Taxing Top Incomes
in a World of Ideas

Chad Jones

July 2019 – NBER Growth Meeting
Overview

• Saez (2001) and following literature
 “Macro”-style calibration of optimal top income taxation
 Many extensions to K, H, dynamics — but not ideas!

• How does this calculation change when:
 ◦ New ideas drive economic growth
 ◦ The reward for a new idea is a top income
 ◦ Creation of ideas is broad
 – A formal “research subsidy” is imperfect (Walmart, Amazon)
 ◦ A small number of entrepreneurs \Rightarrow the bulk of economy-wide growth

• $\uparrow \tau$ lowers consumption throughout the economy via nonrivalry
Literature

- **Human capital**: Badel and Huggett, Kindermann and Krueger

- **Superstars/inventors**: Scheuer and Werning, Chetty et al

- **Spillovers**: Lockwood-Nathanson-Weyl

- **Mirrlees w/ Imperfect Substitution**: Sachs-Tsyvinski-Werquin

- **Inventors and taxes**: Akcigit-Baslandze-Stantcheva, Moretti and Wilson, Akcigit-Grigsby-Nicholas-Stantcheva

- **Growth and taxes**: Stokey and Rebelo, Jaimovich and Rebelo
This paper does not calculate “the” optimal top tax rate

- Many other considerations:
 - Political economy of inequality
 - Occupational choice (other brackets, concavity)
 - Top tax diverts people away from finance to ideas?
 - Social safety net, lenient bankruptcy insure the downside
 - How sensitive are entrepreneurs to top tax rates?
 - Empirical evidence on growth and taxes
 - Rent seeking, human capital

- Still, including economic growth and ideas seems important
Basic Setup
Overview

- BGP of an idea-based growth model. Romer 1990, Jones 1995
 - Semi-endogenous growth
 - Basic R&D (subsidized directly), Applied R&D (top tax rate)
 - BGP simplifies: static comparison vs transition dynamics

- Three alternative approaches to the top tax rate:
 - Revenue maximization
 - Maximize welfare of “workers”
 - Maximize utilitarian social welfare
The Economic Environment

- Consumption goods produced by managers \(\tilde{M} \), labor \(L \), and nonrival “applied” ideas \(A \):
 \[
 Y = A^\gamma \tilde{M}^\psi L^{1-\psi}
 \] (1)

- Applied ideas produced from entrepreneurs, effort \(e \), talent \(z \), and basic research ideas \(B \):
 \[
 \dot{A}_t = \bar{a}(\mathbb{E}(ez)S_{at})^\lambda A_t^{\phi_a} B_t^{\alpha}
 \]

- Fundamental ideas produced from basic research:
 \[
 \dot{B}_t = \bar{b}S_{bt}^{\lambda} B_t^{\phi_b}
 \]

- \(\tilde{M}, L, S_a, S_b \) exogenous. \(e, z \) endogenous (unspecified for now)
BGP from a Dynamic Growth Model

- BGP implies that stocks are proportional to flows:
 - A and B are proportional to S_a and S_b (to some powers)
 - S_a, S_b, L, M: exogenous population growth

- Stock of applied ideas (being careless with exponents wlog)
 \[A = \nu_a \mathbb{E}[ez] S_a B^\beta \]
 \[(2) \]

- Stock of basic ideas
 \[B = \nu_b S_b \]
 \[(3) \]
Output = Consumption:

• Combining (1) - (3) with $\tilde{M} = \mathbb{E}[ez]M$:

$$Y = \left(\nu \mathbb{E}[ez]S_a S_b^\beta \right)^\gamma \left(\mathbb{E}[ez]M \right) \psi L^{1-\psi}$$

 ○ Output per person $y \propto (S_a S_b^\beta)^\gamma$

 ○ Intuition: y depends on stock of ideas, not ideas per person

 ○ LR growth $= \gamma(1 + \beta)n$ where n is population growth

• Taxes distort $\mathbb{E}(ez)$:

 ○ ψ effect is traditional, but ψ small?

