

Taxing Top Incomes in a World of Ideas

Chad Jones

July 2019 - NBER Growth Meeting

Overview

Saez (2001) and following literature

"Macro"-style calibration of optimal top income taxation Many extensions to K, H, dynamics — but not ideas!

- How does this calculation change when:
 - New ideas drive economic growth
 - The reward for a new idea is a top income
 - Creation of ideas is broad
 - A formal "research subsidy" is imperfect (Walmart, Amazon)
 - A small number of entrepreneurs ⇒ the bulk of economy-wide growth
- $\uparrow au$ lowers consumption throughout the economy via nonrivalry

Literature

- Human capital: Badel and Huggett, Kindermann and Krueger
- Superstars/inventors: Scheuer and Werning, Chetty et al
- Spillovers: Lockwood-Nathanson-Weyl
- Mirrlees w/ Imperfect Substitution: Sachs-Tsyvinski-Werquin
- Inventors and taxes: Akcigit-Baslandze-Stantcheva, Moretti and Wilson, Akcigit-Grigsby-Nicholas-Stantcheva
- Growth and taxes: Stokey and Rebelo, Jaimovich and Rebelo

This paper does not calculate "the" optimal top tax rate

- Many other considerations:
 - Political economy of inequality
 - Occupational choice (other brackets, concavity)
 - Top tax diverts people away from finance to ideas?
 - Social safety net, lenient bankruptcy insure the downside
 - o How sensitive are entrepreneurs to top tax rates?
 - Empirical evidence on growth and taxes
 - Rent seeking, human capital
- Still, including economic growth and ideas seems important

Basic Setup

Overview

- BGP of an idea-based growth model. Romer 1990, Jones 1995
 - Semi-endogenous growth
 - Basic R&D (subsidized directly), Applied R&D (top tax rate)
 - BGP simplifies: static comparison vs transition dynamics
- Three alternative approaches to the top tax rate:
 - Revenue maximization
 - Maximize welfare of "workers"
 - Maximize utilitarian social welfare

The Economic Environment

 Consumption goods produced by managers M, labor L, and nonrival "applied" ideas A:

$$Y = A^{\gamma} \tilde{M}^{\psi} L^{1-\psi} \tag{1}$$

 Applied ideas produced from entrepreneurs, effort e, talent z, and basic research ideas B:

$$\dot{A}_t = \bar{a}(\mathbb{E}(ez)S_{at})^{\lambda}A_t^{\phi_a}B_t^{\alpha}$$

Fundamental ideas produced from basic research:

$$\dot{B}_t = \bar{b} S_{bt}^{\lambda} B_t^{\phi_b}$$

• \tilde{M} , L, S_a , S_b exogenous. e, z endogenous (unspecified for now)

BGP from a Dynamic Growth Model

- BGP implies that stocks are proportional to flows:
 - \circ A and B are proportional to S_a and S_b (to some powers)
 - o S_a, S_b, L, M : exogenous population growth
- Stock of applied ideas (being careless with exponents wlog)

$$A = \nu_a \mathbb{E}[ez] S_a B^{\beta} \tag{2}$$

Stock of basic ideas

$$B = \nu_b S_b \tag{3}$$

Output = Consumption:

• Combining (1) - (3) with $\tilde{M} = \mathbb{E}[ez]M$:

$$Y = \left(\nu \mathbb{E}[ez] S_a S_b^{\beta}\right)^{\gamma} (\mathbb{E}[ez] M)^{\psi} L^{1-\psi}$$

- Output per person $y \propto (S_a S_b^{\beta})^{\gamma}$
- Intuition: y depends on stock of ideas, not ideas per person
- LR growth = $\gamma(1 + \beta)n$ where n is population growth
- Taxes distort $\mathbb{E}(ez)$:
 - \circ ψ effect is traditional, but ψ small?
 - $\circ \ \gamma$ effect via nonrivalry of ideas, can be large!

