

Estimating and Simulating a SIRD Model of COVID-19

Jesús Fernández-Villaverde and Chad Jones

April 22, 2020 (Preliminary and incomplete)

Outline

- Basic model
 - $\circ~$ Social distancing via a time-varying β
- Estimation and simulation
 - o Different countries, U.S. states, and New York City
 - Robustness to parameters
 - o "Forecasts" from each of the last 7 days
- · Re-opening and herd immunity
 - o How much can we relax social distancing?

Basic Model

Notation

• Number of people who are (stocks):

S	=	Susceptible
Ι	=	Infectious
R	=	Recovered
D	=	Dead

Constant population size is N

$$S_t + I_t + R_t + D_t = N$$

SIRD Model: Overview

• Susceptible get infected at rate $\beta I_t/N$

New infections = $\beta I_t / N \cdot S_t$

- Infections resolve at Poisson rate γ, so the average number of days until resolution is 1/γ so γ = .2 ⇒ 5 days.
- Resolution happens in one of two ways:
 - Death: fraction δ
 - Recovery: fraction 1δ

SIRD Model: Laws of Motion

$$\Delta S_{t+1} = \underbrace{-\beta S_t I_t / N}_{\text{new infections}}$$

$$\Delta I_{t+1} = \underbrace{\beta S_t I_t / N}_{\text{new infections}} - \underbrace{\gamma I_t}_{\text{resolving infections}}$$

$$\Delta R_{t+1} = \underbrace{(1 - \delta)\gamma I_t}_{\text{recover}}$$

$$\Delta D_{t+1} = \underbrace{\delta\gamma I_t}_{\text{die}}$$

 $R_0 = D_0 = 0$

Recyled notation (terrible) *R*₀**: Initial infection rate**

• Initial reproduction number $R_0 \equiv \beta/\gamma$

- R₀ = expected number of infections via the first sick person
 - $\circ R_0 > 1 \Rightarrow$ disease initially grows
 - $\circ R_0 < 1$ ⇒ disease dies out: infectious generate less than 1 new infection

• If
$$1/\gamma = 5$$
, then easy to have $R_0 >> 1$

Basic Properties of Differential System (Hethcote 2000)

- Let $s_t \equiv S_t/N$ = fraction susceptible
- If $R_0 s_t > 1$, the disease spreads, otherwise declines
- Initial exponential growth rate is $\beta \gamma$
- As t → ∞, the total fraction of people ever infected, e^{*}, solves (assuming s₀ ≈ 1)

$$e^* = -\frac{1}{R_0}\log(1-e^*)$$

Long run is pinned down by R_0 (and death rate), γ affects timing

Social Distancing

- What about a time-varying infection rate β_t ?
 - Disease characteristics fixed, homogeneous
 - Regional factors (NYC vs Montana) fixed, heterogeneous
 - Social distancing varies over time and space
- Reasons why β_t may change over time
 - Policy changes on social distancing
 - Individuals voluntarily change behavior to protect themselves and others
 - Superspreaders get infected quickly but then recover and "burn out" early

Model of Social Distancing

- Assume two key parameters β_0 and β^*
- Economy decays exponentially from β_0 to β^* at rate λ :

$$\beta_t = \beta_0 e^{-\lambda t} + \beta^* (1 - e^{-\lambda t})$$

 $\Rightarrow can think about initial R_0 = \beta_0/\gamma$ R_0(t) = β_t/γ and final R_0^* = β^*/γ

• Interpretation:

• λ governs the rate of convergence to R_0^*

Estimates and Simulations

Estimation: Countries and States

- Parameters that are fixed and homogeneous
 - $\circ \ \gamma = 0.2$: average duration is 5 days (or $\gamma = 0.1$)
 - $\circ \delta = 0.003$

Apr 1: 15% of mothers giving birth in NYC infected With $\delta = .004$, model says only 13.6% ever infected on Apr 1

• Parameters that vary across countries/states

• β_0 and β^*

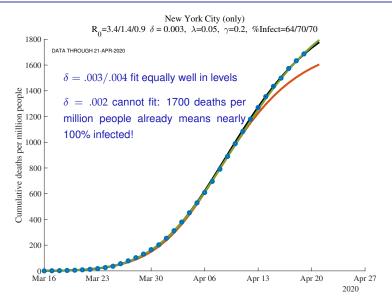
- $\circ~\lambda$: speed at which you move to β^*
- *I*₀: initial number of infections (gets timing right)
- Objective function:
 - Equally weighted SSR for Cumulative deaths (logs) and Daily deaths (logs)

