Contextual Code Completion Using Machine Learning

Subhasis Das, Chinmayee Shah
{subhasis, chshah} @stanford.edu
Mentor: Junjie Qin

Abstract

Large projects such as kernels, drivers and libraries follow a code
style, and have recurring patterns. In this project, we explore
learning based code recommendation, to use the project context
and give meaningful suggestions. Using word vectors to model
code tokens, and neural network based learning techniques, we
are able to capture interesting patterns, and predict code that that
cannot be predicted by a simple grammar and syntax based ap-
proach as in conventional IDEs. We achieve a total prediction
accuracy of 56.0% on Linux kernel, a C project, and 40.6% on
Twisted, a Python networking library.

1 Introduction

Code IDEs make the task of writing code in new languages easier
by auto-completing key words and phrases. For example, when
writing code in C++, an IDE may automatically close an opening
parenthesis, and suggest else immediately following an if block.
Such code completion has several problems:

1. Grammar based code completion requires writing down an
exhaustive set of rules. This is tedious and repetitive when
done for every new language.

2. Predictions do not consider the category of code. For in-
stance, driver codes and math libraries may exhibit different
patterns.

3. Predictions do not consider context such as class definition,
function definition, and tabs and spaces.

4. Recommendations are often ordered lexicographically,
which may not be very useful.

This report explores a learning based approach to code comple-
tion. Instead of writing grammar based rules, we use machine
learning to learn structure and patterns in code. We can then not
only automate code predictors for different languages, but also
specialize them for different kinds of projects. We can also con-
sider the enclosing context and rank predictions.

2 Related Work

We use natural language techniques for predicting code. In this
section, we review some literature on language models and neural
network based language models.

2.1 Traditional Language Models

Statistical models of languages have been used extensively in var-
ious natural language processing tasks. One of the simplest such
models proposed is the n-gram model, where the frequencies of
consecutive n tokens are used to predict the probability of oc-
curence of a sequence of tokens. The frequencies of such n-grams
are obtained from a corpus, and are smoothed by various algo-
rithms such as Kneser-Ney smoothing [10] to account for sparsity

of n-grams. Such models can be easily extended to code comple-
tion, by modeling each token as a word and doing n-gram analysis
over a codebase. However, such models do not capture the high
fraction of unknown tokens from variable and function names very
well.

2.2 Word Vector Embeddings and Neural Net-
work Language Models (NNLM)

In their seminal work, Bengio et al. [6] first propose a vector em-
bedding space for words for constructing a language model, that
significantly outperforms traditional n-gram based approaches.
Their proposal maps each word to a vector and expresses the prob-
ability of a token as the result of a multi-layer neural network on
the vectors of a limited window of neighboring words. T. Mikolov
et al. [14] show that such models can capture word-pair rela-
tionships (such as “king is to queen as man is to woman”) in the
form of vector operations (i.€., Uking — Vqueen = Uman — Uwoman)-
To distinguish such models from recurrent models, we call them
feed-forward neural network language models. We use the same
concept in our token-embedding. We found singificant clustering
of similar tokens, such as uint8_t and uint16_t, but were
unable to fund vector relationships.

Later, such feed-forward NNLMs have been extended by
Mikolov et al. [13] where they propose the continuous bag-of-
words (CBOW), and the skip-gram. In CBOW, the probability of
a token is obtained from the average of vectors of the neighbor-
ing tokens, whereas in skip-gram model the probabilities of the
neighboring tokens is obtained from the vector of a single token.
The main advantage of such models is their simplicity, which en-
ables them to train faster on billion-word corpuses. However, in
our case, the size of data was not so huge, and we could train even
a 4-layer model in 3 days.