Nonlinear Income Tax Revenue

$$T = \underbrace{\tau_0[wL + wS_b + w_a\mathbb{E}(ez)S_a + w_m\mathbb{E}(ez)M]}_{\text{all income pays }\tau_0} \\ + \underbrace{(\tau - \tau_0)[(w_a\mathbb{E}(ez) - \bar{w})S_a + (w_m\mathbb{E}(ez) - \bar{w})M]}_{\text{income above }\bar{w} \text{ pays an additional }\tau - \tau_0}$$

Full growth model: entrepreneurs paid a constant share of GDP

$$\frac{w_a \mathbb{E}(ez) S_a}{Y} = \rho_s \quad \text{and} \quad \frac{w_m \mathbb{E}(ez) M}{Y} = \rho_m.$$

and
$$Y = wL + w_bS_b + w_a\mathbb{E}(ez)S_a + w_m\mathbb{E}(ez)M$$
, $\rho \equiv \rho_s + \rho_m$

$$\Rightarrow T = \tau_0 Y + (\tau - \tau_0) \left[\rho Y - \bar{w} (S_a + M) \right]$$

Some Intuition

Entrepreneurs/managers paid a constant share of GDP

$$rac{w_a \mathbb{E}(ez) S_a}{Y} =
ho_s \quad ext{and} \quad rac{w_m \mathbb{E}(ez) M}{Y} =
ho_m.$$

- Production: $Y = \left(\nu \mathbb{E}[ez] S_a S_b^{\beta}\right)^{\gamma} (\mathbb{E}[ez] M)^{\psi} L^{1-\psi}$
- Efficiency: Pay ∼ Cobb-Douglas exponents. IRS means cannot!
- Jones and Williams (1998) social rate of return calculation:

$$\tilde{r} = g_Y + \lambda g_y \left(\frac{1}{\rho_s (1 - \tau)} - \frac{1}{\gamma} \right)$$

 \Rightarrow After tax share of payments to entrepreneurs should equal γ $\rho_s(1-\tau)$ versus γ is one way of viewing the tradeoff

The Top Tax Rate that Maximizes Revenue

Revenue-Maximizing Top Tax Rate

Key policy problem:

$$\begin{split} \max_{\tau} T &= \tau_0 Y + (\tau - \tau_0) \left[\rho Y - \bar{w} (S_a + M) \right] \\ \text{s.t.} \\ Y &= \left(\nu \mathbb{E}[ez] S_a S_b^{\beta} \right)^{\gamma} \left(\mathbb{E}[ez] M \right)^{\psi} L^{1-\psi} \end{split}$$

- A higher τ reduces the effort of entrepreneurs/managers
 - Leads to less innovation
 - which reduces everyone's income (Y)
 - \circ which lowers tax revenue received via τ_0

Solution

$$au_{rm}^* = rac{1 - au_0 \cdot rac{1-
ho}{\Delta
ho} \cdot \eta_{Y,1- au}}{1 + rac{
ho}{\Delta
ho} \, \eta_{Y,1- au}} \; \; ext{vs} \quad au_{ds}^* = rac{1}{1 + lpha \cdot \eta_{z_m,1- au}}$$

- Remarks: Two key differences
 - $\begin{array}{c} \circ \;\; \eta_{{\scriptscriptstyle Y},1-\tau} \; \text{versus} \; \eta_{z_m,1-\tau} \\ \\ \eta_{{\scriptscriptstyle Y},1-\tau} \Rightarrow \text{How GDP changes if researchers keep more} \\ \\ \eta_{z_m,1-\tau} \Rightarrow \text{How average top incomes change} \end{array}$
 - o If $\tau_0 > 0$, then τ^* is lower Distorting research lowers GDP \Rightarrow lowers revenue from other taxes!

