 5$, $\beta = 2.5$, $\gamma_a = 1$, $\gamma_b = 0.2$, $k_0 = 2.5$, s = 0.2, $\lambda = 1/3$, $\delta = .05$, and $\rho = -1$.
- Growth should average 2 percent
- Cobb-Douglas capital share 1/3

Fig. 4: Production

Fig. 5: Output per Worker

Fig. 6: The Capital Share over Time

Production Functions and Technical Change Δ – p.36/38

Fig. 7: Technology Choices

Conclusions

- Houthakker + Kortum =
 - Exponential growth
 - Cobb-Douglas (global) production function
 - Labor-augmenting technical change.

The Pareto distribution buys us a lot!

- Extensions and future work:
 - Skilled versus unskilled labor?
 - What about computers and ISTC? GHK, Whelan, etc.?