2.3 RNN Language Models

A significant drawback of feed-forward neural network based lan-
guage models is their inability to consider dependencies longer
than the window size. To fix this shortcoming, Mikolov et al.
proposed a recurrent neural network based language model [12],
which associates a cell with a hidden state at each position, and
updates the state with each token. Subsequently, more advanced
memory cells such as LSTM [9] and GRU [8] have been used for
language modeling tasks. More sophsticated models such as tree-
based LSTMs [15] have also been proposed. We experimented
with using GRUs in our setup, but surprisingly did not find them
to be competitive with feed-forward networks.

2.4 Attention Based Models

Recently, neural network models with attention, i.e., models that
weigh different parts of the input differently have received a lot
of attention (pun intended) in areas such as image captioning [16]
and language translation [5, 11]. In such models, the actual task

of prediction is separated into two parts: the attention mecha-
nism which “selects” the part of input that is important, and the
actual prediction mechanism which predicts the output given the
weighted input. We found an attention based feed-forward model
to be the best performing model among the ones we considered.

2.5 Code Completion

Frequency, association and matching neighbor based ap-
proaches [7] are used to improve predictions of IDEs such as
Eclipse. Our learning approach, on the other hand, attempts to
automatically learn such rules and patterns.

3 Dataset and Features

We use two different projects, Linux source [3], a C project, and
Twisted [4], a Python networking library, to train and test our
methods. In each case, we use half of all files for training, and
the remaining half for testing. Given a sequence of tokens in an
incomplete piece of code, we predict the next token. We pick
these incomplete code pieces randomly from the complete codes
in the training set. Tokens in these incomplete codes constitute the
features, and the next token occuring in the actual complete code
is the "truth". The next section describes how we model these
tokens.

4 Modeling Tokens

One of our objectives of learning based code prediction is to do
away with the tedious process of building grammar based rules
for different languages. We treat codes in the training set in a
language agnostic way. The first step is to build a dictionary of
tokens or words that can occur in the code, that we can take as
input to predict the next token. We build this dictionary by read-
ing all code, and treating each consecutive set of alphanumeric
characters and (_), or each consecutive set of special characters
other than alphanumeric, (_), space and newline as one token.
Thus, for example, the code for (my_var = 0; my_var
< foo; my_var++) { will be tokenized into eleven tokens:
for, my_var, =, 0, ;, my_var, <, foo, ;,my_var, ++) {.
Given a sequence of tokens, we then want to predict the next to-
ken. Note that these tokens do not correspond exactly to language
level tokens, e.g., ++) { is a single token despite containing three
different language level tokens ++,), and {.

The dictionary of tokens constructed as above is not complete,
since new code may contain new tokens that are not present in
the training data. Moreover, many of the tokens in the training
data may be specific to a few files and may never occur again. To
address these issues, we divide the tokens into two categories:

a) Key tokens: A subset of K most frequent tokens are cate-
gorized as key tokens. Not surprisingly, many of these frequent
tokens are keywords for the language the project is written in, or
words that tend to occur often in that particular project. For ex-
ample, some of the frequent tokens in Linux kernel are: struct,
; , and dev, out of which the first and second are keywords in C,
and the third is a token frequently used to denote device objects
in Linux. Note that while several language keywords do end up
being part of the set of key tokens, we do not manually curate
the list of key tokens to ensure that they contain only language
specific keywords.

b) Positional Tokens: While key tokens occurrences constitute
a major fraction of all token occurrences (=~ 60% with 2000 key
tokens), the remainder of tokens are rarely seen (such as names
of variables, macros etc.). However, we would like our learning

algorithm to autocomplete new variable names, once they occur in
a file. For example, given many examples of the form for (int
TOKEN = 0; TOKEN < n; TOKEN++) (all with different
values of TOKEN), our algorithm should be able to autocomplete
for (int myIterName = 0; with myIterName. This
capability can not be achieved by merely trying to autocomplete
between a set of pre-defined key tokens. Hence, we also define
positional tokens as follows.

