Taxing Top Incomes in a World of Ideas

Chad Jones

July 2019 - NBER Growth Meeting

Overview

- Saez (2001) and following literature
"Macro"-style calibration of optimal top income taxation
Many extensions to K, H, dynamics - but not ideas!
- How does this calculation change when:
- New ideas drive economic growth
- The reward for a new idea is a top income
- Creation of ideas is broad
- A formal "research subsidy" is imperfect (Walmart, Amazon)
- A small number of entrepreneurs \Rightarrow the bulk of economy-wide growth
- $\uparrow \tau$ lowers consumption throughout the economy via nonrivalry

Literature

- Human capital: Badel and Huggett, Kindermann and Krueger
- Superstars/inventors: Scheuer and Werning, Chetty et al
- Spillovers: Lockwood-Nathanson-Weyl
- Mirrlees w/ Imperfect Substitution: Sachs-Tsyvinski-Werquin
- Inventors and taxes: Akcigit-Baslandze-Stantcheva, Moretti and Wilson, Akcigit-Grigsby-Nicholas-Stantcheva
- Growth and taxes: Stokey and Rebelo, Jaimovich and Rebelo

This paper does not calculate "the" optimal top tax rate

- Many other considerations:
- Political economy of inequality
- Occupational choice (other brackets, concavity)
- Top tax diverts people away from finance to ideas?
- Social safety net, lenient bankruptcy insure the downside
- How sensitive are entrepreneurs to top tax rates?
- Empirical evidence on growth and taxes
- Rent seeking, human capital
- Still, including economic growth and ideas seems important

Basic Setup

Overview

- BGP of an idea-based growth model. Romer 1990, Jones 1995
- Semi-endogenous growth
- Basic R\&D (subsidized directly), Applied R\&D (top tax rate)
- BGP simplifies: static comparison vs transition dynamics
- Three alternative approaches to the top tax rate:
- Revenue maximization
- Maximize welfare of "workers"
- Maximize utilitarian social welfare

The Economic Environment

- Consumption goods produced by managers \tilde{M}, labor L, and nonrival "applied" ideas A :

$$
\begin{equation*}
Y=A^{\gamma} \tilde{M}^{\psi} L^{1-\psi} \tag{1}
\end{equation*}
$$

- Applied ideas produced from entrepreneurs, effort e, talent z, and basic research ideas B :

$$
\dot{A}_{t}=\bar{a}\left(\mathbb{E}(e z) S_{a t}\right)^{\lambda} A_{t}^{\phi_{a}} B_{t}^{\alpha}
$$

- Fundamental ideas produced from basic research:

$$
\dot{B}_{t}=\bar{b} S_{b t}^{\lambda} B_{t}^{\phi_{b}}
$$

- $\tilde{M}, L, S_{a}, S_{b}$ exogenous. e, z endogenous (unspecified for now)

BGP from a Dynamic Growth Model

- BGP implies that stocks are proportional to flows:
- A and B are proportional to S_{a} and S_{b} (to some powers)
- S_{a}, S_{b}, L, M : exogenous population growth
- Stock of applied ideas (being careless with exponents wlog)

$$
\begin{equation*}
A=\nu_{a} \mathbb{E}[e z] S_{a} B^{\beta} \tag{2}
\end{equation*}
$$

- Stock of basic ideas

$$
\begin{equation*}
B=\nu_{b} S_{b} \tag{3}
\end{equation*}
$$

Output = Consumption:

- Combining (1) - (3) with $\tilde{M}=\mathbb{E}[e z] M$:

$$
Y=\left(\nu \mathbb{E}[e z] S_{a} S_{b}^{\beta}\right)^{\gamma}(\mathbb{E}[e z] M)^{\psi} L^{1-\psi}
$$

- Output per person $y \propto\left(S_{a} S_{b}^{\beta}\right)^{\gamma}$
- Intuition: y depends on stock of ideas, not ideas per person
- LR growth $=\gamma(1+\beta) n$ where n is population growth
- Taxes distort $\mathbb{E}(e z)$:
- ψ effect is traditional, but ψ small?
- γ effect via nonrivalry of ideas, can be large!