Estimation based entirely on death data

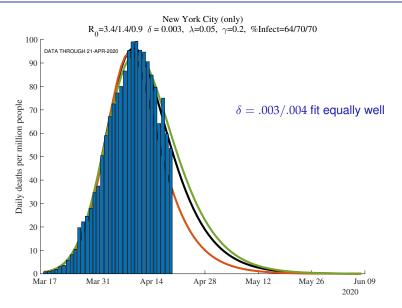
- Excess death issue
 - $\,\circ\,$ New York City added 3000+ deaths on April 15 \approx 45% more
 - $\circ~$ The Economist \Rightarrow increases based on vital records
 - \Rightarrow We adjust all NYC deaths before April 15 by this 45% and non-NYC deaths upwards by 33%
- We use 5-day moving averages (centered)
 - Otherwise, very serious "weekend effects" in which deaths are underreported
 - Even zero sometimes, followed by a large spike

Guide to Graphs

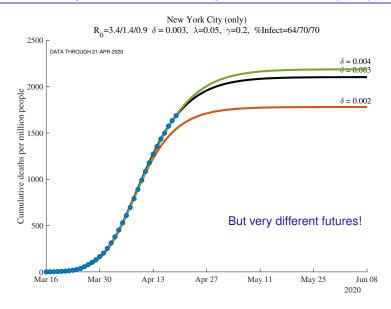
- 7 days of forecasts: Rainbow color order! ROY-G-BIV (old to new, low to high)
 - Black=current
 - Red = oldest, Orange = second oldest, Yellow = third oldest...
 - Violet (purple) = one day earlier
- For robustness graphs, same idea
 - Black = baseline (e.g. $\delta = .003$)
 - Red = lowest parameter value (e.g. $\delta = .002$)
 - Green = highest parameter value (e.g. $\delta = .004$)

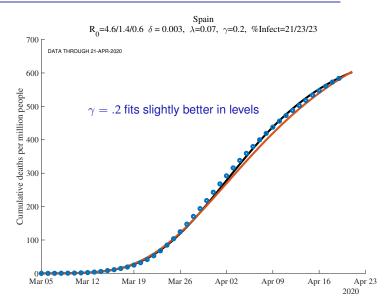

Guide to Graphs (continued)

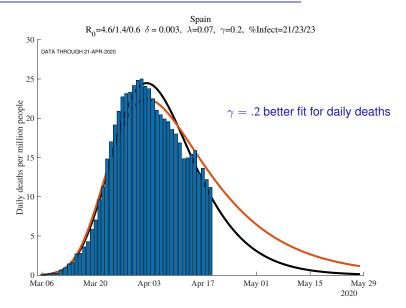
• *R*₀ in subtitle: *R*₀ / *R*₀(*today*) / *R*₀^{*}

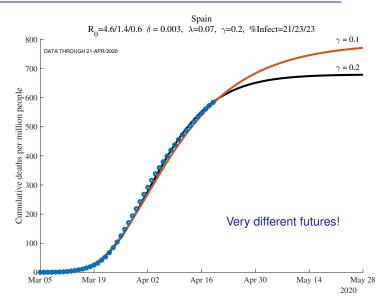

o Initial / Today / Final

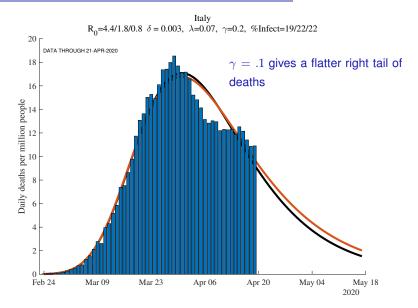
- "%Infect"
 - Today / t+30 / Final
 - This is the percent ever infected
 - (so fraction δ will eventually be deaths)


New York City: Cumulative Deaths per Million ($\delta = .003/.002/.004$)


New York City: Daily Deaths per Million People ($\delta = .003/.002/.004$)

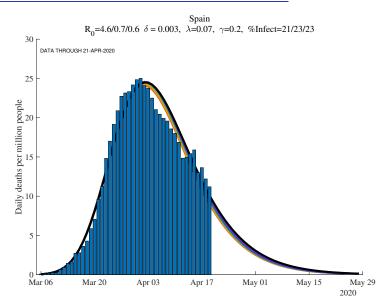

New York City: Cumulative Deaths per Million ($\delta = .003/.002/.004$)