Given a sequence of tokens — an incomplete piece of code, we

replace each token which is not a key token by a string of the form
POS_TOK_ii, where ii is the position of that token within
that sequence. A non-keyword token which is repeated multiple
times in a sequence is assigned the index corresponding to its first
appearance. For example, given the sequence of tokens [for,
int, myVarName, =, 0, ;, myVarName, <, n,
;, myVarName, ++],where myVarName is not a key token,
we construct the new sequence [for, int, POS_TOK_2,
=, 0, ;, POS_TOK_2, <, n, ;, POS_TOK_ 2, ++].
In case the token to be predicted is not a key token but has
appeared in the window, it is also replaced by the corresponding
positional token string. If the target has not appeared before in the
window, it is assumed to be a special token UNKNOWN. However,
as we describe in Section 5, we ignore such windows since in
many such cases the token is actually a hereto unseen token.

Such an encoding is advantageous since now the set of predic-
tion targets to choose from is simply the union of the key tokens
and the positional token strings (of the form POS_TOKEN_1i1i).
In case of a fixed window size of W and a fixed number of key
tokens K, it can be seen that the total number of prediction targets
is K4+W +1 (K key tokens, W positional tokens, and 1 unknown
token), i.e., a constant. This immediately opens up the possibility
of applying simple models such as logistic/neural network based
classifiers.

5 Methods

In this model, we simply take the set of K + W positional and
key tokens, and the set of K + W + 1 output tokens, and fit a
model similar to word vectors [13]. The details of the model are
described below.

We first assign a D dimensional vector to each one of K +
W different key tokens and positional tokens. We denote such
token-vectors by v;, where 1 < ¢ < K + W. Next, given a fixed
size window of tokens [t1,ts,...,tw], we compute a score for
each possible output j, s; as a function of the token-vectors of the
tokens in the window, i.e.,

s; =[5 (Vty, Vtys . Uiy)

The final loss function for this particular example is given by

eSto
L =log S
J

where %, is the output token. This is the cross-entropy loss be-
tween softmax based probabilities for each output and the actual
observed output. According to the actual form of the function f;,
we get different models. A few of these models are described be-
low.

For each model, we use ADAGRAD optimizer to minimize the
total loss function with respect to the parameters of that model.
ADAGRAD was chosen because it gave the best performance in
our case among other alternatives such as vanilla SGD and mo-
mentum based SGD.

5.1 Fixed Window Weight Model

In the spirit of continuous bag-of-word (CBOW) model [13], in
this model we assume that a token at position ¢ has a “weight”
of w;, and combine the token-vectors of the window according to
these weights. The final score is assumed to be a linear function
of this weighted token-vectors. Thus, the overall model is

w
u= Z Wiy, (H
i=1
s;=pju 2
eSto
L=log| =—— 3)
<Zj e)

The parameters in this model are the weights w;, the word vec-
tors v;, and the “prediction” vectors p;. The gradients of the loss
w.r.t. the parameters are obtained by backpropagation, the details
of which are omitted here for space.

5.2 Matrix Vector Model

In this case, we do not introduce any averaging as in the case of
CBOW, but instead simply concatenate the token-vectors to create
a larger vector which is then used to create the scores. Formally,
the model is

U = Vg5 Ve, Va5 Uty])

55 = pfu (5)
eSto

L=1 = 6

0og Zj ey ©)

Note that since here v is DW dimensional instead of being D
dimensional as in the case of Fixed Window Weight Model. Thus,
the prediction vectors p; are much higher dimensional as well,
which means this model has a higher number of parameters as
compared to Fixed Window Weight Model.

