A.I., Automation, and Explosive Growth:

A Condition for Finite-Time Blow-Up

ChatGPT 5.2 Pro
via Chad Jones, Stanford GSB

January 2, 2026

Chad: In Aghion, Jones, and Jones (2019), there is an error in the proof of Example 3 on page
256-257. Phil Trammell originally pointed this out to me and graciously provided a correct proof
(here). I was happy to see that the proof was not trivial, but I always suspected there must be a
cleaner way of showing the result. This was one of my “Can A.I solve this” questions that I have
long felt is an excellent test of A.I. models. The document below gives the elegant response from
ChatGPT 5.2 Pro from a conversation we had on December 13, 2025. I wish I'd come up with this

myself back in 2017!

1. Setup and statement of the problem (Prompted by Chad)

[The text below is pasted into the prompt. It provides the first key paragraphs of the example for
context and then asks for a derivation.]

Suppose the production function for goods is
Y, = AJKPL'

(where constant population L simplifies the analysis; exogenous population growth would not

change the core logic). The capital accumulation equation and the idea production function are
K, =5LY Y APKY — 0K, (1)

Ay =KPsMA?, ¢ <1 2)

where 0 < o < 1and 0 < 8 < 1, and where we take research effort S to be constant. Follow-


https://philiptrammell.com/static/Cobb_Douglas_singularities.pdf

ing the Zeira (1998) interpretation, we interpret « as the fraction of goods tasks that have been
automated and § as the fraction of tasks in idea production that have been automated.
The standard endogenous growth result requires “constant returns to accumulable factors.”

To see what this means, define the parameter
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In this setup, the endogenous growth case corresponds to v = 1. The singularity case occurs if
v > 1.

In growth rates, the laws of motion for capital and ideas are
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Question. What is the key condition on parameter values for explosive growth? How do you

show formally that this is the key condition? And what is the intuition for the key condition?

2. ChatGPT 5.2 Pro’s Answer

2.1 Key condition for explosive growth

The key condition is

= [op>(-a)1-9)]

When v = 1 the model is on the constant-returns knife-edge (endogenous growth with asymp-

totically constant growth rates). When v < 1 there is diminishing returns to accumulable factors

overall and one does not obtain finite-time blow-up.

2.2 Formal argument: why ~ > 1 is the right condition

The main idea is to (i) remove the diminishing-returns exponents in each accumulation equa-
tion via a change of variables, and then (ii) apply a standard blow-up criterion for differential

inequalities.



2.2.1 Step 1: Remove diminishing returns via a change of variables

Assume K (0) > 0 and A(0) > 0 so that the state remains positive. Define

Differentiate & using (1):

E=(1-a)K°K
=(1—a)K *(5L'""AK* — §K)
=(1—-a)sL'™@A47 — (1 —a)sK'™™
—: 1 A7 — b1k, 6)

where ¢; := (1 — a)s5L'"*and §; := (1 — «)9.

Differentiate a using (2):

a=(1-p)A A
= (1 - ¢)A?(S*KPA?)
=(1-9¢)S*K? =: K", @)

where ¢ := (1 — ¢)S™.

Now express A and K in terms of « and k:

A=gl/0=9) g pl/0-a),

Ignoring (for the moment) the linear drag —d; % in (6), the “core” positive-feedback system be-

comes
k= cia®, a = cok™, (8)
where
_ 0 __b
"ty MTi1 a4
Crucially,




2.2.2 Step 2: Derive an inequality of the form ¢ > Ca”

Differentiate @ = k™ and substitute k = c;a":

G = comk™ 'k = Cka‘m_l(cla").

9)
Using a = cpk™, we can write k = (a/c)"/™. Plugging this into (9) yields
i = meyes ™am (a)mD/m, (10)
Define
Then
d  m (@)™ .
Substitute (10):
d m -
ditl =(m+ 1)610;/ a"a.
Divide by @ > 0 to get an ODE in a:
d m
d—z = (m+ 1)clc;/ a”. (11)
Integrate:
-\ (m+1)/m -\ (mA+1)/m (m + 1)010$/m n+1 n+1
(a) = (o) + e (a"" —ag ). (12)
n+1
Hence there exist constants C' > 0 and @ > 0 such that forall @ > a,
a > éaﬂ’ — M (13)
m+1

2.2.3 Step 3: Apply the blow-up criterion and recover v > 1

From (13), the time required for « to diverge is bounded above by

* da

T —t < iy
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This improper integral is finite if and only if » > 1. Check:

m(n+1)

n>1 <= 1 >1 <= mn+1l)>m+1 <= mn>1 < y>1.
m



Therefore, when v > 1, the transformed variable a(t) = A(t)'~¢ reaches +oc in finite time, and

so does A(t). Since i = ¢;a™ in (8), k(t) and hence K (t) also diverge in finite time.

Remark 1 (Role of depreciation). The preceding steps ignore the linear drag term —6,k in (6). In-
tuitively (and formally via comparison arguments), a linear term cannot prevent blow-up driven
by superlinear positive feedback: for sufficiently large a, the forcing term c,a™ dominates 6,1k, so
the dynamics eventually dominate a scaled version of the core system (8). Hence the threshold

condition for explosive growth remains~y > 1.