 ○ γ effect via nonrivalry of ideas, can be large!
Nonlinear Income Tax Revenue

\[T = \tau_0 [w_L + w_S b + w_a \mathbb{E}(ez) S_a + w_m \mathbb{E}(ez) M] \]

all income pays \(\tau_0 \)

\[+ (\tau - \tau_0) [(w_a \mathbb{E}(ez) - \bar{w}) S_a + (w_m \mathbb{E}(ez) - \bar{w}) M] \]

income above \(\bar{\bar{w}} \) **pays an additional** \(\tau - \tau_0 \)

- **Full growth model:** entrepreneurs paid a constant share of GDP

\[
\frac{w_a \mathbb{E}(ez) S_a}{Y} = \rho_s \quad \text{and} \quad \frac{w_m \mathbb{E}(ez) M}{Y} = \rho_m.
\]

and \(Y = w_L + w_b S_b + w_a \mathbb{E}(ez) S_a + w_m \mathbb{E}(ez) M, \quad \rho \equiv \rho_s + \rho_m \)

\[\Rightarrow T = \tau_0 Y + (\tau - \tau_0) [\rho Y - \bar{\bar{w}}(S_a + M)] \]
Some Intuition

• Entrepreneurs/managers paid a constant share of GDP

\[\frac{w_a \mathbb{E}(e_z) S_a}{Y} = \rho_s \quad \text{and} \quad \frac{w_m \mathbb{E}(e_z) M}{Y} = \rho_m. \]

• Production: \[Y = \left(\nu \mathbb{E}[e_z] S_a S^\beta \right)^\gamma (\mathbb{E}[e_z] M)^\psi L^{1-\psi} \]

• Efficiency: Pay \sim\text{ Cobb-Douglas exponents. IRS means cannot!}

• Jones and Williams (1998) social rate of return calculation:

\[\tilde{r} = g_Y + \lambda g_y \left(\frac{1}{\rho_s (1 - \tau)} - \frac{1}{\gamma} \right) \]

⇒ After tax share of payments to entrepreneurs should equal \(\gamma \)

\(\rho_s (1 - \tau) \) versus \(\gamma \) is one way of viewing the tradeoff
The Top Tax Rate that Maximizes Revenue
Revenue-Maximizing Top Tax Rate

- Key policy problem:

$$\max_{\tau} T = \tau_0 Y + (\tau - \tau_0) [\rho Y - \bar{w}(S_a + M)]$$

s.t.

$$Y = \left(\nu \mathbb{E}[ez] S_a S_b^\beta \right)^\gamma (\mathbb{E}[ez] M)^\psi L^{1-\psi}$$

- A higher τ reduces the effort of entrepreneurs/managers
 - Leads to less innovation
 - which reduces everyone's income (Y)
 - which lowers tax revenue received via τ_0
Solution

\[\tau^*_r = \frac{1 - \tau_0 \cdot \frac{1 - \rho}{\Delta \rho} \cdot \eta_{Y,1-\tau}}{1 + \frac{\rho}{\Delta \rho} \eta_{Y,1-\tau}} \quad \text{vs} \quad \tau^*_d = \frac{1}{1 + \alpha \cdot \eta_{z_m,1-\tau}} \]

- Remarks: Two key differences
 - \(\eta_{Y,1-\tau} \) versus \(\eta_{z_m,1-\tau} \)
 - \(\eta_{Y,1-\tau} \Rightarrow \) How GDP changes if researchers keep more
 - \(\eta_{z_m,1-\tau} \Rightarrow \) How average top incomes change
 - If \(\tau_0 > 0 \), then \(\tau^* \) is lower
 - Distorting research lowers GDP
 - \(\Rightarrow \) lowers revenue from other taxes!
Guide to Intuition

\[\eta_{Y,1-\tau} \quad \text{The economic model} \]

\[\rho \eta_{Y,1-\tau} \quad \text{Behavioral effect via top earners} \]

\[(1 - \rho) \eta_{Y,1-\tau} \quad \text{Behavioral effect via workers} \]

\[\Delta \rho \equiv \rho - \bar{\rho} \quad \text{Tax base for } \tau, \text{ mechanical effect} \]

\[1 - \Delta \rho \quad \text{Tax base for } \tau_0 \]
What is $\eta_{Y,1-\tau}$?

$$Y = \left(\nu \mathbb{E}[ez]S_aS_b^\beta\right)^\gamma (\mathbb{E}[ez]M)^\psi L^{1-\psi} \implies \eta_{Y,1-\tau} = (\gamma + \psi)\zeta$$

- γ = degree of IRS via ideas
- ψ = manager’s share = 0.15 (not important)
- ζ is the elasticity of $\mathbb{E}[ez]$ with respect to $1-\tau$.
 - Standard Diamond-Saez elasticity: $\zeta = \eta_{zm,1-\tau}$
 - How individual behavior changes when the tax rate changes
 - Cool insight from PublicEcon: all that matters is the value of this elasticity, not the mechanism!
 - So for now, just treat as a parameter (endogenized later)
Calibration