Nonlinear Income Tax Revenue

$$
\begin{aligned}
T= & \underbrace{\tau_{0}\left[w L+w S_{b}+w_{a} \mathbb{E}(e z) S_{a}+w_{m} \mathbb{E}(e z) M\right]}_{\text {all income pays } \tau_{0}} \\
& +\underbrace{\left(\tau-\tau_{0}\right)\left[\left(w_{a} \mathbb{E}(e z)-\bar{w}\right) S_{a}+\left(w_{m} \mathbb{E}(e z)-\bar{w}\right) M\right]}_{\text {income above } \bar{w} \text { pays an additional } \tau-\tau_{0}}
\end{aligned}
$$

- Full growth model: entrepreneurs paid a constant share of GDP

$$
\begin{gathered}
\frac{w_{a} \mathbb{E}(e z) S_{a}}{Y}=\rho_{s} \text { and } \frac{w_{m} \mathbb{E}(e z) M}{Y}=\rho_{m} \\
\text { and } Y=w L+w_{b} S_{b}+w_{a} \mathbb{E}(e z) S_{a}+w_{m} \mathbb{E}(e z) M, \quad \rho \equiv \rho_{s}+\rho_{m} \\
\Rightarrow T=\tau_{0} Y+\left(\tau-\tau_{0}\right)\left[\rho Y-\bar{w}\left(S_{a}+M\right)\right]
\end{gathered}
$$

Some Intuition

- Entrepreneurs/managers paid a constant share of GDP

$$
\frac{w_{a} \mathbb{E}(e z) S_{a}}{Y}=\rho_{s} \quad \text { and } \quad \frac{w_{m} \mathbb{E}(e z) M}{Y}=\rho_{m} .
$$

- Production: $Y=\left(\nu \mathbb{E}[e z] S_{a} S_{b}^{\beta}\right)^{\gamma}(\mathbb{E}[e z] M)^{\psi} L^{1-\psi}$
- Efficiency: Pay ~ Cobb-Douglas exponents. IRS means cannot!
- Jones and Williams (1998) social rate of return calculation:

$$
\tilde{r}=g_{Y}+\lambda g_{y}\left(\frac{1}{\rho_{s}(1-\tau)}-\frac{1}{\gamma}\right)
$$

\Rightarrow After tax share of payments to entrepreneurs should equal γ $\rho_{s}(1-\tau)$ versus γ is one way of viewing the tradeoff

The Top Tax Rate that Maximizes Revenue

Revenue-Maximizing Top Tax Rate

- Key policy problem:

$$
\begin{gathered}
\max _{\tau} T=\tau_{0} Y+\left(\tau-\tau_{0}\right)\left[\rho Y-\bar{w}\left(S_{a}+M\right)\right] \\
\text { s.t. } \\
Y=\left(\nu \mathbb{E}[e z] S_{a} S_{b}^{\beta}\right)^{\gamma}(\mathbb{E}[e z] M)^{\psi} L^{1-\psi}
\end{gathered}
$$

- A higher τ reduces the effort of entrepreneurs/managers
- Leads to less innovation
- which reduces everyone's income (Y)
- which lowers tax revenue received via τ_{0}

Solution

$$
\tau_{r m}^{*}=\frac{1-\tau_{0} \cdot \frac{1-\rho}{\Delta \rho} \cdot \eta_{r, 1-\tau}}{1+\frac{\rho}{\Delta \rho} \eta_{r, 1-\tau}} \text { vs } \quad \tau_{d s}^{*}=\frac{1}{1+\alpha \cdot \eta_{z_{m}, 1-\tau}}
$$

- Remarks: Two key differences
- $\eta_{Y, 1-\tau}$ versus $\eta_{z_{m}, 1-\tau}$
$\eta_{Y, 1-\tau} \Rightarrow$ How GDP changes if researchers keep more
$\eta_{z_{m}, 1-\tau} \Rightarrow$ How average top incomes change
- If $\tau_{0}>0$, then τ^{*} is lower

Distorting research lowers GDP
\Rightarrow lowers revenue from other taxes!

