The End of Economic Growth?
Unintended Consequences of a Declining Population

Chad Jones

December 2019
Key Role of Population

- People \Rightarrow ideas \Rightarrow economic growth
 - Romer (1990), Aghion-Howitt (1992), Grossman-Helpman
 - And most idea-driven growth models

- The future of global population?
 - Conventional view: stabilize at 8 or 10 billion

- Bricker and Ibbotson’s *Empty Planet* (2019)
 - Maybe the future is **negative population growth**
 - High income countries already have fertility **below** replacement!
The Total Fertility Rate (Live Births per Woman)

<table>
<thead>
<tr>
<th>Country</th>
<th>Fertility Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1.8</td>
</tr>
<tr>
<td>H.I.C.</td>
<td>1.7</td>
</tr>
<tr>
<td>China</td>
<td>1.7</td>
</tr>
<tr>
<td>Germany</td>
<td>1.6</td>
</tr>
<tr>
<td>Japan</td>
<td>1.4</td>
</tr>
<tr>
<td>Italy</td>
<td>1.3</td>
</tr>
<tr>
<td>Spain</td>
<td>1.3</td>
</tr>
</tbody>
</table>

LIVE BIRTHS PER WOMAN

- U.S. = 1.8
- H.I.C. = 1.7
- China = 1.7
- Germany = 1.6
- Japan = 1.4
- Italy = 1.3
- Spain = 1.3
What happens to economic growth if population growth is negative?

- **Exogenous population decline**
 - **Empty Planet Result**: Living standards stagnate as population vanishes!
 - Contrast with standard *Expanding Cosmos* result: exponential growth for an exponentially growing population

- **Endogenous fertility**
 - Parameterize so that the equilibrium features negative population growth
 - A planner who prefers *Expanding Cosmos* can get trapped in an Empty Planet
 - if society delays implementing the optimal allocation
Outline

• Exogenous negative population growth
 ○ In Romer / Aghion-Howitt / Grossman-Helpman
 ○ In semi-endogenous growth framework

• Endogenous fertility
 ○ Competitive equilibrium with negative population growth
 ○ Optimal allocation
The Empty Planet Result
A Simplified Romer/AH/GH Model

Production of goods (IRS)

\[Y_t = A_t^\sigma N_t \]

Production of ideas

\[\frac{\dot{A}_t}{A_t} = \alpha N_t \]

Constant population

\[N_t = N \]

- Income per person: levels and growth

\[y_t \equiv \frac{Y_t}{N_t} = A_t^\sigma \]

\[\frac{\dot{y}_t}{y_t} = \sigma \frac{\dot{A}_t}{A_t} = \sigma \alpha N \]

- Exponential growth with a constant population
 - But population growth means exploding growth? (Semi-endogenous fix)
Negative Population Growth in Romer/AH/GH

Production of goods (IRS)

\[Y_t = A_t^\sigma N_t \]

Production of ideas

\[\frac{\dot{A}_t}{A_t} = \alpha N_t \]

Exogenous population decline

\[N_t = N_0 e^{-\eta t} \]

• Combining the 2nd and 3rd equations (note \(\eta > 0 \))

\[\frac{\dot{A}_t}{A_t} = \alpha N_0 e^{-\eta t} \]

• This equation is easily integrated...
The Empty Planet Result in Romer/GH/AH

- The stock of knowledge A_t is given by

$$\log A_t = \log A_0 + \frac{gA_0}{\eta} (1 - e^{-\eta t})$$

where gA_0 is the initial growth rate of A

- A_t and $y_t \equiv Y_t/N_t$ converge to constant values A^* and y^*:

$$A^* = A_0 \exp \left(\frac{gA_0}{\eta} \right)$$

$$y^* = y_0 \exp \left(\frac{gy_0}{\eta} \right)$$

- **Empty Planet Result**: Living standards stagnate as the population vanishes!
Semi-Endogenous Growth

Production of goods (IRS)

\[Y_t = A_t^\sigma N_t \]

Production of ideas

\[\frac{\dot{A}_t}{A_t} = \alpha N_t^\lambda A_t^{-\beta} \]