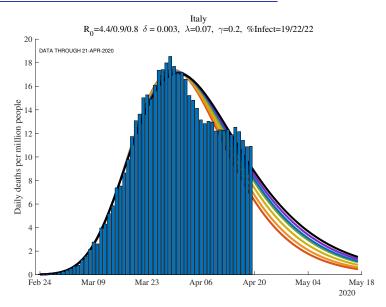

Spain: Cumulative Deaths per Million People ($\gamma = .2/.1$)


Spain: Daily Deaths per Million People ($\gamma = .2/.1$)

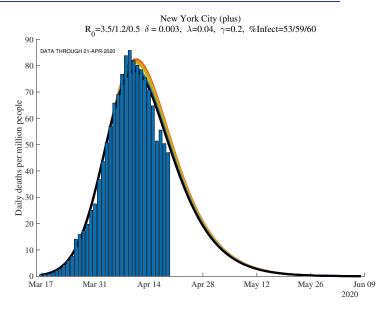
Spain: Cumulative Deaths per Million (Future, $\gamma = .2/.1$)

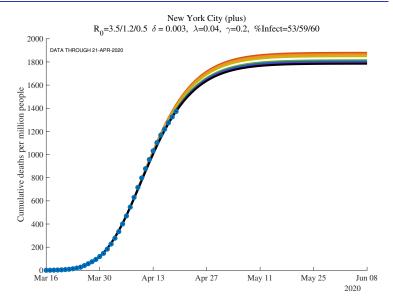
Italy: Daily Deaths per Million People ($\gamma = .2/.1$)

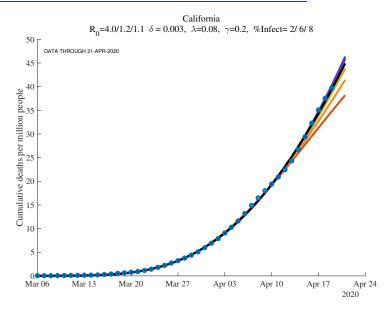


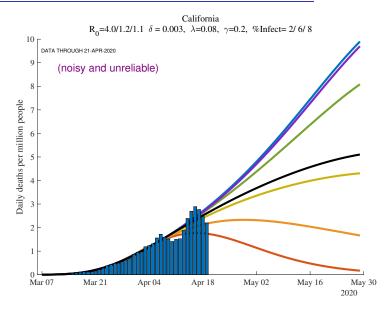

Repeated "Forecasts" from the past 7 days of data

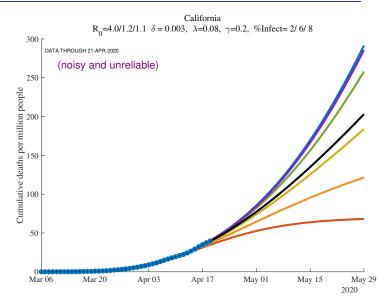
- After peak, forecasts settle down.
- Before that, very noisy!

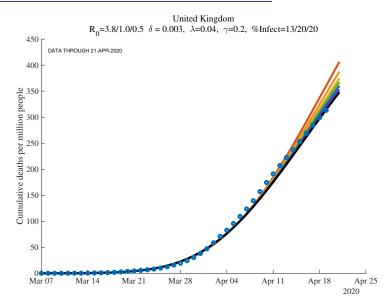

Spain (7 days): Daily Deaths per Million People

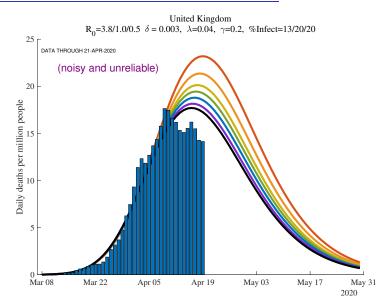

Italy (7 days): Daily Deaths per Million People

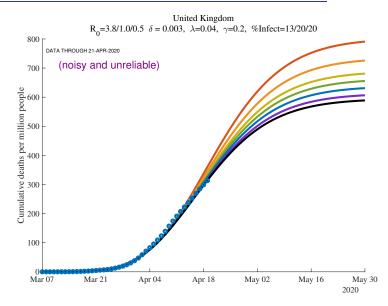

New York City (7 days): Daily Deaths per Million People

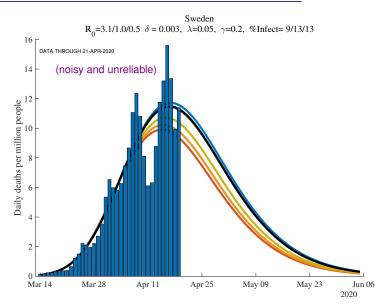

New York City (7 days): Cumulative Deaths per Million (Future)

