A Schumpeterian Model of Top Income Inequality

Chad Jones and Jihee Kim
Top Income Inequality in the United States and France

Source: World Top Incomes Database (Alvaredo, Atkinson, Piketty, Saez)
Related literature

- **Empirics**: Piketty and Saez (2003), Aghion et al (2015), Guvenen-Kaplan-Song (2015) and many more

- **Rent Seeking**: Piketty, Saez, and Stantcheva (2011) and Rothschild and Scheuer (2011)

- **Finance**: Philippon-Reshef (2009), Bell-Van Reenen (2010)

- **Not just finance**: Bakija-Cole-Heim (2010), Kaplan-Rauh

Outline

• Facts from World Top Incomes Database

• Simple model

• Full model

• Empirical work using IRS public use panel tax returns

• Numerical examples
Top Income Inequality around the World

Top 1% share, 2006–08

Top 1% share, 1980–82

45-degree line

United States
Canada
Singapore
Ireland
Switzerland
Australia
Norway
Sweden
Mauritius
Denmark
Italy
France
Spain
New Zealand

A Schumpeterian Model of Top Income Inequality – p. 5
The Composition of the Top 0.1 Percent Income Share

Top 0.1 percent income share

- Capital gains
- Business income
- Capital income
- Wages and Salaries

Year

0% 2% 4% 6% 8% 10% 12% 14%
The Pareto Nature of Labor Income

Income ratio: $\text{Mean}(y \mid y > z) / z$

Equals $\frac{1}{1-\eta}$ if Pareto...
Pareto Distributions

\[\Pr [Y > y] = \left(\frac{y}{y_0} \right)^{-\xi} \]

- Let \(\tilde{S}(p) \) = share of income going to the top \(p \) percentiles, and \(\eta \equiv 1/\xi \) be a measure of Pareto inequality:

\[\tilde{S}(p) = \left(\frac{100}{p} \right)^{\eta-1} \]

 - If \(\eta = 1/2 \), then share to Top 1% is \(100^{-1/2} \approx 0.10 \)
 - If \(\eta = 3/4 \), then share to Top 1% is \(100^{-1/4} \approx 0.32 \)

- Fractal: Let \(S(a) \) = share of 10\(a \)’s income going to top \(a \):

\[S(a) = 10^{\eta-1} \]
Fractal Inequality Shares in the United States

Fractal shares (percent)

From 20% in 1970 to 35% in 2010

S(.01)
S(1)
The Power-Law Inequality Exponent η, United States

$1 + \log_{10}(\text{top share})$

η rises from .33 in 1970 to .55 in 2010

$\eta(1)$

$\eta(.01)$

$\eta(.1)$
Skill-Biased Technical Change?

• Let $x_i = \text{skill}$ and $\bar{w} = \text{wage per unit skill}$

$$y_i = \bar{w}x_i^{\alpha}$$

• If $\Pr[x_i > x] = x^{-1/\eta_x}$, then

$$\Pr[y_i > y] = \left(\frac{y}{\bar{w}}\right)^{-1/\eta_y} \text{ where } \eta_y = \alpha \eta_x$$

• That is y_i is Pareto with inequality parameter η_y
 - $\text{SBTC (}\uparrow \bar{w})$ shifts distribution right but η_y unchanged.
 - $\uparrow \alpha$ would raise Pareto inequality...
 - This paper: why is $x \sim \text{Pareto}$, and why $\uparrow \alpha$
A Simple Model

Cantelli (1921), Steindl (1965), Gabaix (2009)
Key Idea: Exponential growth w/ death \Rightarrow Pareto
Simple Model for Intuition

- Exponential growth often leads to a Pareto distribution.

- Entrepreneurs
 - New entrepreneur (“top earner”) earns y_0
 - Income after x years of experience:
 \[y(x) = y_0 e^{\mu x} \]

- Poisson “replacement” process at rate δ
 - Stationary distribution of experience is exponential
 \[\Pr [\text{Experience} > x] = e^{-\delta x} \]
What fraction of people have income greater than y?

