
A.I., Automation, and Explosive Growth:

A Condition for Finite-Time Blow-Up
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via Chad Jones, Stanford GSB

January 2, 2026

Chad: In Aghion, Jones, and Jones (2019), there is an error in the proof of Example 3 on page

256–257. Phil Trammell originally pointed this out to me and graciously provided a correct proof

(here). I was happy to see that the proof was not trivial, but I always suspected there must be a

cleaner way of showing the result. This was one of my “Can A.I. solve this” questions that I have

long felt is an excellent test of A.I. models. The document below gives the elegant response from

ChatGPT 5.2 Pro from a conversation we had on December 13, 2025. I wish I’d come up with this

myself back in 2017!

1. Setup and statement of the problem (Prompted by Chad)

[The text below is pasted into the prompt. It provides the first key paragraphs of the example for

context and then asks for a derivation.]

Suppose the production function for goods is

Yt = Aσ
t K

α
t L

1−α

(where constant population L simplifies the analysis; exogenous population growth would not

change the core logic). The capital accumulation equation and the idea production function are

K̇t = s̄L1−αAσ
t K

α
t − δKt, (1)

Ȧt = Kβ
t S

λAφ
t , φ < 1 (2)

where 0 < α < 1 and 0 < β < 1, and where we take research effort S to be constant. Follow-
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ing the Zeira (1998) interpretation, we interpret α as the fraction of goods tasks that have been

automated and β as the fraction of tasks in idea production that have been automated.

The standard endogenous growth result requires “constant returns to accumulable factors.”

To see what this means, define the parameter

γ :=
σ

1− α
·

β

1− φ
. (3)

In this setup, the endogenous growth case corresponds to γ = 1. The singularity case occurs if

γ > 1.

In growth rates, the laws of motion for capital and ideas are

K̇t

Kt
= s̄L1−α Aσ

t

K1−α
t

− δ, (4)

Ȧt

At
= Sλ Kβ

t

A1−φ
t

. (5)

Question. What is the key condition on parameter values for explosive growth? How do you

show formally that this is the key condition? And what is the intuition for the key condition?

2. ChatGPT 5.2 Pro’s Answer

2.1 Key condition for explosive growth

The key condition is

γ > 1 ⇐⇒ σβ > (1− α)(1− φ).

When γ = 1 the model is on the constant-returns knife-edge (endogenous growth with asymp-

totically constant growth rates). When γ < 1 there is diminishing returns to accumulable factors

overall and one does not obtain finite-time blow-up.

2.2 Formal argument: why γ > 1 is the right condition

The main idea is to (i) remove the diminishing-returns exponents in each accumulation equa-

tion via a change of variables, and then (ii) apply a standard blow-up criterion for differential

inequalities.
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2.2.1 Step 1: Remove diminishing returns via a change of variables

Assume K(0) > 0 and A(0) > 0 so that the state remains positive. Define

k(t) := K(t) 1−α, a(t) := A(t) 1−φ.

Differentiate k using (1):

k̇ = (1− α)K−αK̇

= (1− α)K−α
(

s̄L1−αAσKα − δK
)

= (1− α)s̄L1−αAσ − (1− α)δK1−α

=: c1A
σ − δ1k, (6)

where c1 := (1− α)s̄L1−α and δ1 := (1− α)δ.

Differentiate a using (2):

ȧ = (1− φ)A−φȦ

= (1− φ)A−φ
(

SλKβAφ
)

= (1− φ)SλKβ =: c2K
β , (7)

where c2 := (1− φ)Sλ.

Now express A and K in terms of a and k:

A = a1/(1−φ), K = k1/(1−α).

Ignoring (for the moment) the linear drag −δ1k in (6), the “core” positive-feedback system be-

comes

k̇ = c1a
n, ȧ = c2k

m, (8)

where

n :=
σ

1− φ
, m :=

β

1− α
.