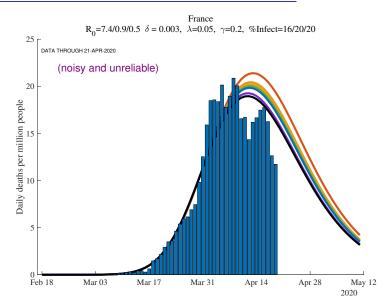

California (7 days): Cumulative Deaths per Million

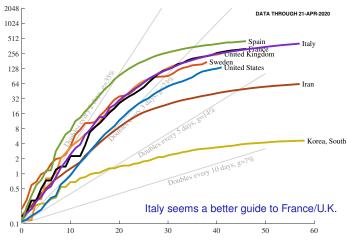

California (7 days): Daily Deaths per Million People


California (7 days): Cumulative Deaths per Million (Future)

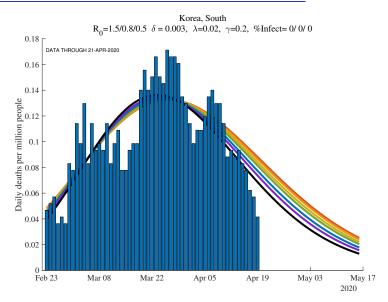

U.K. (7 days): Cumulative Deaths per Million

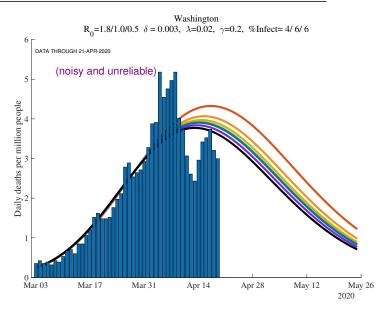

U.K. (7 days): Daily Deaths per Million People


U.K. (7 days): Cumulative Deaths per Million (Future)

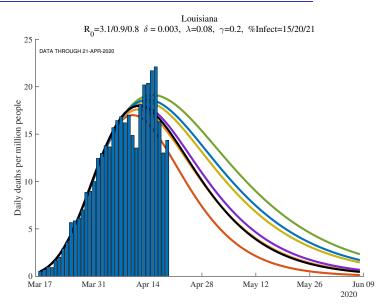

Sweden (7 days): Daily Deaths per Million People

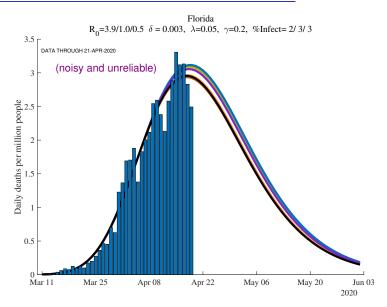
France (7 days): Daily Deaths per Million People

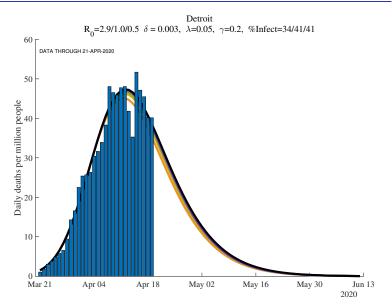

Cumulative Deaths per Million, Log Scale

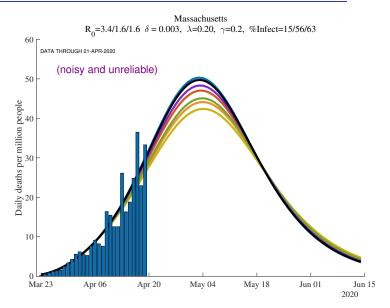

CUMULATIVE DEATHS PER MILLION

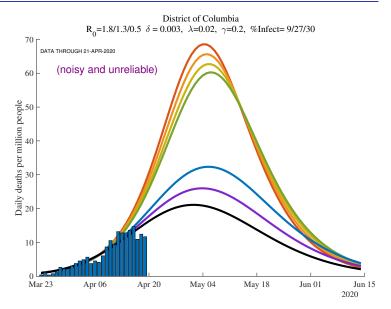
DAYS SINCE 1 DEATH PER 10 MILLION PEOPLE