- Equals fraction with at least $x(y)$ years of experience

$$x(y) = \frac{1}{\mu} \log \left(\frac{y}{y_0} \right)$$

- Therefore

$$\Pr [\text{Income} > y] = \Pr [\text{Experience} > x(y)]$$

$$= e^{-\delta x(y)}$$

$$= \left(\frac{y}{y_0} \right)^{-\frac{\delta}{\mu}}$$

- So power law inequality is given by

$$\eta_y = \frac{\mu}{\delta}$$
Intuition

- Why does the Pareto result emerge?
 - Log of income \propto experience (Exponential growth)
 - Experience \sim exponential (Poisson process)
 - Therefore log income is exponential
 \Rightarrow Income \sim Pareto!

- A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

 Full model: endogenize μ and δ and how they change
Why is experience exponentially distributed?

- Let $F(x, t)$ denote the distribution of experience at time t
- How does it evolve over discrete interval Δt?

\[
F(x, t + \Delta t) - F(x, t) = \delta \Delta t (1 - F(x, t)) - [F(x, t) - F(x - \Delta x, t)]
\]

inflow from above x
outflow as top folks age

- Dividing both sides by $\Delta t = \Delta x$ and taking the limit

\[
\frac{\partial F(x, t)}{\partial t} = \delta (1 - F(x, t)) - \frac{\partial F(x, t)}{\partial x}
\]

- Stationary: $F(x)$ such that $\frac{\partial F(x, t)}{\partial t} = 0$. Integrating gives the exponential solution.
The Model

– Pareto distribution in partial eqm
– GE with exogenous research
– Full general equilibrium
Choose \(\{e_t\} \) to maximize expected discounted utility:

\[
U(c, \ell) = \log c + \beta \log \ell
\]

\[
c_t = \psi_t x_t
\]

\[
e_t + \ell_t + \tau = 1
\]

\[
dx_t = \mu(e_t) x_t dt + \sigma x_t dB_t
\]

\[
\mu(e) = \phi e
\]

\(x \) = idiosyncratic productivity of a variety

\(\psi_t \) = determined in GE (grows)

\(\delta \) = endogenous creative destruction

\(\bar{\delta} \) = exogenous destruction
Entrepreneur’s Problem – HJB Form

• The Bellman equation for the entrepreneur:

\[
\rho V(x_t, t) = \max_{e_t} \log \psi_t + \log x_t + \beta \log(\Omega - e_t) + \frac{\mathbb{E}[dV(x_t, t)]}{dt} + (\delta + \bar{\delta})(V^w(t) - V(x_t, t))
\]

where \(\Omega \equiv 1 - \tau\)

• Note: the “capital gain” term is

\[
\frac{\mathbb{E}[dV(x_t, t)]}{dt} = \mu(e_t)x_tV_x(x_t, t) + \frac{1}{2}\sigma^2 x_t^2 V_{xx}(x_t, t) + V_t(x_t, t)
\]
Solution for Entrepreneur’s Problem

• Equilibrium effort is constant:

\[e^* = 1 - \tau - \frac{1}{\phi} \cdot \beta (\rho + \delta + \bar{\delta}) \]

• Comparative statics:

 ○ \(\uparrow \tau \Rightarrow \downarrow e^* \): higher “taxes”
 ○ \(\uparrow \phi \Rightarrow \uparrow e^* \): better technology for converting effort into \(x \)
 ○ \(\uparrow \delta \) or \(\bar{\delta} \Rightarrow \downarrow e^* \): more destruction
Stationary Distribution of Entrepreneur’s Income