Crucially,

mn =
β

1− α
·

σ

1− φ
=

σ

1− α
·

β

1− φ
= γ.
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2.2.2 Step 2: Derive an inequality of the form ȧ ≥ Caη

Differentiate ȧ = c2k
m and substitute k̇ = c1a

n:

ä = c2mkm−1k̇ = c2mkm−1(c1a
n). (9)

Using ȧ = c2k
m, we can write k = (ȧ/c2)

1/m. Plugging this into (9) yields

ä = mc1c
1/m
2 an (ȧ)(m−1)/m. (10)

Define

u := (ȧ)(m+1)/m.

Then
du

dt
=

m+ 1

m
(ȧ)1/mä.

Substitute (10):
du

dt
= (m+ 1)c1c

1/m
2 anȧ.

Divide by ȧ > 0 to get an ODE in a:

du

da
= (m+ 1)c1c

1/m
2 an. (11)

Integrate:

(ȧ)(m+1)/m = (ȧ0)
(m+1)/m +

(m+ 1)c1c
1/m
2

n+ 1

(

an+1 − an+1
0

)

. (12)

Hence there exist constants C̃ > 0 and ā > 0 such that for all a ≥ ā,

ȧ ≥ C̃ aη, η :=
m(n+ 1)

m+ 1
. (13)

2.2.3 Step 3: Apply the blow-up criterion and recover γ > 1

From (13), the time required for a to diverge is bounded above by

T − t0 ≤

∫

∞

a0

da

C̃ aη
.

This improper integral is finite if and only if η > 1. Check:

η > 1 ⇐⇒
m(n+ 1)

m+ 1
> 1 ⇐⇒ m(n+ 1) > m+ 1 ⇐⇒ mn > 1 ⇐⇒ γ > 1.
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Therefore, when γ > 1, the transformed variable a(t) = A(t)1−φ reaches +∞ in finite time, and

so does A(t). Since k̇ = c1a
n in (8), k(t) and hence K(t) also diverge in finite time.

Remark 1 (Role of depreciation). The preceding steps ignore the linear drag term −δ1k in (6). In-

tuitively (and formally via comparison arguments), a linear term cannot prevent blow-up driven

by superlinear positive feedback: for sufficiently large a, the forcing term c1a
n dominates δ1k, so

the dynamics eventually dominate a scaled version of the core system (8). Hence the threshold

condition for explosive growth remains γ > 1.

2.3 Intuition for γ > 1

The parameter γ is the loop gain of the positive feedback between capital accumulation and idea

accumulation, after accounting for diminishing returns in each equation.

• A → K channel (goods side). Higher ideas raise goods output and thus investment. Be-

cause the capital accumulation equation has diminishing returns in K when α < 1, trans-

lating improvements in A into sustained expansion of K is governed by an effective elas-

ticity σ/(1− α).

• K → A channel (ideas side). Higher capital raises research productivity. Because the idea

production equation has diminishing returns in A when φ < 1, translating improvements

in K into sustained expansion of A is governed by an effective elasticity β/(1− φ).

Multiplying the two amplification factors gives

γ =

(

σ

1− α

)(

β

1− φ

)

.

If γ < 1, one loop through “A raises K, which raises A” attenuates rather than amplifies; di-

minishing returns dominate and growth does not run away. If γ = 1, the system has constant

returns to the accumulable pair (K,A) and admits endogenous growth with asymptotically con-

stant growth rates. If γ > 1, each round of feedback is amplifying strongly enough to create

effective increasing returns to accumulable factors: the system ultimately behaves like a differ-

ential inequality ȧ & Caη with η > 1, and such inequalities imply finite-time blow-up.

2.4 Example from the prompt

If α = β = φ = 1/2, then

γ =
σ

1− 1/2
·

1/2

1− 1/2
= 2σ.
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Hence explosive growth occurs if and only if σ > 1/2.

3. Why the change of variables k = K1−α and a = A1−φ is the “right”

one

Chad’s Prompt. In the automation-growth system, a key step is defining

k(t) := K(t)1−α and a(t) := A(t)1−φ.