S. Korea (7 days): Daily Deaths per Million People


Washington (7 days): Daily Deaths per Million People


Louisiana (7 days): Daily Deaths per Million People


Florida (7 days): Daily Deaths per Million People


Detriot (Wayne County, 7 days): Daily Deaths per Million People

Massachusetts (7 days): Daily Deaths per Million People

District of Columbia (7 days): Daily Deaths per Million People

Reopening and Herd Immunity

	— Percent Ever Infected (today) —				
	$\delta = .002$	$\delta = .003$	$\delta = .004$		
New York City (plus)	78	53	41		
Detroit	51	34	26		
Spain	32	21	16		
Italy	28	19	14		
Michigan	25	16	12		
France	24	16	12		
Massachusetts	23	15	12		
United Kingdom	20	13	10		
Sweden	13	9	6		
District of Columbia	13	9	7		
New York excluding NYC	8	5	4		
Denmark	5	3	2		
Germany	4	3	2		
Florida	3	2	2		
California	3	2	1		
Tennessee	2	1	1		

Percent Ever Infected would be very informative

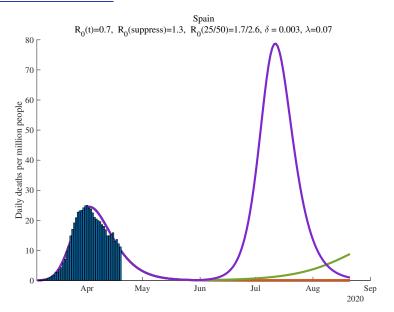
Herd Immunity

- How far can we relax social distancing?
- Let s(t) = S(t)/N = the fraction still susceptible

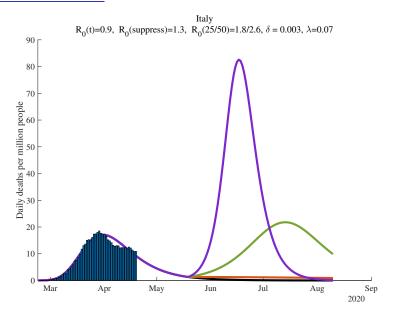
The disease will die out as long as

 $R_0(t)s(t) < 1$

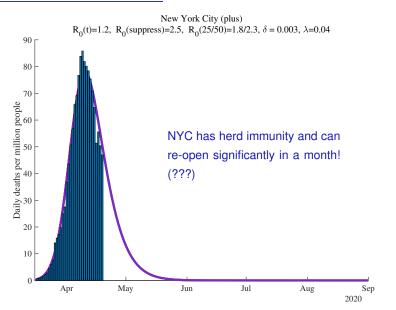
- That is, if the "new" R_0 is smaller than 1/s(t)
- Today's infected people infect fewer than 1 person on average
- We can relax social distancing to raise $R_0(t)$ to 1/s(t)

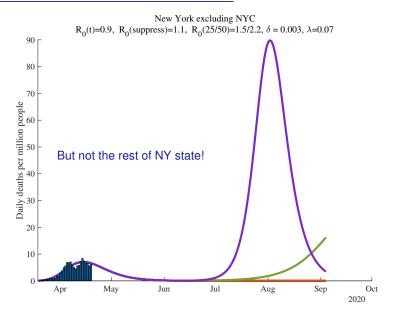

Herd Immunity and Opening the Economy?