- Parameter values for numerical examples

\[\frac{\zeta}{1-\zeta} \in \{0.2, 0.5\} \]
Behavioral elasticity. Saez values

\[\gamma \in [1/8, 1] \]
\[g_{tfp} = \gamma(1 + \beta) \cdot g_S \approx 1\% . \]

\[\tau_0 = 0.2 \]
Average tax rate outside the top.

\[\Delta \rho = 0.10 \]
Share of income taxed at the top rate; top returns account for 20% of taxable income.

\[\rho = 0.15 \]
So \(\frac{\rho}{\Delta \rho} = 1.5 \) as in Saez pareto parameter, \(\alpha \).
Revenue-Maximizing Top Tax Rate, τ^*_r

<table>
<thead>
<tr>
<th>Case</th>
<th>Behavioral Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Diamond-Saez:</td>
<td>0.80</td>
</tr>
<tr>
<td>No ideas, $\gamma = 0$</td>
<td></td>
</tr>
<tr>
<td>$\tau_0 = 0$:</td>
<td>0.96</td>
</tr>
<tr>
<td>$\tau_0 = 0.20$:</td>
<td>0.92</td>
</tr>
<tr>
<td>Degree of IRS, γ</td>
<td></td>
</tr>
<tr>
<td>$1/8$</td>
<td>0.86</td>
</tr>
<tr>
<td>$1/4$</td>
<td>0.81</td>
</tr>
<tr>
<td>$1/2$</td>
<td>0.70</td>
</tr>
<tr>
<td>1</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Revenue-Maximizing Top Tax Rate, τ_{rm}^*

<table>
<thead>
<tr>
<th>Case</th>
<th>Behavioral Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Diamond-Saez:</td>
<td>0.80</td>
</tr>
<tr>
<td>No ideas, $\gamma = 0$</td>
<td></td>
</tr>
<tr>
<td>$\tau_0 = 0$:</td>
<td>0.96</td>
</tr>
<tr>
<td>$\tau_0 = 0.20$:</td>
<td>0.92</td>
</tr>
<tr>
<td>Degree of IRS, γ</td>
<td></td>
</tr>
<tr>
<td>$1/8$</td>
<td>0.86</td>
</tr>
<tr>
<td>$1/4$</td>
<td>0.81</td>
</tr>
<tr>
<td>$1/2$</td>
<td>0.70</td>
</tr>
<tr>
<td>1</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Revenue-Maximizing Top Tax Rate, τ^*_rm

<table>
<thead>
<tr>
<th>Case</th>
<th>Behavioral Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Diamond-Saez:</td>
<td>0.80</td>
</tr>
<tr>
<td>No ideas, $\gamma = 0$</td>
<td></td>
</tr>
<tr>
<td>$\tau_0 = 0$:</td>
<td>0.96</td>
</tr>
<tr>
<td>$\tau_0 = 0.20$:</td>
<td>0.92</td>
</tr>
<tr>
<td>Degree of IRS, γ</td>
<td></td>
</tr>
<tr>
<td>$1/8$</td>
<td>0.86</td>
</tr>
<tr>
<td>$1/4$</td>
<td>0.81</td>
</tr>
<tr>
<td>$1/2$</td>
<td>0.70</td>
</tr>
<tr>
<td>1</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Intuition: Double the “keep rate” $1 - \tau$ (e.g. $\tau = 75\%$ to $\tau = 50\%$).

- What is the long-run effect on GDP?

 - Answer: $2^{\eta_y (1-\tau)} = 2^{\gamma \zeta}$

 - Baseline: $\gamma = 1/2$ and $\zeta = 1/6 \Rightarrow 2^{1/12} \approx 1.06$

 Raises GDP by just 6%!

- With $\Delta \rho = 10\%$, the revenue cost is 2.5% of GDP

 6% gain to everyone...

 > redistributing 2.5% to the bottom half!

- 6% seems small, but achieved by a small group of researchers working 15% harder...
Maximizing Worker Welfare

- Revenue-max ignores effect on consumption
- Worker welfare yields a clean closed-form solution
Choose τ and τ_0 to Maximize Worker Welfare

- Workers:
 $$c^{\bar{w}} = w(1 - \tau_0)$$
 $$\nu_w(c) = \theta \log c$$

- Government budget constraint
 $$\tau_0 Y + (\tau - \tau_0)[\rho Y - \bar{w}(S_a + M)] = \Omega Y$$

Exogenous government spending share of GDP = Ω
(to pay for basic research, legal system, etc.)