Guide to Intuition

$$
\begin{array}{ll}
\eta_{Y, 1-\tau} & \text { The economic model } \\
\rho \eta_{Y, 1-\tau} & \text { Behavioral effect via top earners } \\
(1-\rho) \eta_{Y, 1-\tau} & \text { Behavioral effect via workers } \\
\Delta \rho \equiv \rho-\bar{\rho} & \text { Tax base for } \tau, \text { mechanical effect } \\
1-\Delta \rho & \text { Tax base for } \tau_{0}
\end{array}
$$

What is $\eta_{\mathrm{Y}, 1-\tau}$?

$$
Y=\left(\nu \mathbb{E}[e z] S_{a} S_{b}^{\beta}\right)^{\gamma}(\mathbb{E}[e z] M)^{\psi} L^{1-\psi} \quad \Rightarrow \quad \eta_{r, 1-\tau}=(\gamma+\psi) \zeta
$$

- $\gamma=$ degree of IRS via ideas
- $\psi=$ manager's share $=0.15$ (not important)
- ζ is the elasticity of $\mathbb{E}[e z]$ with respect to $1-\tau$.
- Standard Diamond-Saez elasticity: $\zeta=\eta_{z_{m}, 1-\tau}$
- How individual behavior changes when the tax rate changes
- Cool insight from PublicEcon: all that matters is the value of this elasticity, not the mechanism!
- So for now, just treat as a parameter (endogenized later)

Calibration

- Parameter values for numerical examples

$$
\begin{array}{ll}
\frac{\zeta}{1-\zeta} \in\{0.2,0.5\} & \text { Behavioral elasticity. Saez values } \\
\gamma \in[1 / 8,1] & g_{\text {tfp }}=\gamma(1+\beta) \cdot g_{S} \approx 1 \% \\
\tau_{0}=0.2 & \text { Average tax rate outside the top. }
\end{array}
$$

$$
\Delta \rho=0.10
$$

Share of income taxed at the top rate; top returns account for 20% of taxable income.

$$
\rho=0.15
$$

Revenue-Maximizing Top Tax Rate, $\tau_{r m}^{*}$

Behavioral Elasticity

Case	0.20	0.50
Diamond-Saez:	0.80	0.67

No ideas, $\gamma=0$

$$
\begin{array}{lll}
\tau_{0}=0: & 0.96 & 0.93 \\
\tau_{0}=0.20: & 0.92 & 0.85
\end{array}
$$

Degree of IRS, γ

$1 / 8$	0.86	0.74
$1 / 4$	0.81	0.64
$1 / 2$	0.70	0.48
1	0.52	0.22

Revenue-Maximizing Top Tax Rate, $\tau_{r m}^{*}$

Behavioral Elasticity

Case	0.20	0.50
Diamond-Saez:	0.80	0.67

No ideas, $\gamma=0$

$$
\begin{array}{lll}
\tau_{0}=0: & 0.96 & 0.93 \\
\tau_{0}=0.20: & 0.92 & 0.85
\end{array}
$$

Degree of IRS, γ

$1 / 8$	0.86	0.74
$1 / 4$	0.81	0.64
$1 / 2$	0.70	0.48
1	0.52	0.22

Revenue-Maximizing Top Tax Rate, $\tau_{r m}^{*}$

Behavioral Elasticity

Case	0.20	0.50
Diamond-Saez:	0.80	0.67

No ideas, $\gamma=0$

$$
\begin{array}{lll}
\tau_{0}=0: & 0.96 & 0.93 \\
\tau_{0}=0.20: & 0.92 & 0.85
\end{array}
$$

Degree of IRS, γ

$1 / 8$	0.86	0.74
$1 / 4$	0.81	0.64
$1 / 2$	0.70	0.48
1	0.52	0.22

```
Intuition: Double the "keep rate" 1-\tau (e.g. }\tau=75%\mathrm{ to }\tau=50%)
```

- What is the long-run effect on GDP?
- Answer: $2^{\eta_{\gamma, 1-\tau}}=2^{\gamma \zeta}$
- Baseline: $\gamma=1 / 2$ and $\zeta=1 / 6 \Rightarrow 2^{1 / 12} \approx 1.06$

Raises GDP by just 6\%!

- With $\Delta \rho=10 \%$, the revenue cost is 2.5% of GDP 6\% gain to everyone...
$>$ redistributing 2.5% to the bottom half!
- 6% seems small, but achieved by a small group of researchers working 15% harder...

Maximizing Worker Welfare

- Revenue-max ignores effect on consumption
- Worker welfare yields a clean closed-form solution

Choose τ and τ_{0} to Maximize Worker Welfare

- Workers:

$$
\begin{gathered}
c^{w}=w\left(1-\tau_{0}\right) \\
u_{w}(c)=\theta \log c
\end{gathered}
$$

- Government budget constraint

$$
\tau_{0} Y+\left(\tau-\tau_{0}\right)\left[\rho Y-\bar{w}\left(S_{a}+M\right)\right]=\Omega Y
$$

Exogenous government spending share of GDP $=\Omega$ (to pay for basic research, legal system, etc.)