5.3 Feed-Forward Neural Network Model

This case differs from the Matrix Vector Model by addition of
one or more non-linear transformations between the concatenated
token-vectors and the final scores. We denote a specific instance of
this model by NL-k, where k is the number of non-linearity layers
it contains. Thus, for example, NL-0 is equivalent to the Matrix-
Vector model described above, while for NL-3 the probabilities
are obtained as:

U = Vg5Vt Uty - - Uty])
z1 = relu(Qqu) 8)
29 = relu(ngl))
z3 = relu(ngg) (10)
5§ =D, % an

e’to
L=log| =—— (12)
(Zj e)
Here relu(.) is the rectified linear unit, i.e., relu(x) = z if x > 0,

and 0 otherwise. In this work, we specifically experimented with
NL-0, NL-1, NL-2, and NL-3.

5.4 Feed-Forward Model with Soft Attention

Motivated by the recent successes of attention based models, we
explore an attention mechanism for our problem as well. We ex-
periment with a “soft”-attention model, i.e., a weight a; between 0
and 1 is assigned to each position 7. The attentions are assumed to
be the result of a sigmoid function on a linear combination of the
concatenated word-vectors. Subsequently, the word vector for the
it" token is weighted by a;, and the aforementioned NL-k model
is applied on the concatenation of these weighted word vectors
instead. Thus, for example, an attention based NL-3 model takes
the form of:

U = [Vt Uty Vg5 - -3 Uty (13)
a=o(Au) (14)
Z = [a104,5 A2V, 5 A3VL,5 - - -5 AW Uy,] (15)
s; = NL-3(2; Q1, Q2, @3,p;) (16)
L=log | 2"

= log W)

Here NL-3(z; Q1, Q2, @3, p;) is the function going from w to s;
in the case of a NL-3 model, described in Section 5.3.

5.5 GRU based Recurrent Model

Recurrent neural network models based on cells like LSTM [9]
and GRU [8] have recently been shown to achieve state-of-the-
art performance in language models. Inspired by these results,
we also attempted to use a GRU based recurrent model for our
prediction task. Specifically, our model was the following:

[91592: 935 - - -3 gw) = GRU([vg,5 0,1 Vgy5 - - 101y]) (18)
s; =p; [g] (19)
L—1log " (20)

= log s o

Here, g; is the output of the ith GRU cell, and we have a dense
layer after that to get the scores for each output token. As we did
not achieve competitive performance with this model as compared
to NL-1, we did not experiment further with deeper GRU models.

6 Experiments and Results

In this section, we evaluate the methods outlined in Section 5, on
Linux kernel and Twisted library. We first present the accuracy of
predictions on the test set, and then present some interesting pre-
dictions that come out from recurring patterns. We implemented
the matrix vector model in Python, and the feed-forward and re-
current models in Keras [2]. Our code is available on github [1].

6.1 Accuracy

Method Known Abs Top3 Key Pos
Win, #Keys acc. acc. acc. acc. acc.
NL-3, 40, 2000 64.4 53.4 81.7 78.0 43.7
NL-4, 64, 2000 63.2 50.6 82.0 72.8 418
Attn, 40, 1000 67.5 56.0 83.6 799 484
BestKW-RandPos 49.8 41.3 - 799 7.0

Table 1: Test accuracy (%) of predictions for Linux project

Method Known Abs Top3 Key Pos
Win, #Keys acc. acc. acc. acc. acc.
NL-3, 40, 500 46.3 39.2 64.8 64.1 142
NL-4, 40, 500 44.8 37.7 62.2 639 10.8
Attn, 40, 500 479 40.6 66.5 64.6 17.6
GRU, 40, 500 41.6 35.2 59.1 644 4.9
BestKW-RandPos 43.6 37.5 - 644 5.5

Table 2: Test accuracy (%) of predictions for Twisted project

Table 1 shows results for Linux source, a C project, and Table 2
for Twisted, a Python networking library. As mentioned in Sec-
tion 3, we use half the files for training and half for testing. Col-
umn 1 lists the learning method, window size and number of key
words. NL-3 is a feed forward model with 3 non-linearity lay-
ers, and NL-4 is a feed forward model with 4 non-linearity lay-
ers. Attn. computes a weighing parameter for each input token in
the window, and uses 3 non-linearity layers. GRU is a recurrent
model. We do not report numbers for GRU in the Linux codebase
since it gave poor results in the smaller Twisted codebase. Addi-
tionally, we report numbers for a fictional random predictor that
achieves the accuracy of the best predictor in case of keywords,
but in case of a non-keyword token predicts one randomly from
the non-keyword tokens in the window, to show the significance
of positional tokens. We name this BestKW-RandPos.