- Problem:
 $$\max_{\tau, \tau_0} \log(1 - \tau_0) + \log Y(\tau) \quad \text{s.t.}$$
 $$\tau_0 Y + (\tau - \tau_0)[\rho Y - \bar{w}(S_a + M)] = \Omega Y.$$
First Order Conditions

- The top rate that maximizes worker welfare satisfies

\[\tau^*_{ww} = \frac{1 - \eta_{Y,1-\tau} \left(\frac{1-\rho}{\Delta \rho} \cdot \tau^*_0 + \frac{1-\Delta \rho}{\Delta \rho} \cdot (1 - \tau^*_0) - \frac{\Omega}{\Delta \rho} \right)}{1 + \frac{\rho}{\Delta \rho} \eta_{Y,1-\tau}}. \]

- Three new terms relative to Saez:

\[\eta \frac{1-\rho}{\Delta \rho} \cdot \tau^*_0 \quad \text{Original term from RevMax} \]

\[\eta \frac{1-\Delta \rho}{\Delta \rho} \cdot (1 - \tau^*_0) \quad \text{Direct effect of a higher tax rate reducing GDP} \]

\[\Rightarrow \text{reduce workers consumption} \]

\[\eta \frac{\Omega}{\Delta \rho} \quad \text{Need to raise } \Omega \text{ in revenue} \]
Intuition

- When is a “flat tax” optimal?

\[\tau \leq \tau_0 \iff \eta_{Y,1-\tau} \geq \frac{\Delta \rho}{1 - \Delta \rho}. \]

Two ways to increase \(c^w \):

- \(\downarrow \tau \Rightarrow \) raises GDP by \(\eta_{Y,1-\tau} \)
- Redistribute \(\Rightarrow \) take from \(\Delta \rho \) people, give to \(1 - \Delta \rho \)

- Baseline parameters: \(\eta_{Y,1-\tau} = \frac{1}{6}(\gamma + \psi) \) and \(\frac{\Delta \rho}{1 - \Delta \rho} = \frac{1}{9} \).

\[\gamma + \psi > \frac{2}{3} \Rightarrow \tau < \tau_0. \]
Tax Rates that Maximize Worker Welfare

<table>
<thead>
<tr>
<th>Degree of IRS, γ</th>
<th>Behavioral elast. = 0.2</th>
<th>Behavioral elast. = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ_{ww}^*</td>
<td>τ_0^*</td>
</tr>
<tr>
<td>1/8</td>
<td>0.64</td>
<td>0.15</td>
</tr>
<tr>
<td>1/4</td>
<td>0.49</td>
<td>0.17</td>
</tr>
<tr>
<td>1/2</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>1</td>
<td>-0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The top rate that maximizes worker welfare can be negative!
Summary of Calibration Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Top rate, τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ideas, $\gamma = 0$</td>
<td></td>
</tr>
<tr>
<td>Revenue-maximization, $\tau_0 = 0$</td>
<td>0.96</td>
</tr>
<tr>
<td>Revenue-maximization, $\tau_0 = 0.20$</td>
<td>0.92</td>
</tr>
<tr>
<td>With ideas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\gamma = 1/2$</td>
</tr>
<tr>
<td>Revenue-maximization</td>
<td>0.70</td>
</tr>
<tr>
<td>Maximize worker welfare</td>
<td>0.22</td>
</tr>
<tr>
<td>Maximize utilitarian welfare</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 1$</td>
</tr>
<tr>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>Maximize worker welfare</td>
<td>-0.25</td>
</tr>
<tr>
<td>Maximize utilitarian welfare</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Incorporating ideas sharply lowers the top tax rate.
Discussion
Evidence on Growth and Taxes? Important and puzzling!!!

- Stokey and Rebelo (1995)
 - Growth rates flat in the 20th century
 - Taxes changed a lot!