- Unit measure of entrepreneurs / varieties
- Displaced in two ways
 - Exogenous misallocation ($\bar{\delta}$): new entrepreneur $\to x_0$.
 - Endogenous creative destruction (δ): inherit existing productivity x.
- Distribution $f(x, t)$ satisfies Kolmogorov forward equation:

$$\frac{\partial f(x, t)}{\partial t} = -\delta f(x, t) - \frac{\partial}{\partial x} [\mu(e^*) x f(x, t)] + \frac{1}{2} \cdot \frac{\partial^2}{\partial x^2} [\sigma^2 x^2 f(x, t)]$$

- Stationary distribution $\lim_{t \to \infty} f(x, t) = f(x)$ solves

$$\frac{\partial f(x, t)}{\partial t} = 0$$
• Guess that \(f(\cdot) \) takes the Pareto form \(f(x) = Cx^{−\xi−1} \) ⇒

\[
\xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2 \bar{\delta}}{\sigma^2}}
\]

\[
\tilde{\mu}^* \equiv \mu(e^*) - \frac{1}{2} \sigma^2 = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2
\]

• Power-law inequality is therefore given by

\[
\eta^* = 1/\xi^*
\]
Comparative Statics (given δ^*)

$$
\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2\bar{\delta}}{\sigma^2}}
$$

$$
\tilde{\mu}^* = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2
$$

- Power-law inequality η^* increases if
 - $\uparrow \phi$: better technology for converting effort into x
 - $\downarrow \delta$ or $\bar{\delta}$: less destruction
 - $\downarrow \tau$: Lower “taxes”
 - $\downarrow \beta$: Lower utility weight on leisure
Luttmer and GLLM

- Problems with basic random growth model:
 - Luttmer (2011): Cannot produce “rockets” like Google or Uber
 - Gabaix, Lasry, Lions, and Moll (2015): Slow transition dynamics

- Solution from Luttmer/GLLM:
 - Introduce heterogeneous mean growth rates: e.g. “high” versus “low”
 - Here: $\phi_H > \phi_L$ with Poisson rate \bar{p} of transition $(H \rightarrow L)$
Pareto Inequality with Heterogeneous Growth Rates

\[\eta^* = 1 / \xi_H, \quad \xi_H = -\frac{\tilde{\mu}^*_H}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*_H}{\sigma^2}\right)^2 + \frac{2 (\tilde{\delta} + \bar{p})}{\sigma^2}} \]

\[\tilde{\mu}^*_H = \phi_H (1 - \tau) - \beta (\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2 \]

- This adopts Gabaix, Lasry, Lions, and Moll (2015)
- Why it helps quantitatively:
 - \(\phi_H \): Fast growth allows for Google / Uber
 - \(\bar{p} \): Rate at which high growth types transit to low growth types raises the speed of convergence = \(\tilde{\delta} + \bar{p} \).
Growth and Creative Destruction

Final output

\[Y = \left(\int_0^1 Y_i^\theta di \right)^{1/\theta} \]

Production of variety \(i \)

\[Y_i = \gamma^{n_i} x_i^\alpha L_i \]

Resource constraint

\[L_t + R_t + 1 = \bar{N}, \quad L_t \equiv \int_0^1 L_{it} di \]

Flow rate of innovation

\[\dot{n}_t = \lambda (1 - \bar{z}) R_t \]

Creative destruction

\[\delta_t = \dot{n}_t \]
Equilibrium with Monopolistic Competition

• Suppose $R/L = \bar{s}$ where $\bar{L} \equiv \bar{N} - 1$.