Known acc. is the accuracy for predictions for the cases where
the next token is a key token, or a positional token from the win-
dow being considered. Abs acc. is the accuracy for predictions
for all cases, including cases where the next token is neither a key
word nor a seen positional token. These are often new function
names or variable names, or variables outside of our window. Top
3 is the percentage of cases where the next token is within top
3 predictions, ignoring the unknown cases (unseen variable and
function names). We report this number, because generally, we
are interested in the top few suggestions as opposed to the top
suggestion with a code recommendation system. Key acc. is the
accuracy with which we predict key tokens correctly, given the
next token is a key token, and pos. acc. is the accuracy with
which we predict positional tokens correctly, given the next to-
ken is a positional token. These give us insight into how well our
methods predict tokens that are not key tokens.

We found that attention gives the best results among all the
methods we tried. This makes sense because it is also the most
general of all models — it directly connects all inputs to the out-
put, (unlike GRU where computed states are chained), and it has
an additional attention parameter, that is just a constant in the sim-
ple feed-forward case. We also found that the feed forward model
with 4 non-linearity layers tends to overfit the training data, giving
a slightly lower accuracy on test data. Increasing the word vector
dimensions also tends to result in overfitting. Though regulariza-
tion can help with overfitting, we found that reducing vector di-
mensions and number of layers was also sufficient to reduce high
variance from overfitting.

The accuracy of predicting non-key words, that is, positional
tokens is quite high for Linux kernel, a C project, indicating there
is a lot of redundancy/ recurring patterns. The positional token
accuracy is lower for Python. We think this is because Python is a
dynamically typed, high level language with less redundancy, and
more terse syntax. However, in both cases, the top 3 prediction
accuracy is still much higher than a random predictor, indicating
that the model does extract some patterns out of the code.

A plot of the word vectors reveals a significant clustering of
similar words — uint8_t and uintl6_t, different locking
and unlocking calls, and integers. We have omitted these plots

from the report for space. Unlike natural language texts, however,
we did not observe any significant vector relationships between
different tokens.

6.2 Examples

Another experiment we ran was to evaluate the accuracy of the
classifier in a setting where, if the correct token is not within the
top few predictions, the user types in one or more characters to
“home in” on the correct prediction. Figure 1 shows the results for
this experiment. In this experiment, a character is colored in green
if the token is correctly predicted (i.e., top prediction) before that
character is typed. It is colored in yellow if the token is among
the top 5 before typing that character, and colored in red if the
token is not among the top 5. So, for example, in the first line
in the token struct, the character s is in yellow since before
typing s, the token st ruct was among the top 5. After typing s,
the top prediction was struct, and thus the characters t ruct
are all in green. We can see that, for example, entire sequences
of code such as { PCI_VDEVICE (SUNDANCE, are predicted
correctly without typing anything.

static const struct pci _device id ipg pci tbl[] = {

{ PCI_VDEVICE (SUNDANCE, 0x1023), 0 },
{ PCI_VDEVICE (SUNDANCE, 0x2021), 1 },
{ PCI_VDEVICE (DLINK, 0x9021), 2 },
{ PCI_VDEVICE (DLINK, 0x4020), 3 },
{0, }

}i
MODULE_DEVICE TABLE(pci, ipg pci tbl);

Figure 1: Code example with per-character predictions

6.2.1 Importance of Positional Tokens

From Figure 1 we can also see the importance of positional to-
kens. The tokens PCI_VDEVICE and SUNDANCE are both not
keywords (i.e., not frequently observed in the codebase), and yet
were predicted correctly by our method the second time they were
used (in line 3). If we chose to ignore such tokens instead, we
would not have been able to predict such tokens correctly in a
majority of cases.