Guide to Intuition

 $\eta_{\scriptscriptstyle Y,1- au}$ The economic model

 $\rho \eta_{Y,1-\tau}$ Behavioral effect via top earners

 $(1ho)\,\eta_{{\scriptscriptstyle Y},1- au}\,$ Behavioral effect via workers

 $\Delta \rho \equiv \rho - \bar{\rho}$ Tax base for au, mechanical effect

 $1-\Delta
ho$ Tax base for au_0

What is $\eta_{Y,1-\tau}$?

$$Y = \left(\nu \mathbb{E}[ez] S_a S_b^{\beta}\right)^{\gamma} (\mathbb{E}[ez] M)^{\psi} L^{1-\psi} \quad \Rightarrow \quad \eta_{\gamma, 1-\tau} = (\gamma + \psi) \zeta$$

- γ = degree of IRS via ideas
- ψ = manager's share = 0.15 (not important)
- ζ is the elasticity of $\mathbb{E}[ez]$ with respect to $1-\tau$.
 - Standard Diamond-Saez elasticity: $\zeta = \eta_{z_m, 1-\tau}$
 - How individual behavior changes when the tax rate changes
 - Cool insight from PublicEcon: all that matters is the value of this elasticity, not the mechanism!
 - So for now, just treat as a parameter (endogenized later)

Calibration

Parameter values for numerical examples

$$\frac{\zeta}{1-\zeta} \in \{0.2, 0.5\}$$
 Behavio

Behavioral elasticity. Saez values

$$\gamma \in [1/8, 1]$$

 $g_{tfp} = \gamma(1+\beta) \cdot g_S \approx 1\%.$

$$\tau_0 = 0.2$$

Average tax rate outside the top.

$$\Delta \rho = 0.10$$

Share of income taxed at the top rate; top returns account for 20% of taxable income.

$$\rho = 0.15$$

So $\frac{\rho}{\Delta \rho}=1.5$ as in Saez pareto parameter, $\alpha.$

Revenue-Maximizing Top Tax Rate, $\tau_{\!\mathit{rm}}^*$

	Behavioral Elasticit				
Case	0.20	0.50			
Diamond-Saez:	0.80	0.67			
No ideas, $\gamma = 0$					
$ au_0=0$:	0.96	0.93			
$ au_0 = 0.20$:	0.92	0.85			
Degree of IRS, γ					
1/8	0.86	0.74			
1/4	0.81	0.64			
1/2	0.70	0.48			
1	0.52	0.22			

Revenue-Maximizing Top Tax Rate, $\tau_{\!\mathit{rm}}^*$

Behavioral Elasticity	
0.20	0.50
0.80	0.67
0.96	0.93
0.92	0.85
0.86	0.74
0.81	0.64
0.70	0.48
0.52	0.22
	0.20 0.80 0.96 0.92 0.86 0.81 0.70

Revenue-Maximizing Top Tax Rate, τ_{rm}^*

	Behavioral Elasticity		
Case	0.20	0.50	
Diamond-Saez:	0.80	0.67	
No ideas, $\gamma=0$			
$ au_0=0$:	0.96	0.93	
$\tau_0 = 0.20$:	0.92	0.85	
Degree of IRS, γ			
1/8	0.86	0.74	
1/4	0.81	0.64	
1/2	0.70	0.48	
1	0.52	0.22	

Intuition: Double the "keep rate" $1-\tau$ (e.g. $\tau=75\%$ to $\tau=50\%$).

What is the long-run effect on GDP?

• Answer: $2^{\eta_{Y,1-\tau}}=2^{\gamma\zeta}$

 \circ Baseline: $\gamma=1/2$ and $\zeta=1/6\Rightarrow 2^{1/12}\approx 1.06$

Raises GDP by just 6%!

• With $\Delta \rho = 10\%$, the revenue cost is 2.5% of GDP 6% gain to everyone...

> redistributing 2.5% to the bottom half!

 6% seems small, but achieved by a small group of researchers working 15% harder...

Maximizing Worker Welfare

- Revenue-max ignores effect on consumption
- Worker welfare yields a clean closed-form solution

Choose τ and τ_0 to Maximize Worker Welfare

• Workers:
$$c^w = w(1- au_0)$$
 $u_w(c) = heta \log c$

Government budget constraint

$$\tau_0 Y + (\tau - \tau_0)[\rho Y - \bar{w}(S_a + M)] = \Omega Y$$

Exogenous government spending share of GDP = Ω (to pay for basic research, legal system, etc.)