• Define $X \equiv \int_0^1 x_i di = \frac{x_0}{1-\eta}$. Markup is $1/\theta$.

\begin{align*}
\text{Aggregate PF} & \quad Y_t = \gamma^{n_t} X^\alpha L \\
\text{Wage for } L & \quad w_t = \theta \gamma^{n_t} X^\alpha \\
\text{Profits for variety } i & \quad \pi_{it} = (1 - \theta) \gamma^{n_t} X^\alpha L \left(\frac{x_i}{X}\right) \propto w_t \left(\frac{x_i}{X}\right) \\
\text{Definition of } \psi_t & \quad \psi_t = (1 - \theta) \gamma^{n_t} X^{\alpha-1} L
\end{align*}

Note that $\uparrow \eta$ has a level effect on output and wages.
Growth and Inequality in the \bar{s} case

- Creative destruction and growth

$$\delta^* = \lambda R = \lambda (1 - \bar{z}) \bar{s} \bar{L}$$

$$g^*_y = \dot{n} \log \gamma = \lambda (1 - \bar{z}) \bar{s} \bar{L} \log \gamma$$

- Does rising top inequality always reflect positive changes?
 - No! $\uparrow \bar{s}$ (more research) or $\downarrow \bar{z}$ (less innovation blocking)
 - Raise growth and reduce inequality via \uparrow creative destruction.
Endogenizing Research and Growth
Endogenizing $s = \frac{R}{\bar{L}}$

- **Worker:**
 \[
 \rho V^w(t) = \log w_t + \frac{dV^W(t)}{dt}
 \]

- **Researcher:**
 \[
 \rho V^R(t) = \log(\bar{m}w_t) + \frac{dV^R(t)}{dt} + \lambda \left(\mathbb{E}[V(x, t)] - V^R(t) \right) \\
 + \bar{\delta}_R \left(V(x_0, t) - V^R(t) \right)
 \]

- **Equilibrium:**
 \[
 V^w(t) = V^R(t)
 \]
Stationary equilibrium solution

Drift of log x

\[\hat{\mu}_H^* = \phi_H (1 - \tau) - \beta (\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma_H^2 \]

Pareto inequality

\[\eta^* = \frac{1}{\xi^*}, \quad \xi^* = -\frac{\hat{\mu}_H^*}{\sigma_H^2} + \sqrt{\left(\frac{\hat{\mu}_H^*}{\sigma_H^2} \right)^2 + \frac{2(\bar{\delta} + \bar{p})}{\sigma_H^2}} \]

Creative destruction

\[\delta^* = \lambda (1 - \bar{z}) s^* \bar{L} \]

Growth

\[g^* = \delta^* \log \gamma \]

Research allocation

\[V^w(s^*) = V^R(s^*) \]
Varying the x-technology parameter ϕ
Why does $\uparrow \phi$ reduce growth?

- $\uparrow \phi \Rightarrow \uparrow e^* \Rightarrow \uparrow \mu^*$

- Two effects
 - **GE effect**: technological improvement \Rightarrow economy more productive so higher profits, but also higher wages
 - **Allocative effect**: raises Pareto inequality (η), so $\frac{x_i}{X}$ is more dispersed $\Rightarrow E \log \frac{\pi_i}{w}$ is lower. Risk averse agents undertake less research.

- Positive level effect raises both profits and wages. Riskier research \Rightarrow lower research and lower long-run growth.
How the model works

• ϕ raises top inequality, but leaves the growth rate of the economy unchanged.

 ○ Surprising: a “linear differential equation” for x.

• Key: the distribution of x is stationary!

• Higher ϕ has a positive level effect through higher inequality, raising everyone’s wage.

 ○ But growth comes via research, not through x...

Lucas at “micro” level, Romer/AH at “macro” level
Growth and Inequality

- Growth and inequality tend to move in opposite directions!
- Two reasons
 1. Faster growth \Rightarrow more creative destruction
 - Less time for inequality to grow
 - Entrepreneurs may work less hard to grow market
 2. With greater inequality, research is riskier!
 - Riskier research \Rightarrow less research \Rightarrow lower growth
- Transition dynamics \Rightarrow ambiguous effects on growth in medium run
Possible explanations: Rising U.S. Inequality

- **Technology (e.g. WWW)**
 - Entrepreneur’s effort is more productive $\Rightarrow \eta$
 - Worldwide phenomenon, not just U.S.
 - Ambiguous effects on U.S. growth (research is riskier!)