6.2.2 Learning Frequently Occurring Patterns

We also found several interesting patterns that are predicted cor-
rectly by our system. An example of such a pattern is given in
Figures 2a & 2b. In these figures, each character is color coded as
before, and some additional information is also shown. The top
5 predictions at the position of interest (shown in red border), are
shown in a blue box. Also, the value of attention for each token in
the prediction window are shown color coded in sky-blue, where
deeper blue is indicative of more attention (for reference, the first
1f tokens in both of these two cases have an attention value of ~
1).

Here, a variable is assigned to right before an if statement,
and the prediction is that the variable will be immediately used
inside the i f condition. This is a common pattern in Linux code,
where if the condition inside i f is too long, it is broken up into
an assignment and a subsequent conditional.

Also, in the figure the top 5 predictions for each case is given in
the blue box. We can see that unlikely is a common prediction,
since 1f (unlikely (condition)) is a common pattern in

struct sk_buff *skb = sp->rx_buff[entry];

if (skb) {
skb umbo->found_start) {
unlikely jumbo->current_size += sp->rxfrag_size;
jumbo if (jumbo->current_size <= sp->rxsupport_size) {
rxfd memcpy (skb_put (jumbo->skb,
sp sp->rxfrag_size),

skb->data, sp->rxfrag_size);

(a) Example 1
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

if (framelen: > sp->rxfrag size)

framelen ag_size;
rxfd
skb |unlikely
(b) Example 2

Figure 2: Definition before i f pattern

Linux code to check for unlikely edge cases such as error condi-
tions.

We can also see that the attention of the models is relatively
high at the correct predictions (skb and framelen in the first
and second cases respectively). This shows that even a single layer
model can be expected to fairly reliably predict the next token
(since the attention is derived from a single non-linear layer).

A few more interesting examples are shown in Figure 3. A
description of why each of the cases are interesting are given in
the captions.

7 Conclusions and Future Work

We found that a learning based approach extracts some interest-
ing patterns, that cannot be captured by language rules. We model
tokens using dense word vectors and use natural language pro-
cessing methods such as a simple matrix-vector model, feed for-
ward neural network models, attention models and recurrent mod-
els. These models do not use any information about the language
grammar or syntax. The attention based model performs the best,
because it directly connects each input token to output, and also
computes weights for important tokens. It is the most general of
all models, with the most parameters. We found that by adjust-
ing the vector dimensions and number of layers, we could reduce
overfitting, and get close accuracies for training and test data. Our
top 3 predicted tokens give an accuracy of over 80% for the cases
where the next token is known (a key or a postitional token), for
Linux, and over 60% for Twisted. A study of these vectors reveals
a significant clustering of related tokens.

Though we did not use any information about language gram-
mar and syntax, it would be interesting to combine language rules
with our learning based approach. For example, we could prune
our predictions to those that are only syntactically valid. We could
also increase our window size, and jointly process . h and . c files,
to improve the context. Such large contexts may not scale well
with feed-forward model, but recurrent models are known to per-
form well with large inputs. We could also try to use language
rules to list out all possible options for next token, and then chain
that to a learning based model to improve the predictions. We
could also try to learn these language rules instead of listing them,
by processing a large number of different projects.