- But the counterfactual is unclear
 - Government investments in basic research after WWII
 - Decline in basic research investment in recent decades?
 - Maybe growth would have slowed sooner w/o $\downarrow \tau$

- Short-run vs long-run?
 - Shift from goods to ideas may reduce GDP in short run...
Taxes in the United States

Top marginal tax rate (left scale)

Total government revenues as a share of GDP (right scale)
U.S. GDP per person

PER CAPITA GDP (RATIO SCALE, 2017 DOLLARS)

YEAR

2.0% per year
Environment for Full Growth Model

Final output

\[Y_t = \int_0^{A_t} x_{it}^{1-\psi} \, di \left(\mathbb{E}(ez) M_t \right)^\psi \]

Production of variety \(i \)

\[x_{it} = \ell_{it} \]

Resource constraint \((\ell) \)

\[\int \ell_{it} \, di = L_t \]

Resource constraint \((N) \)

\[L_t + S_{bt} = N_t \]

Population growth

\[N_t = \bar{N} \exp(nt) \]

Entrepreneurs

\[S_{at} = \bar{S}_a \exp(nt) \]

Managers

\[M_t = \bar{M} \exp(nt) \]

Applied ideas

\[\dot{A}_t = \bar{a} \mathbb{E}(ez) S_{at} \lambda A_t^{\phi_a} B_t^{\alpha} \]

Basic ideas

\[\dot{B}_t = \bar{b} S_{bt} B_t^{\phi_b} \]

Talent heterogeneity

\[z_i \sim F(z) \]

Utility \((S_a, M) \)

\[u(c, e) = \theta \log c - \zeta e^{1/\zeta} \]
Conclusion

- Lots of unanswered questions
 - Why is evidence on growth and taxes so murky?
 - What is true effect of taxes on growth and innovation? Akcigit et al (2018) makes progress...
 - At what income does the top rate apply?
 - Capital gains as compensation for innovation
 - Transition dynamics

- Still, innovation is a key force that needs to be incorporated
 - Distorting the behavior of a small group of innovators can affect all our incomes
Extra Slides
The Saez (2001) Calculation

- Income: \(z \sim \text{Pareto}(\alpha) \)

- Tax revenue:

\[
T = \tau_0 \bar{z} + \tau (z_m - \bar{z})
\]

where \(z_m \) is average income above cutoff \(\bar{z} \)

- Revenue-maximizing top tax rate:

\[
z_m - \bar{z} + \tau z'_m(\tau) = 0
\]

mechanical gain behavioral loss

- Divide by \(z_m \Rightarrow \) elasticity form and rearrange:

\[
\tau^* = \frac{1}{1 + \alpha \cdot \eta z_m,1-\tau}
\]

where \(\alpha = \frac{z_m}{z_m - \bar{z}} \).
\[\tau^* = \frac{1}{1 + \alpha \cdot \eta_{z_m,1-\tau}} \]

- **Intuition**
 - Decreasing in \(\eta_{z_m,1-\tau} \): elasticity of top income wrt \(1 - \tau \)
 - Increasing in \(\frac{1}{\alpha} = \frac{z_m - \bar{z}}{z_m} \): change in revenue as a percent of income = Pareto inequality

- **Diamond and Saez (2011) Calibration**
 - \(\alpha = 1.5 \) from Pareto income distribution
 - \(\eta = 0.2 \) from literature

\[\Rightarrow \quad \tau_{d-s}^* \approx 77\% \]
Solution

\[\max_{\tau} T = \tau_0 Y(\tau) + (\tau - \tau_0) [\rho Y(\tau) - \bar{w} S_a] \]

- **FOC:**
 \[\frac{(\rho - \bar{\rho}) Y}{\text{mechanical gain}} + \frac{\partial Y}{\partial \tau} \cdot [(1 - \rho)\tau_0 + \rho\tau] = 0 \]

 where \(\bar{\rho} \equiv \frac{\bar{w}(S_a + M)}{Y} \)

- **Rearranging with** \(\Delta \rho \equiv \rho - \bar{\rho} \)

 \[\tau_{r\text{m}}^* = \frac{1 - \tau_0 \cdot \frac{1 - \rho}{\Delta \rho} \cdot \eta_{Y,1-\tau}}{1 + \frac{\rho}{\Delta \rho} \eta_{Y,1-\tau}} \]
Maximizing Utilitarian Social Welfare
Entrepreneurs and Managers

• Utility function depends on consumption and effort:

\[u(c, e) = \theta \log c - \zeta e^{1/\zeta} \]

• Researcher with talent \(z \) solves

\[
\max_{c, e} u(c, e) \quad \text{s.t.}
\]

\[
c = \bar{w}(1 - \tau_0) + [w_s ez - \bar{w}](1 - \tau) + R
\]

\[
= \bar{w}(1 - \tau_0) - \bar{w}(1 - \tau) + w_s ez(1 - \tau) + R
\]

\[
= \bar{w}(\tau - \tau_0) + w_s ez(1 - \tau) + R
\]

where \(R \) is a lump sum rebate.