- **Lower taxes on top incomes**
 - Increase effort by entrepreneur’s $\Rightarrow \eta$
Possible explanations: Inequality in France

- **Efficiency-reducing explanations**
 - Delayed adoption of good technologies (WWW)
 - Increased misallocation (killing off entrepreneurs more quickly)

- **Efficiency-enhancing explanations**
 - Increased subsidies to research (more creative destruction)
 - Reduction in blocking of innovations (more creative destruction)
Micro Evidence
Overview

• Geometric random walk with drift = canonical DGP in the empirical literature on income dynamics.
 – Survey by Meghir and Pistaferri (2011)

• The distribution of growth rates for the Top 10% earners
 ◦ Guvenen, Karahan, Ozkan, Song (2015) for 1995-96
 ◦ IRS public use panel for 1979–1990 (small sample)
Growth Rates of Top 10% Incomes, 1995–1996

From Guvenen et al (2015)

ANNUAL LOG CHANGE, 1995-96

⇒ $\tilde{\delta} + \delta$

⇒ $\tilde{\mu}_H$

1 in 100: rise by a factor of 3.0
1 in 1,000: rise by a factor of 6.8
1 in 10,000: rise by a factor of 24.6
Growth Rates of Top 5% Incomes, 1988–1989
Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\delta} + \delta$</td>
<td>0.07</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>σ_H</td>
<td>0.122</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>0.767</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\tilde{\mu}_H$</td>
<td>0.244</td>
<td>0.303</td>
<td>0.435</td>
</tr>
<tr>
<td>Model: η^*</td>
<td>0.330</td>
<td>0.398</td>
<td>0.556</td>
</tr>
<tr>
<td>Data: η</td>
<td>0.33</td>
<td>0.48</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Three numerical examples
Three numerical examples

• The examples

 2. Match inequality in France \((\bar{z}, \bar{p})\)
 3. Match U.S. and French data using taxes \((\tau)\)

• Why these are just examples

 ◦ **Identification problem**: observe \(\mu\) but not structural parameters, e.g. \(\phi\) and \(\tau\)
 ◦ Sequence of steady states, not transition dynamics
Parameters

- Parameters consistent with IRS panel:
 - $\phi \approx 0.5 \Rightarrow \tilde{\mu}_H \approx 0.3$
 - $\sigma_H = \sigma_L = 0.122$
 - $\bar{p} = 0.767$
 - $\bar{q} = 0.504$ – 2.5% of top earners are high growth

- Other parameter values
 - Match U.S. growth of 2% per year and Pareto inequality in 1980
 - $\bar{\delta} = 0.04$ and $\gamma = 1.4 \Rightarrow \delta + \bar{\delta} \approx 0.10$
 - $\rho = 0.03, \bar{L} = 15, \tau = 0, \theta = 2/3, \beta = 1, \lambda = 0.027, \bar{m} = 0.5, \bar{z} = 0.20$
Numerical Example: Matching U.S. Inequality

ϕ^H in US rises from 0.385 to 0.568
Numerical Example: U.S. and France

\bar{z} in France falls from 0.350 to 0.250
p in France rises from 0.89 to 1.09
Numerical Example: Taxes and Inequality

- \(\tau \) in the U.S. falls from 0.350 to 0.038
- \(\tau \) in France falls from 0.395 to 0.250
Conclusions: Understanding top income inequality

- Information technology / WWW:
 - Entrepreneurial effort is more productive: $\uparrow \phi \Rightarrow \uparrow \eta$
 - Worldwide phenomenon (?)

- Why else might inequality rise by less in France?
 - Less innovation blocking / more research: raises creative destruction
 - Regulations limiting rapid growth: $\uparrow \bar{p}$ and $\downarrow \phi$

Theory suggests rich connections between:
models of top inequality \leftrightarrow micro data on income dynamics