- Problem:

$$
\begin{gathered}
\max _{\tau, \tau_{0}} \log \left(1-\tau_{0}\right)+\log Y(\tau) \quad \text { s.t. } \\
\tau_{0} Y+\left(\tau-\tau_{0}\right)\left[\rho Y-\bar{w}\left(S_{a}+M\right)\right]=\Omega Y .
\end{gathered}
$$

First Order Conditions

- The top rate that maximizes worker welfare satisfies

$$
\tau_{w w w}^{*}=\frac{1-\eta_{Y, 1-\tau}\left(\frac{1-\rho}{\Delta \rho} \cdot \tau_{0}^{*}+\frac{1-\Delta \rho}{\Delta \rho} \cdot\left(1-\tau_{0}^{*}\right)-\frac{\Omega}{\Delta \rho}\right)}{1+\frac{\rho}{\Delta \rho} \eta_{Y, 1-\tau}} .
$$

- Three new terms relative to Saez:
$\eta \frac{1-\rho}{\Delta \rho} \cdot \tau_{0}^{*} \quad$ Original term from RevMax
$\eta \frac{1-\Delta \rho}{\Delta \rho} \cdot\left(1-\tau_{0}^{*}\right) \quad$ Direct effect of a higher tax rate reducing GDP
\Rightarrow reduce workers consumption
$\eta \frac{\Omega}{\Delta \rho}$
Need to raise Ω in revenue

Intuition

- When is a "flat tax" optimal?

$$
\tau \leq \tau_{0} \quad \Longleftrightarrow \quad \eta_{r, 1-\tau} \geq \frac{\Delta \rho}{1-\Delta \rho} .
$$

Two ways to increase c^{w} :

- $\downarrow \tau \Rightarrow$ raises GDP by $\eta_{Y, 1-\tau}$
- Redistribute \Rightarrow take from $\Delta \rho$ people, give to $1-\Delta \rho$
- Baseline parameters: $\eta_{Y, 1-\tau}=\frac{1}{6}(\gamma+\psi)$ and $\frac{\Delta \rho}{1-\Delta \rho}=\frac{1}{9}$.

$$
\gamma+\psi>2 / 3 \Rightarrow \tau<\tau_{0} .
$$

Tax Rates that Maximize Worker Welfare

Degree of IRS, γ	$\tau_{w w}^{*}$		τ_{0}^{*}	Behavioral elast. $=0.2$		$\tau_{w w}^{*}$	τ_{0}^{*}
$1 / 8$	0.64	0.15	0.32	0.19			
$1 / 4$	0.49	0.17	0.07	0.21			
$1 / 2$	0.22	0.20	-0.37	0.26			
1	-0.25	0.25	-1.03	0.34			

The top rate that maximizes worker welfare can be negative!

Summary of Calibration Exercises

Exercise Top rate, τ
No ideas, $\gamma=0$
Revenue-maximization, $\tau_{0}=0$ 0.96
Revenue-maximization, $\tau_{0}=0.20$ 0.92
With ideasRevenue-maximization
$\gamma=1 / 2 \quad \gamma=1$$0.70 \quad 0.52$
Maximize worker welfare $0.22-0.25$
Maximize utilitarian welfare $0.22-0.05$

Discussion

Evidence on Growth and Taxes? Important and puzzling!!!

- Stokey and Rebelo (1995)
- Growth rates flat in the 20th century
- Taxes changed a lot!
- But the counterfactual is unclear
- Government investments in basic research after WWII
- Decline in basic research investment in recent decades?
- Maybe growth would have slowed sooner w/o $\downarrow \tau$
- Short-run vs long-run?
- Shift from goods to ideas may reduce GDP in short run...