2.3 Intuition fory > 1

The parameter + is the loop gain of the positive feedback between capital accumulation and idea

accumulation, after accounting for diminishing returns in each equation.

* A — K channel (goods side). Higher ideas raise goods output and thus investment. Be-
cause the capital accumulation equation has diminishing returns in K when « < 1, trans-
lating improvements in A into sustained expansion of K is governed by an effective elas-
ticity o /(1 — «).

* K — Achannel (ideas side). Higher capital raises research productivity. Because the idea
production equation has diminishing returns in A when ¢ < 1, translating improvements

in K into sustained expansion of A is governed by an effective elasticity 3/(1 — ¢).

Multiplying the two amplification factors gives

= () (7%)

If v < 1, one loop through “A raises K, which raises A” attenuates rather than amplifies; di-

minishing returns dominate and growth does not run away. If v = 1, the system has constant
returns to the accumulable pair (K, A) and admits endogenous growth with asymptotically con-
stant growth rates. If v > 1, each round of feedback is amplifying strongly enough to create
effective increasing returns to accumulable factors: the system ultimately behaves like a differ-

ential inequality a = Ca” with > 1, and such inequalities imply finite-time blow-up.

2.4 Example from the prompt

Ifa=p=¢=1/2 then
o 1/2

- : = 2.
1-1/2'1-12 ¢
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Hence explosive growth occurs if and only if o > 1/2.

3. Why the change of variables £ = K'~® and a = A'~¢ is the “right”

one

Chad’s Prompt. In the automation-growth system, a key step is defining

Is there a general principle at work here, and how can one recognize such a change of variables

in future problems?

Answer: the Bernoulli / constant-elasticity power transform. The substitution is an instance
of a general and widely useful idea: when a state variable appears with a constant elasticity (a
power) in its own law of motion, a power transform often removes that nonlinearity.

To see the structure, write the capital law of motion (suppressing constants for clarity):
K = cAK* - JK. (14)
If we treat A(t) as given for the moment, this is a Bernoulli-type ODE in K:
K+ 6K = u(t)K®, u(t) == cA(t)?, a# 1.
A standard result for Bernoulli equations,
i+p)r=qlt)a",  n#l

is that the change of variables z = x!~" transforms the equation into a linear ODE in z.

In our case, n = «, s0 k := K1~%is the natural choice. Similarly, in the idea-production law,
A = ¢KPA?, (15)

treating K (t) as given makes this Bernoulli-type in A with exponent ¢, so a := A'~? is the natural

counterpart.



A quick derivation without memorizing Bernoulli. One can “derive” the exponent by inspec-

tion using the identity

d .
L rK" K.

In (14), the problematic term is K“. Multiply both sides by K~ to cancel it:
K™K = cA” — §K'™“.

Now choose r so that the left-hand side becomes an exact derivative:

KoK — LE(KH).
1—adt

This pins down r = 1 — o immediately, hence k = K'~. The same logic applied to (15) yields
a=A"?,

What this transform buys in the present model. Using ¥ = K'~® and a = A'~%, one obtains

(up to constants)

k=(1—a)sL'™A4° — (1—a)dk, (16)
a=(1-¢)S KP. (17)

The key point is that each equation becomes “linear” (or at least affine) in its own transformed
state: the K term has been eliminated from the right-hand side of k, and the A% term has been
eliminated from the right-hand side of a.

Substituting back A = ¢!/(1=® and K = k!/(1-®) reveals the clean cross-power feedback:

ko< a?/U=9) _ §k, (18)
@ oc kP/(A=a) (19)

The product of the cross-elasticities is then

o 15} 0 B
(1—¢) <1—a> T 1-a'l1-¢ "

which is exactly the “loop gain” parameter governing whether the positive feedback from A —

K — Ais strong enough to yield explosive growth.



A reusable recipe for future problems. When confronted with nonlinear growth laws built

from monomials (Cobb-Douglas terms), the following checklist is useful:

1. Power-transform to remove own-state curvature. If the law of motion has the form
& + 0x = f(t, others) 27 (g #1),

try the change of variables » = 2'~9. Equivalently, multiply the equation by 2~¢ and recog-

nize £~ 9z as an exact derivative.

2. Homogeneity / normalization tricks for balanced growth. If the system is homogeneous
in levels (e.g. Y = A7 K®), ratio variables like K/A? (or K/(AL)) may remove trends and

expose stationary dynamics; choose 6 to cancel the dominant scaling terms.

3. Scaling guesses if blow-up is suspected. For finite-time singularities, it is often effective to

guess asymptotic forms such as
K@)~ (T—=t)"",  Alt)~(T—-t)",

and match exponents. The power-transform approach can be viewed as a way to reach the

same scaling logic without guessing p and ¢ upfront.

Economicintuition. When a production or accumulation equation exhibits diminishing returns—
for example, K with a < 1—the transform K'~¢ is the natural coordinate that “integrates out”
that curvature:

/ K *dK « K™

In this coordinate, the law of motion separates the pure forcing term (here, proportional to A7)
from the linear drag term (here, proportional to k), making the strength of positive feedback and

the possibility of runaway dynamics transparent.
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