Is there a general principle at work here, and how can one recognize such a change of variables

in future problems?

Answer: the Bernoulli / constant-elasticity power transform. The substitution is an instance

of a general and widely useful idea: when a state variable appears with a constant elasticity (a

power) in its own law of motion, a power transform often removes that nonlinearity.

To see the structure, write the capital law of motion (suppressing constants for clarity):

K̇ = cAσKα − δK. (14)

If we treat A(t) as given for the moment, this is a Bernoulli-type ODE in K:

K̇ + δK = u(t)Kα, u(t) := cA(t)σ, α 6= 1.

A standard result for Bernoulli equations,

ẋ+ p(t)x = q(t)xn, n 6= 1,

is that the change of variables z = x1−n transforms the equation into a linear ODE in z.

In our case, n = α, so k := K1−α is the natural choice. Similarly, in the idea-production law,

Ȧ = c̃ KβAφ, (15)

treating K(t) as given makes this Bernoulli-type in A with exponent φ, so a := A1−φ is the natural

counterpart.
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A quick derivation without memorizing Bernoulli. One can “derive” the exponent by inspec-

tion using the identity
d

dt
Kr = rKr−1K̇.

In (14), the problematic term is Kα. Multiply both sides by K−α to cancel it:

K−αK̇ = cAσ − δK1−α.

Now choose r so that the left-hand side becomes an exact derivative:

K−αK̇ =
1

1− α

d

dt

(

K1−α
)

.

This pins down r = 1 − α immediately, hence k = K1−α. The same logic applied to (15) yields

a = A1−φ.

What this transform buys in the present model. Using k = K1−α and a = A1−φ, one obtains

(up to constants)

k̇ = (1− α)s̄L1−αAσ − (1− α)δ k, (16)

ȧ = (1− φ)SλKβ . (17)

The key point is that each equation becomes “linear” (or at least affine) in its own transformed

state: the Kα term has been eliminated from the right-hand side of k̇, and the Aφ term has been

eliminated from the right-hand side of ȧ.

Substituting back A = a1/(1−φ) and K = k1/(1−α) reveals the clean cross-power feedback:

k̇ ∝ aσ/(1−φ) − δk, (18)

ȧ ∝ kβ/(1−α). (19)

The product of the cross-elasticities is then

(

σ

1− φ

)(

β

1− α

)

=
σ

1− α
·

β

1− φ
= γ,

which is exactly the “loop gain” parameter governing whether the positive feedback from A →

K → A is strong enough to yield explosive growth.
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A reusable recipe for future problems. When confronted with nonlinear growth laws built

from monomials (Cobb–Douglas terms), the following checklist is useful:

1. Power-transform to remove own-state curvature. If the law of motion has the form

ẋ+ δx = f(t,others)xq (q 6= 1),

try the change of variables z = x1−q. Equivalently, multiply the equation by x−q and recog-

nize x−qẋ as an exact derivative.

2. Homogeneity / normalization tricks for balanced growth. If the system is homogeneous

in levels (e.g. Y = AσKα), ratio variables like K/Aθ (or K/(AL)) may remove trends and

expose stationary dynamics; choose θ to cancel the dominant scaling terms.

3. Scaling guesses if blow-up is suspected. For finite-time singularities, it is often effective to

guess asymptotic forms such as

K(t) ∼ (T − t)−p, A(t) ∼ (T − t)−q,

and match exponents. The power-transform approach can be viewed as a way to reach the

same scaling logic without guessing p and q upfront.

Economic intuition. When a production or accumulation equation exhibits diminishing returns—

for example, Kα with α < 1—the transform K1−α is the natural coordinate that “integrates out”

that curvature:
∫

K−α dK ∝ K1−α.

In this coordinate, the law of motion separates the pure forcing term (here, proportional to Aσ)

from the linear drag term (here, proportional to k), making the strength of positive feedback and

the possibility of runaway dynamics transparent.
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