Taxes in the United States

U.S. GDP per person

PER CAPITA GDP (RATIO SCALE, 2017 DOLLARS)

Environment for Full Growth Model

Final output
Production of variety i
Resource constraint (ℓ)
Resource constraint (N)
Population growth
Entrepreneurs
Managers
Applied ideas
Basic ideas
Talent heterogeneity
Utility $\left(S_{a}, M\right)$

$$
Y_{t}=\int_{0}^{A_{t}} x_{i t}^{1-\psi} d i\left(\mathbb{E}(e z) M_{t}\right)^{\psi}
$$

$$
x_{i t}=\ell_{i t}
$$

$$
\int \ell_{i t} d i=L_{t}
$$

$$
L_{t}+S_{b t}=N_{t}
$$

$$
N_{t}=\bar{N} \exp (n t)
$$

$$
S_{a t}=\bar{S}_{a} \exp (n t)
$$

$$
M_{t}=\bar{M} \exp (n t)
$$

$$
\dot{A}_{t}=\bar{a}\left(\mathbb{E}(e z) S_{a t}\right)^{\lambda} A_{t}^{\phi_{a}} B_{t}^{\alpha}
$$

$$
\dot{B}_{t}=\bar{b} S_{b t}^{\lambda} B_{t}^{\phi_{b}}
$$

$$
z_{i} \sim F(z)
$$

$$
u(c, e)=\theta \log c-\zeta e^{1 / \zeta}
$$

Conclusion

- Lots of unanswered questions
- Why is evidence on growth and taxes so murky?
- What is true effect of taxes on growth and innovation? Akcigit et al (2018) makes progress...
- At what income does the top rate apply?
- Capital gains as compensation for innovation
- Transition dynamics
- Still, innovation is a key force that needs to be incorporated
- Distorting the behavior of a small group of innovators can affect all our incomes

Extra Slides

The Saez (2001) Calculation

- Income: $z \sim \operatorname{Pareto}(\alpha)$
- Tax revenue:

$$
T=\tau_{0} \bar{z}+\tau\left(z_{m}-\bar{z}\right)
$$

where z_{m} is average income above cutoff \bar{z}

- Revenue-maximizing top tax rate:

$$
\underset{\text { mechanical gain }}{z_{m}-\bar{z}}+\underset{\text { behavioral loss }}{\tau z_{m}^{\prime}(\tau)}=0
$$

- Divide by $z_{m} \Rightarrow$ elasticity form and rearrange:

$$
\tau^{*}=\frac{1}{1+\alpha \cdot \eta_{z_{m}, 1-\tau}}
$$

where $\alpha=\frac{z_{m}}{z_{m}-\bar{z}}$.

$$
\tau^{*}=\frac{1}{1+\alpha \cdot \eta_{z_{m}, 1-\tau}}
$$

- Intuition
- Decreasing in $\eta_{z_{m}, 1-\tau}$: elasticity of top income wrt $1-\tau$
- Increasing in $\frac{1}{\alpha}=\frac{z_{m}-\bar{z}}{z_{m}}$: change in revenue as a percent of income $=$ Pareto inequality
- Diamond and Saez (2011) Calibration
- $\alpha=1.5$ from Pareto income distribution
- $\eta=0.2$ from literature

$$
\Rightarrow \quad \tau_{\mathrm{dss}}^{*} \approx 77 \%
$$

Solution

$$
\max _{\tau} T=\tau_{0} Y(\tau)+\left(\tau-\tau_{0}\right)\left[\rho Y(\tau)-\bar{w} S_{a}\right]
$$

- FOC:

$$
\underbrace{(\rho-\bar{\rho}) Y}_{\text {lechanical gain }}+\underbrace{\frac{\partial Y}{\partial \tau} \cdot\left[(1-\rho) \tau_{0}+\rho \tau\right]}_{\text {behavioral loss }}=0
$$

where $\bar{\rho} \equiv \frac{\bar{w}\left(S_{a}+M\right)}{Y}$

- Rearranging with $\Delta \rho \equiv \rho-\bar{\rho}$

$$
\tau_{r m}^{*}=\frac{1-\tau_{0} \cdot \frac{1-\rho}{\Delta \rho} \cdot \eta_{Y, 1-\tau}}{1+\frac{\rho}{\Delta \rho} \eta_{Y, 1-\tau}}
$$

Maximizing Utilitarian Social Welfare

Entrepreneurs and Managers

- Utility function depends on consumption and effort:

$$
u(c, e)=\theta \log c-\zeta e^{1 / \zeta}
$$

- Researcher with talent z solves

$$
\begin{aligned}
& \max _{c, e} u(c, e) \text { s.t. } \\
& \begin{aligned}
c & =\bar{w}\left(1-\tau_{0}\right)+\left[w_{s} e z-\bar{w}\right](1-\tau)+R \\
& =\bar{w}\left(1-\tau_{0}\right)-\bar{w}(1-\tau)+w_{s} e z(1-\tau)+R \\
& =\bar{w}\left(\tau-\tau_{0}\right)+w_{s} e z(1-\tau)+R
\end{aligned}
\end{aligned}
$$

where R is a lump sum rebate.