• Problem:
$$\max_{\tau,\tau_0} \ \log(1-\tau_0) + \log Y(\tau) \quad \text{s.t.}$$

$$\tau_0 Y + (\tau-\tau_0)[\rho Y - \bar{w}(S_a+M)] = \Omega Y.$$

First Order Conditions

The top rate that maximizes worker welfare satisfies

$$\tau_{ww}^* = \frac{1 - \eta_{Y,1-\tau} \left(\frac{1-\rho}{\Delta\rho} \cdot \tau_0^* + \frac{1-\Delta\rho}{\Delta\rho} \cdot (1-\tau_0^*) - \frac{\Omega}{\Delta\rho} \right)}{1 + \frac{\rho}{\Delta\rho} \eta_{Y,1-\tau}}.$$

Three new terms relative to Saez:

$$\eta \frac{1-\rho}{\Delta \rho} \cdot \tau_0^*$$
 Original term from RevMax

$$\begin{array}{ll} \eta^{\frac{1-\Delta\rho}{\Delta\rho}}\cdot(1-\tau_0^*) & \text{ Direct effect of a higher tax rate reducing GDP} \\ \Rightarrow \text{reduce workers consumption} \end{array}$$

$$\eta \frac{\Omega}{\Delta \rho}$$
 Need to raise Ω in revenue

Intuition

When is a "flat tax" optimal?

$$au \leq au_0 \iff \eta_{Y,1- au} \geq \frac{\Delta \rho}{1-\Delta \rho}.$$

Two ways to increase c^w :

- $\circ \downarrow \tau \Rightarrow \text{ raises GDP by } \eta_{Y,1-\tau}$
- Redistribute \Rightarrow take from $\Delta \rho$ people, give to $1 \Delta \rho$
- Baseline parameters: $\eta_{\gamma,1-\tau} = \frac{1}{6}(\gamma + \psi)$ and $\frac{\Delta \rho}{1-\Delta \rho} = \frac{1}{9}$.

$$\gamma + \psi > 2/3 \ \Rightarrow \ \tau < \tau_0$$
.

Tax Rates that Maximize Worker Welfare

Degree of	Behavioral elast. = 0.2		Behavioral elast. = 0.5	
IRS, γ	$ au_{ww}^*$	$ au_0^*$	$ au_{ww}^*$	$ au_0^*$
1/8	0.64	0.15	0.32	0.19
1/4	0.49	0.17	0.07	0.21
1/2	0.22	0.20	-0.37	0.26
1	-0.25	0.25	-1.03	0.34

The top rate that maximizes worker welfare can be negative!

Summary of Calibration Exercises

Exercise	Top ra	te, $ au$	
No ideas, $\gamma=0$			
Revenue-maximization, $ au_0=0$	0.9	6	
Revenue-maximization, $ au_0 = 0.20$	0.92		
With ideas	$\gamma=1/2$	$\gamma = 1$	
Revenue-maximization	0.70	0.52	
Maximize worker welfare	0.22	-0.25	
Maximize utilitarian welfare	0.22	-0.05	

Incorporating ideas sharply lowers the top tax rate.

Discussion

Evidence on Growth and Taxes? Important and puzzling!!!

- Stokey and Rebelo (1995)
 - Growth rates flat in the 20th century
 - Taxes changed a lot!
- But the counterfactual is unclear
 - Government investments in basic research after WWII
 - Decline in basic research investment in recent decades?
 - \circ Maybe growth would have slowed sooner w/o $\downarrow \tau$
- Short-run vs long-run?
 - Shift from goods to ideas may reduce GDP in short run...