Exogenous population growth

\[N_t = N_0 e^{nt}, \quad n > 0 \]

- Income per person: levels and growth

\[y_t = A_t^\sigma \quad \text{and} \quad A_t^* \propto N_t^{\lambda/\beta} \]

\[\frac{\dot{y}_t}{y_t} = \gamma n, \quad \text{where} \quad \gamma \equiv \lambda \sigma / \beta \]

- Expanding Cosmos: Exponential income growth for growing population
Negative Population Growth in the Semi-Endogenous Setting

Production of goods (IRS)

\[Y_t = A_t^\sigma N_t \]

Production of ideas

\[\dot{A}_t = \alpha N_t^\lambda A_t^{-\beta} \]

Exogenous population decline

\[N_t = N_0 e^{-\eta t} \]

- Combining the 2nd and 3rd equations:

\[\frac{\dot{A}_t}{A_t} = \alpha N_0^\lambda e^{-\lambda \eta t} A_t^{-\beta} \]

- Also easily integrated...
The stock of knowledge A_t is given by

$$A_t = A_0 \left(1 + \frac{\beta g A_0}{\lambda \eta} \left(1 - e^{-\lambda \eta t} \right) \right)^{1/\beta}$$

Let $\gamma \equiv \lambda \sigma / \beta = \text{overall degree of increasing returns to scale.}$

Both A_t and income per person $y_t \equiv Y_t / N_t$ converge to constant values A^* and y^*:

$$A^* = A_0 \left(1 + \frac{\beta g A_0}{\lambda \eta} \right)^{1/\beta}$$

$$y^* = y_0 \left(1 + \frac{g y_0}{\gamma \eta} \right)^{\gamma / \lambda}$$
Numerical Example

- Parameter values
 - $g_{y0} = 2\%$, $\eta = 1\%$
 - $\beta = 3 \Rightarrow \gamma = 1/3$ (from BJVW)

- How far away is the long-run stagnation level of income?

 \[
 \frac{y^*/y_0}{Romer/AH/GH} = 7.4
 \]

 \[
 \frac{y^*/y_0}{Semi-endog} = 1.9
 \]

- The Empty Planet result occurs in both, but quantitative difference
Endogenous Fertility
The Economic Environment

\(\ell = \text{time having kids instead of producing goods} \)

Final output

\[Y_t = A_t^\sigma (1 - \ell_t) N_t \]

Population growth

\[\frac{\dot{N}_t}{N_t} = n_t = b(\ell_t) - \delta \]

Fertility

\[b(\ell_t) = \bar{b}\ell_t \]

Ideas

\[\frac{\dot{A}_t}{A_t} = N_t^\lambda A_t^{-\beta} \]

Generation 0 utility

\[U_0 = \int_0^\infty e^{-\rho t} u(c_t, \tilde{N}_t) dt, \quad \tilde{N}_t \equiv N_t/N_0 \]

Flow utility

\[u(c_t, \tilde{N}_t) = \log c_t + \epsilon \log \tilde{N}_t \]

Consumption

\[c_t = \frac{Y_t}{N_t} \]
• All people generate ideas here
 o Learning by doing vs separate R&D

• Equilibrium fertility
 o We have kids because we like them
 o We ignore that they might create ideas that benefit everyone
 o Planner will desire higher fertility

• This is a modeling choice — other results are possible
A Competitive Equilibrium with Externalities

- Representative generation takes w_t as given and solves

$$\max_{\{\ell_t\}} \int_0^\infty e^{-\rho t} u(c_t, \tilde{N}_t) dt$$

subject to

$$\dot{N}_t = (b(\ell_t) - \delta)N_t$$

$$c_t = w_t(1 - \ell_t)$$

- Equilibrium wage $w_t = \text{MP}_L = A_t^\sigma$

- Rest of economic environment closes the equilibrium
Solving for the equilibrium

• The Hamiltonian for this problem is

\[H = u(c_t, \tilde{N}_t) + v_t[b(\ell_t) - \delta]N_t \]

where \(v_t \) is the shadow value of another person.