- FOC:

$$
e^{\frac{1}{\zeta}-1}=\frac{\theta w_{s} z(1-\tau)}{c}
$$

SE/IE and Rebates

- Log preferences imply that SE and IE cancel: $\frac{\partial e}{\partial \tau}=0$
- Standard approach is to rebate tax revenue to neutralize the IE.
- Tricky here because IE's are heterogeneous!
- Shortcut: heterogeneous rebates that vary with z to deliver

$$
\begin{gathered}
c_{z}=w_{s} e z(1-\tau)^{1-\alpha} \\
e_{z}=e^{*}=\left[\theta(1-\tau)^{\alpha}\right]^{\zeta}
\end{gathered}
$$

where α parameterizes the elasticity of effort wrt $1-\tau$

- $\eta_{Y, 1-\tau}=\alpha \zeta(\gamma+\psi)$
- governs tradeoff with redistribution

Utilitarian Social Welfare

- Social Welfare:

$$
S W F \equiv L u\left(c^{w}\right)+S_{b} u\left(c^{b}\right)+S_{a} \int u\left(c_{z}^{s}, e_{z}^{s}\right) d F(z)+M \int u\left(c_{z}^{m}, e_{z}^{m}\right) d F(z)
$$

- Substitution of equilibrium conditions gives

$$
\begin{aligned}
& \quad S W F \propto \log Y+\ell \log \left(1-\tau_{0}\right)+s\left[(1-\alpha) \log (1-\tau)-\zeta(1-\tau)^{\alpha}\right] \\
& \text { where } s \equiv \frac{S_{a}+M}{L+S_{b}+S_{a}+M}, \ell \equiv 1-s,
\end{aligned}
$$

Tax Rates that Maximize Social Welfare

- Proposition 2 gives the tax rates, written in terms of the "keep rates" $\kappa \equiv 1-\tau$ and $\kappa_{0} \equiv 1-\tau_{0}$.
- Two well-behaved nonlinear equations:

$$
\begin{gathered}
\alpha \zeta s \kappa^{\alpha}+\frac{\kappa}{\kappa_{0}} \cdot \frac{\ell}{1-\Delta \rho}(\Delta \rho+\bar{\rho} \eta)=\eta\left(1+\frac{\bar{\rho} \ell}{1-\Delta \rho}\right)+s(1-\alpha) \\
\kappa_{0}(1-\Delta \rho)+\kappa \Delta \rho=1-\Omega .
\end{gathered}
$$

Maximizing Social Welfare: $\alpha=1$

Tax Rates that Maximize Social Welfare ($\alpha=1$)

	Behavioral elast. $=0.2$	Behavioral elast. $=0.5$	
Degree of		GDP loss	
IRS, γ	τ^{*}	if $\tau=0.75$	τ^{*}

$1 / 8$	0.649	0.7%	0.400	3.6%
$1 / 4$	0.502	2.8%	0.163	9.6%
$1 / 2$	0.231	8.9%	-0.255	23.6%
1	-0.238	23.4%	-0.919	49.3%

Tax Rates that Maximize Social Welfare ($\alpha=1 / 2$)

	Behavioral elast. $=0.2$	Behavioral elast. $=0.5$		
Degree of		GDP loss		GDP loss
IRS, γ	τ^{*}	if $\tau=0.75$	τ^{*}	if $\tau=0.75$

$1 / 8$	0.445	0.8%	0.328	2.0%
$1 / 4$	0.369	1.9%	0.189	4.8%
$1 / 2$	0.222	4.6%	-0.070	11.4%
1	-0.047	11.3%	-0.517	26.0%

The Social Return to Research

- How big is the gap between equilibrium share and optimal share to pay for research?
- Jones and Williams (1998) social rate of return calculation here:

$$
\tilde{r}=g_{Y}+\lambda g_{y}\left(\frac{1}{\rho_{s}(1-\tau)}-\frac{1}{\gamma}\right)
$$

\Rightarrow After tax share of payments to entrepreneurs should equal γ

- Simple calibration: $\tau=1 / 2 \Rightarrow \tilde{r}=39 \%$ if $\rho_{s}=10 \%$
- Consistent with SROR estimates e.g. Bloom et al. (2013)
- But those are returns to formal R\&D...

GEMS Entrepreneurs versus Taxes