Taxes in the United States

U.S. GDP per person

Environment for Full Growth Model

Final output
$$Y_t = \int_0^{A_t} x_{it}^{1-\psi} di \, (\mathbb{E}(ez)M_t)^\psi$$
 Production of variety i
$$x_{it} = \ell_{it}$$
 Resource constraint (ℓ)
$$\int \ell_{it} di = L_t$$
 Resource constraint (N)
$$L_t + S_{bt} = N_t$$
 Population growth
$$N_t = \bar{N} \exp(nt)$$
 Entrepreneurs
$$S_{at} = \bar{S}_a \exp(nt)$$
 Managers
$$M_t = \bar{M} \exp(nt)$$
 Applied ideas
$$\dot{A}_t = \bar{a} (\mathbb{E}(ez)S_{at})^\lambda A_t^{\phi_a} B_t^\alpha$$
 Basic ideas
$$\dot{B}_t = \bar{b} S_{bt}^\lambda B_t^{\phi_b}$$
 Talent heterogeneity
$$z_i \sim F(z)$$
 Utility (S_a, M)
$$u(c, e) = \theta \log c - \zeta e^{1/\zeta}$$

Conclusion

- Lots of unanswered questions
 - Why is evidence on growth and taxes so murky?
 - What is true effect of taxes on growth and innovation?
 Akcigit et al (2018) makes progress...
 - At what income does the top rate apply?
 - Capital gains as compensation for innovation
 - Transition dynamics
- Still, innovation is a key force that needs to be incorporated
 - Distorting the behavior of a small group of innovators can affect all our incomes

Extra Slides

The Saez (2001) Calculation

- Income: $z \sim \text{Pareto}(\alpha)$
- Tax revenue:

$$T = \tau_0 \bar{z} + \tau (z_m - \bar{z})$$

where z_m is average income above cutoff \bar{z}

• Revenue-maximizing top tax rate:

$$z_m - \bar{z} + \tau z_m'(\tau) = 0$$
 mechanical gain behavioral loss

• Divide by $z_m \Rightarrow$ elasticity form and rearrange:

$$\tau^* = \frac{1}{1 + \alpha \cdot \eta_{z_m, 1 - \tau}}$$

where $\alpha = \frac{z_m}{z_m - \overline{z}}$.

$$\tau^* = \frac{1}{1 + \alpha \cdot \eta_{z_m, 1 - \tau}}$$

- Intuition
 - Decreasing in $\eta_{z_m,1-\tau}$: elasticity of top income wrt $1-\tau$
 - Increasing in $\frac{1}{\alpha} = \frac{z_m \bar{z}}{z_m}$: change in revenue as a percent of income = Pareto inequality
- · Diamond and Saez (2011) Calibration
 - \circ $\alpha = 1.5$ from Pareto income distribution
 - $\eta = 0.2$ from literature

$$\Rightarrow \tau_{\text{d-s}}^* \approx 77\%$$

Solution

$$\max_{\tau} T = \tau_0 Y(\tau) + (\tau - \tau_0) \left[\rho Y(\tau) - \bar{w} S_a \right]$$

FOC:

$$\underbrace{(\rho - \bar{\rho})\,Y}_{\text{mechanical gain}} + \underbrace{\frac{\partial Y}{\partial \tau} \cdot [(1 - \rho)\tau_0 + \rho\tau]}_{\text{behavioral loss}} = 0$$

where
$$\bar{
ho} \equiv \frac{\bar{w}(S_a + M)}{Y}$$

• Rearranging with $\Delta \rho \equiv \rho - \bar{\rho}$

$$au_{rm}^* = rac{1 - au_0 \cdot rac{1 -
ho}{\Delta
ho} \cdot \eta_{{\scriptscriptstyle Y},1 - au}}{1 + rac{
ho}{\Delta
ho} \, \eta_{{\scriptscriptstyle Y},1 - au}}$$

Maximizing Utilitarian Social Welfare

Entrepreneurs and Managers

Utility function depends on consumption and effort:

$$u(c, e) = \theta \log c - \zeta e^{1/\zeta}$$

Researcher with talent z solves

$$\begin{aligned} \max_{c,e} & u(c,e) \quad \text{s.t.} \\ & c = & \bar{w}(1-\tau_0) + [w_s ez - \bar{w}](1-\tau) + R \\ & = & \bar{w}(1-\tau_0) - \bar{w}(1-\tau) + w_s ez(1-\tau) + R \\ & = & \bar{w}(\tau-\tau_0) + w_s ez(1-\tau) + R \end{aligned}$$

where R is a lump sum rebate.