• FOC:

\[e^{\frac{1}{\zeta} - 1} = \frac{\theta w_s ez(1 - \tau)}{c} . \]
SE/IE and Rebates

- Log preferences imply that SE and IE cancel: \(\frac{\partial e}{\partial \tau} = 0 \)

- Standard approach is to rebate tax revenue to neutralize the IE.
 - Tricky here because IE’s are heterogeneous!

- Shortcut: heterogeneous rebates that vary with \(z \) to deliver

\[
c_z = ws e_z (1 - \tau)^{1-\alpha}
\]

\[
e_z = e^* = [\theta (1 - \tau)^\alpha] \zeta,
\]

where \(\alpha \) parameterizes the elasticity of effort wrt \(1 - \tau \)

- \(\eta_{Y,1-\tau} = \alpha \zeta (\gamma + \psi) \)

- governs tradeoff with redistribution
Utilitarian Social Welfare

- Social Welfare:

\[
SWF \equiv Lu(c^w) + S_b u(c^b) + S_a \int u(c^s_z, e^s_z) dF(z) + M \int u(c^m_z, e^m_z) dF(z)
\]

- Substitution of equilibrium conditions gives

\[
SWF \propto \log Y + \ell \log(1 - \tau_0) + s[(1 - \alpha) \log(1 - \tau) - \zeta(1 - \tau)^\alpha]
\]

where \(s \equiv \frac{S_a + M}{L + S_b + S_a + M} \), \(\ell \equiv 1 - s \),
Tax Rates that Maximize Social Welfare

- Proposition 2 gives the tax rates, written in terms of the “keep rates” \(\kappa \equiv 1 - \tau \) and \(\kappa_0 \equiv 1 - \tau_0 \).

- Two well-behaved nonlinear equations:

\[
\alpha \zeta s \kappa^\alpha + \frac{\kappa}{\kappa_0} \cdot \frac{l}{1 - \Delta \rho} (\Delta \rho + \bar{\rho} \eta) = \eta \left(1 + \frac{\bar{\rho} l}{1 - \Delta \rho} \right) + s (1 - \alpha)
\]

\[
\kappa_0 (1 - \Delta \rho) + \kappa \Delta \rho = 1 - \Omega.
\]
Maximizing Social Welfare: $\alpha = 1$
Tax Rates that Maximize Social Welfare ($\alpha = 1$)

<table>
<thead>
<tr>
<th>Degree of IRS, γ</th>
<th>Behavioral elast. = 0.2</th>
<th>Behavioral elast. = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ^*</td>
<td>GDP loss if $\tau = 0.75$</td>
</tr>
<tr>
<td>1/8</td>
<td>0.649</td>
<td>0.7%</td>
</tr>
<tr>
<td>1/4</td>
<td>0.502</td>
<td>2.8%</td>
</tr>
<tr>
<td>1/2</td>
<td>0.231</td>
<td>8.9%</td>
</tr>
<tr>
<td>1</td>
<td>-0.238</td>
<td>23.4%</td>
</tr>
</tbody>
</table>
Tax Rates that Maximize Social Welfare ($\alpha = 1/2$)

<table>
<thead>
<tr>
<th>Degree of IRS, γ</th>
<th>Behavioral elast. = 0.2</th>
<th>Behavioral elast. = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ^* if $\tau = 0.75$</td>
<td>τ^* if $\tau = 0.75$</td>
</tr>
<tr>
<td>1/8</td>
<td>0.445 0.8%</td>
<td>0.328 2.0%</td>
</tr>
<tr>
<td>1/4</td>
<td>0.369 1.9%</td>
<td>0.189 4.8%</td>
</tr>
<tr>
<td>1/2</td>
<td>0.222 4.6%</td>
<td>-0.070 11.4%</td>
</tr>
<tr>
<td>1</td>
<td>-0.047 11.3%</td>
<td>-0.517 26.0%</td>
</tr>
</tbody>
</table>
The Social Return to Research

- How big is the gap between equilibrium share and optimal share to pay for research?

- Jones and Williams (1998) social rate of return calculation here:

\[\tilde{r} = g \gamma + \lambda g_y \left(\frac{1}{\rho_s(1 - \tau)} - \frac{1}{\gamma} \right) \]

⇒ After tax share of payments to entrepreneurs should equal \(\gamma \)

- Simple calibration: \(\tau = 1/2 \Rightarrow \tilde{r} = 39\% \) if \(\rho_s = 10\% \)
 - Consistent with SROR estimates e.g. Bloom et al. (2013)
 - But those are returns to formal R&D...