References

[1] Contextual code completion. https://github.com/
subhasis256/ml_code_completion.

static inline void lock_fat(struct msdos_sb_info *sbi)

{
}

mutex_lock (&sbi->fat_lock);

static inline void unlock_ fat(struct msdos_sb_info *sbi)

{

mutex_unlocki &sbi->fat_lock);

} mutex unlock
if

void fafgiruct nit(struct super_block *sb)

{ mutex_ lock

spin_lock sb_info *sbi = MSDOS_SB(sb);

(a) mutex_lock and mutex_unlock pair on same lock variable

static inline void _ iomem *ipg ioaddr(struct net_device *dev)

{
struct ipg nic_private *sp = netdev_priv(dev);
return sp->ioaddr;

}

#ifdef IPG_DEBUG
static void ipg_dump rfdlist(struct net_device *dev)
{
struct ipg nic_private *sp = netdev_priv(dev);
void _ iomem *ioaddr = sp->ioaddr;
unsigned int i;
u32 offset;

(b) Duplicate code after function definition predicted correctly
if (jumbo->found_start) {
| (jumbo—iéu;;;;g:gfgé <= sp->rxsupport_size) {
men cyurrent_size|umbo->skb, _
found start [P->rxfrag size),
rxfrag size }r sp->rxfrag_size);
flags
dev

}

}

N

(c) Member variables predicted correctly

switch (phyctrl & IPG_PC_LINK_SPEED) {

case IPG_PC_LINK_ SPEED_10MBPS:
speed = "10Mbps";
sp->tenmbpsmode = 1;
break;

case IPG_PC_LINK SPEED_100MBPS:
speed = "100Mbps";
break;

case IPG PC_LINK SPEED 1000MBPS:
speed = "1000Mbps";
break;

default:
speed = "undefined!";
return 0;

(d) case token predicted correctly after each break;

Figure 3: Interesting code patterns predicted correctly

[2] Keras. http://keras.io/.

[3] Linux source code. https://cdn.kernel.org/pub/
linux/kernel/v4.x/linux-4.2.3.tar.xz.

[4] Twisted source code. https :
twisted/twisted.git.

/ / github . com /

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neu-
ral probabilistic language model. The Journal of Machine
Learning Research, 3:1137-1155, 2003.

[7] M. Bruch, M. Monperrus, and M. Mezini. Learning from
examples to improve code completion systems. In Proceed-

https://github.com/subhasis256/ml_code_completion
https://github.com/subhasis256/ml_code_completion
http://keras.io/
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.2.3.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.2.3.tar.xz
https://github.com/twisted/twisted.git
https://github.com/twisted/twisted.git

(8]

(9]

[10]

[11]

[12]

ings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 213-222.
ACM, 20009.

K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

R. Kneser and H. Ney. Improved backing-off for m-gram
language modeling. In Acoustics, Speech, and Signal Pro-
cessing, 1995. ICASSP-95., 1995 International Conference
on, volume 1, pages 181-184. IEEE, 1995.

M.-T. Luong, H. Pham, and C. D. Manning. Effective
approaches to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025, 2015.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khu-
danpur. Recurrent neural network based language model.

[13]

[14]

[15]

[16]

In INTERSPEECH 2010, 11th Annual Conference of the In-
ternational Speech Communication Association, Makuhari,
Chiba, Japan, September 26-30, 2010, pages 1045-1048,
2010.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural informa-
tion processing systems, pages 3111-3119, 2013.

T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities
in continuous space word representations. In HLT-NAACL,
pages 746-751, 2013.

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic
representations from tree-structured long short-term mem-
ory networks. arXiv preprint arXiv:1503.00075, 2015.

K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. arXiv preprint
arXiv:1502.03044, 2015.

	Introduction
	Related Work
	Traditional Language Models
	Word Vector Embeddings and Neural Network Language Models (NNLM)
	RNN Language Models
	Attention Based Models
	Code Completion

	Dataset and Features
	Modeling Tokens
	Methods
	Fixed Window Weight Model
	Matrix Vector Model
	Feed-Forward Neural Network Model
	Feed-Forward Model with Soft Attention
	GRU based Recurrent Model

	Experiments and Results
	Accuracy
	Examples
	Importance of Positional Tokens
	Learning Frequently Occurring Patterns

	Conclusions and Future Work