• Let \(V_t \equiv v_tN_t \) = shadow value of the population

• Equilibrium features constant fertility along transition path

\[V_t = \frac{\epsilon}{\rho} \equiv V_{eq}^* \]

\[\ell_t = 1 - \frac{1}{bV_t} = 1 - \frac{1}{bV_{eq}^*} = 1 - \frac{\rho}{b\epsilon} \equiv \ell_{eq} \]
Discussion of the Equilibrium Allocation

\[n^{eq} = \bar{b} - \delta - \frac{\rho}{\epsilon} \]

- We can choose parameter values so that \(n^{eq} < 0 \)
 - Constant, negative population growth in equilibrium

- Remaining solution replicates the exogenous fertility analysis

The Empty Planet result can arise in equilibrium
The Optimal Allocation
The Optimal Allocation

- Choose fertility to maximize the welfare of a representative generation

- Problem:

\[
\max_{\{\ell_t\}} \int_0^\infty e^{-\rho t} u(c_t, \tilde{N}_t) \, dt
\]

subject to

\[
\dot{N}_t = (b(\ell_t) - \delta)N_t
\]

\[
\frac{\dot{A}_t}{A_t} = N_t^\lambda A_t^{-\beta}
\]

\[
c_t = \frac{Y_t}{N_t}
\]

- Optimal allocation recognizes that offspring produce ideas
Solution

- Hamiltonian:

\[\mathcal{H} = u(c_t, \tilde{N}_t) + \mu_t N_t^\lambda A_t^{1-\beta} + v_t(b(\ell_t) - \delta)N_t \]

\(\mu_t \) is the shadow value of an idea
\(v_t \) is the shadow value of another person

- First order conditions

\[\ell_t = 1 - \frac{1}{bV_t}, \text{ where } V_t \equiv v_tN_t \]

\[\rho = \frac{\dot{\mu}_t}{\mu_t} + \frac{1}{\mu_t} \left(u_c \sigma y_t - \frac{\mu_t(1 - \beta)}{A_t} \right) \]

\[\rho = \frac{\dot{v}_t}{v_t} + \frac{1}{v_t} \left(\epsilon - \mu_t \lambda \frac{\dot{A}_t}{N_t} + v_i n_t \right) \]
Steady State Conditions

- The social value of people in steady state is

\[V_{sp}^* = v_t^* N_t^* = \frac{\epsilon + \lambda z^*}{\rho} \]

where

\[z^* \equiv \mu_i^* \dot{A}_i^* = \frac{\sigma g_A^*}{\rho + \beta g_A^*} \]

- If \(n_{sp}^* > 0 \), then we have an **Expanding Cosmos** steady state

\[g_A^* = \frac{\lambda n_{sp}^*}{\beta} \]

\[g_y^* = \gamma n_{sp}^*, \text{ where } \gamma \equiv \frac{\lambda \sigma}{\beta} \]
Optimal Steady State(s)

- Two equations in two unknowns \((V, n)\)

\[
V(n) = \begin{cases}
\frac{1}{\rho} \left(\epsilon + \frac{\gamma}{1 + \frac{\epsilon}{\lambda n}} \right) & \text{if } n > 0 \\
\frac{\epsilon}{\rho} & \text{if } n \leq 0
\end{cases}
\]

\[
n(V) = \bar{b} \ell(V) - \delta = \bar{b} - \delta + \frac{1}{V}
\]

- We show the solution graphically
A Unique Steady State for the Optimal Allocation when $n_{eq}^* > 0$
Multiple Steady State Solutions when $n_{eq}^* < 0$

High Steady State
(Expanding Cosmos)

Middle Steady State

Equilibrium = Low Steady State
(Empty Planet)
Parameter Values for Numerical Solution