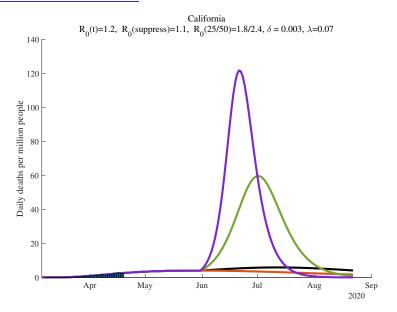
	R_0	$R_0(t)$	Percent Susceptible t+30	R_0 (t+30) with no outbreak	Percent way back to normal
New York City	3.5	1.2	40.5	2.5	55.6
•				-	
Detroit	2.9	1.0	58.7	1.7	34.8
Spain	4.6	0.7	77.4	1.3	15.1
Italy	4.4	0.9	78.4	1.3	10.9
Michigan	3.4	1.0	76.3	1.3	13.3
France	7.4	0.9	79.8	1.3	5.1
Massachusetts	3.4	1.6	43.8	2.3	38.2
United Kingdom	3.8	1.0	80.5	1.2	8.4
Sweden	3.1	1.0	87.0	1.1	8.0
District of Columbia	1.8	1.3	73.4	1.4	4.2
New York excluding NYC	3.5	0.9	92.9	1.1	8.3
Washington	1.8	1.0	93.9	1.1	13.1
Denmark	2.7	0.7	96.4	1.0	16.1
Germany	4.6	0.9	95.3	1.0	3.7
Florida	3.9	1.0	96.6	1.0	2.9
California	4.0	1.2	94.1	1.1	-4.3

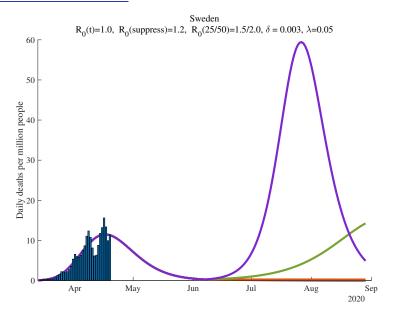

Simulations of Re-Opening

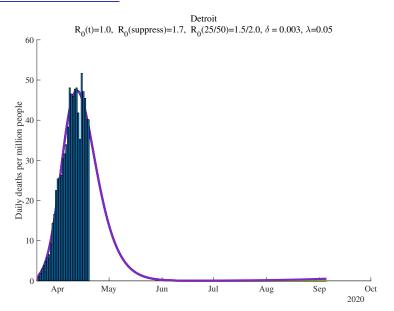
- Begin with the basic estimates shown already
- Different policies are then adopted starting around May 20
 - Black: assumes R₀(today) remains in place forever
 - **Red**: assumes $R_0(\text{suppress}) = 1/s(today)$
 - Green: we move 25% of the way from R₀(today) back to initial R₀ = "normal"
 - Purple: we move 50% of the way from R_0 (today) back to initial R_0 = "normal"
- We assume these R₀ values stay in place forever
 - $\circ~$ In practice, over course, β would likely start to fall as mortality rises

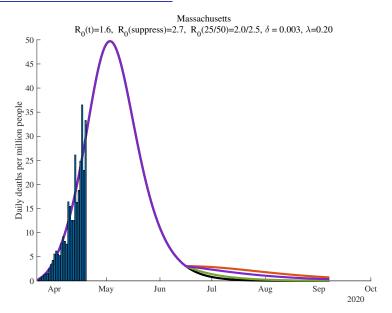

Spain: Re-Opening

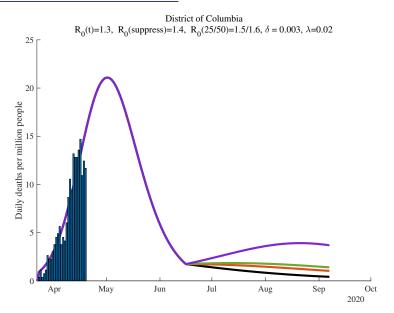

Italy: Re-Opening


New York City: Re-Opening


New York excluding NYC: Re-Opening


California: Re-Opening


Sweden: Re-Opening


Detroit: Re-Opening

Massachusetts: Re-Opening

Washington, DC: Re-Opening

Conclusions

Speculations based on model, we are not epidemiologists

- Time-varying β (or R₀) needed to capture social distancing, by individuals or via policy
- New York City already has around 1700 deaths per million people
 - \circ So $\delta > .002$ is required by model
 - 100% are not already infected and resolved

(continued...)

Conclusions (continued)

- Random sampling in NYC would be very informative about δ and percent ever infected (for herd immunity effects)
 - NEJM study of 215 mothers giving birth in NYC found a 15 percent infection rate from Mar 22 to Apr 4
 - Suggests a high current ever-infected rate (infections doubling every 3-4 days)
 - $\circ~$ Model suggests $\delta < .004$ to match this
 - California serology testing also suggests $\delta \approx .003$ (but problems?)
- "One size fits all" will not work for re-opening
 - NYC could potentially re-open soon w/ basic precautions
 - Rest of NY state could not