• FOC:

$$e^{\frac{1}{\zeta}-1}=\frac{\theta w_s z(1-\tau)}{c}.$$

SE/IE and Rebates

- Log preferences imply that SE and IE cancel: $\frac{\partial e}{\partial \tau} = 0$
- Standard approach is to rebate tax revenue to neutralize the IE.
 - Tricky here because IE's are heterogeneous!
- Shortcut: heterogeneous rebates that vary with z to deliver

$$c_z = w_s e z (1-\tau)^{1-\alpha}$$

$$e_z = e^* = [\theta(1-\tau)^{\alpha}]^{\zeta},$$

where α parameterizes the elasticity of effort wrt $1-\tau$

$$\circ \ \eta_{Y,1-\tau} = \alpha \zeta(\gamma + \psi)$$

o governs tradeoff with redistribution

Utilitarian Social Welfare

Social Welfare:

$$SWF \equiv Lu(c^w) + S_bu(c^b) + S_a \int u(c_z^s, e_z^s) dF(z) + M \int u(c_z^m, e_z^m) dF(z)$$

Substitution of equilibrium conditions gives

$$SWF \propto \log Y + \ell \log(1 - \tau_0) + s[(1 - \alpha)\log(1 - \tau) - \zeta(1 - \tau)^{\alpha}]$$

where
$$s \equiv \frac{S_a + M}{L + S_b + S_a + M}$$
, $\ell \equiv 1 - s$,

Tax Rates that Maximize Social Welfare

- Proposition 2 gives the tax rates, written in terms of the "keep rates" $\kappa \equiv 1 \tau$ and $\kappa_0 \equiv 1 \tau_0$.
- Two well-behaved nonlinear equations:

$$\alpha \zeta s \kappa^{\alpha} + \frac{\kappa}{\kappa_0} \cdot \frac{\ell}{1 - \Delta \rho} \left(\Delta \rho + \bar{\rho} \eta \right) = \eta \left(1 + \frac{\bar{\rho} \ell}{1 - \Delta \rho} \right) + s(1 - \alpha)$$
$$\kappa_0 (1 - \Delta \rho) + \kappa \Delta \rho = 1 - \Omega.$$

Maximizing Social Welfare: $\alpha=1$

Tax Rates that Maximize Social Welfare ($\alpha=1$)

	Behavioral elast. = 0.2		Behavioral elast. = 0.5	
Degree of		GDP loss		GDP loss
IRS, γ	$ au^*$	if $\tau = 0.75$	$ au^*$	if $\tau = 0.75$
1/8	0.649	0.7%	0.400	3.6%
1/4	0.502	2.8%	0.163	9.6%
1/2	0.231	8.9%	-0.255	23.6%
1	-0.238	23.4%	-0.919	49.3%

Tax Rates that Maximize Social Welfare ($\alpha=1/2$)

Degree of	Behavioral elast. = 0.2 GDP loss		Behavioral elast. = 0.5 GDP loss	
IRS, γ	$ au^*$	$if \tau = 0.75$	$ au^*$	$if \tau = 0.75$
1/8	0.445	0.8%	0.328	2.0%
1/4	0.369	1.9%	0.189	4.8%
1/2	0.222	4.6%	-0.070	11.4%
1	-0.047	11.3%	-0.517	26.0%

The Social Return to Research

- How big is the gap between equilibrium share and optimal share to pay for research?
- Jones and Williams (1998) social rate of return calculation here:

$$\tilde{r} = g_Y + \lambda g_y \left(\frac{1}{\rho_s (1 - \tau)} - \frac{1}{\gamma} \right)$$

- \Rightarrow After tax share of payments to entrepreneurs should equal γ
- Simple calibration: $\tau = 1/2 \Rightarrow \tilde{r} = 39\%$ if $\rho_s = 10\%$
 - Consistent with SROR estimates e.g. Bloom et al. (2013)
 - But those are returns to formal R&D...

GEMS Entrepreneurs versus Taxes