<table>
<thead>
<tr>
<th>Parameter/Moment</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>1</td>
<td>Normalization</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>1</td>
<td>Duplication effect of ideas</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1.25</td>
<td>BJVW</td>
</tr>
<tr>
<td>(\rho)</td>
<td>.01</td>
<td>Standard value</td>
</tr>
<tr>
<td>(\delta)</td>
<td>1%</td>
<td>Death rate</td>
</tr>
<tr>
<td>(n^{eq})</td>
<td>-0.5%</td>
<td>Suggested by Europe, Japan, U.S.</td>
</tr>
<tr>
<td>(\ell^{eq})</td>
<td>1/8</td>
<td>Time spent raising children</td>
</tr>
</tbody>
</table>
Implied Parameter Values and “Expanding Cosmos” Steady-State Results

<table>
<thead>
<tr>
<th>Result</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>.040</td>
<td>$n^{eq} = \bar{b}\ell^{eq} - \delta = -0.5%$</td>
</tr>
<tr>
<td>ϵ</td>
<td>.286</td>
<td>From equation for ℓ^{eq}</td>
</tr>
<tr>
<td>n^{sp}</td>
<td>1.74%</td>
<td>From equations for ℓ^{sp} and n^{sp}</td>
</tr>
<tr>
<td>ℓ^{sp}</td>
<td>0.68</td>
<td>From equations for ℓ^{sp} and n^{sp}</td>
</tr>
<tr>
<td>$\delta^{sp} = \delta^{sp}_A$</td>
<td>1.39%</td>
<td>Equals γn^{sp} with $\sigma = 1$</td>
</tr>
</tbody>
</table>
Transition Dynamics

- State variables: N_t and A_t

- Redefine “state-like” variables for transition dynamics solution: N_t and

 \[x_t \equiv \frac{A_t^\beta}{N_t^\lambda} = \text{“Knowledge per person”} \]

- Why?

 \[\frac{\dot{A}_t}{A_t} = \frac{N_t^\lambda}{A_t^\beta} = \frac{1}{x_t} \]

- Key insight: optimal fertility only depends on x_t
Optimal Population Growth

POPLATION GROWTH, $n(x)$

- High Steady State (Expanding Cosmos)
- Middle Steady State
- Asymptotic Low SS (Empty Planet)

KNOWLEDGE PER PERSON, x
The Economics of Multiple SS’s and Transition Dynamics

- **The High SS is saddle path stable as usual**
 - Equilibrium fertility depends on utility value of kids
 - Planner also values the ideas the kids will produce $\Rightarrow n_{sp} > n_{eq}$

- **Why is there a low SS?**
 - Diminishing returns to each input, including ideas
 - As knowledge per person, x, goes to ∞, the “idea value” of an extra kid falls to zero $\Rightarrow n_{sp}(x) \rightarrow n_{eq}$

- **Why is the low SS stable?**
 - Since $n_{eq} < 0$, we also have $n_{sp}(x) < 0$ for x sufficiently high
 - With $n_{sp}(x) < 0$, $x = A^\beta / N^\lambda$ rises over time
What about the middle candidate steady state?

- Linearize the FOCs. Dynamic system has
 - imaginary eigenvalues
 - with positive real parts

- So the middle SS is an unstable spiral

- Numerical solution reveals what is going on...
The Middle Steady State: Unstable Spiral Dynamics

What path is optimal?

POPULATION GROWTH, n(x)

KNOWLEDGE PER PERSON, x
Population Growth Near the Middle Steady State

Welfare in red

 KNOWLEDGE PER PERSON, x

POPULATION GROWTH, n(x) (percent)
Surprising Result

- The optimal allocation features *two* very different steady states
 - One is an **Expanding Cosmos**
 - One is the **Empty Planet**

- Start the economy with low x
 - The equilibrium converges to the Empty Planet steady state
 - If society adopts optimal policy soon, it goes to the Expanding Cosmos

But if society delays, even the optimal allocation converges to the Empty Planet
Even the optimal allocation can get trapped

If society delays, even the optimal allocation converges to the Empty Planet
Conclusions from this model

- Negative population growth may condemn us to an **Empty Planet**
 - Stagnating living standards for a population that vanishes
- In contrast, the optimal allocation may be an **Expanding Cosmos**
 - Exponential growth in living standards and population.
- **Surprise:** Even the optimum can get trapped in the Empty Planet if society delays.

Fertility considerations may be more important than we thought!