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Introduction

Course description

For closed manifolds, Morse homology is a way of computing the homol-
ogy of the manifold by using the critical points and gradient flow lines of a
Morse-Smale function. Floer homology is an infinite dimensional version of
Morse homology. There are several versions of Floer homology, some used
in symplectic geometry and some in low dimensional topology. They are im-
portant tools in both fields: the applications of Floer homology include the
Arnol’d conjecture, the Weinstein conjecture, property P for knots, and Gor-
don’s conjecture.

This course will give an overview of the different Floer homologies, ex-
plaining what they have in common and sketching some of their applications.
The topics of the course might include:

• Morse theory and Morse homology;

• Hamiltonian Floer homology and the Arnold conjecture;

• Lagrangian Floer homology;

• contact homology and embedded contact homology;

• instanton (Yang–Mills) Floer homology;

• monopole (Seiberg–Witten) Floer homology;

• Heegaard Floer homology;

• symplectic instanton homology;

• symplectic Khovanov homology.

From Morse theory to Floer homology (Lecture 1)

We describe what will appear in our course very sketchily.

Morse homology assigns a homology group HM˚(M, f ) for a smooth man-
ifold X with a Morse–Smale function f : X Ñ R. It is the homology of the
Morse chain complex CM˚( f ), which is defined by the following data:

• generators: critical points of f ;

• coefficients: often Z in the oriented case, but can also others;

• differentials:
Bx =

ÿ

ind(x)´ind(y)=1

nxy ¨ y,

where nxy counts flow lines

γ̇ = ´∇ f ˝ γ
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from x to y.

Under proper assumptions, the Morse homology is isomorphic of the singular
homology of M.

Floer homology is an infinite-dimensional version of Morse homology. It
typically produces Morse theory on an infinite dimensional space B, called
the configuration space, e.g. C8(X, Y), where X, Y are smooth manifolds, or
C8(X, E), where E is a smooth vector bundle over X, with some suitable f to
obtain Floer homology HF̊ (B, f ), which is in general not isomorphic to the
singular homology of B.

Floer theory appears in different places, but basically two branches: sym-
plectic (and contact) geometry, and low-dimensional topology. There are sev-
eral types of Floer homologies of different flavours. We will discuss them
separately. For a general overview, see [?abbondandolo2019floer] for Floer
theory in symplectic topology, and [?manolescu2015floer] for Floer theory
in low-dimensional topology.

Floer theory in symplectic and contact geometry

Hamiltonian Floer homology

Let (M2n, ω) be a symplectic manifold, which means ω is a closed 2-
form on M satisfying ωn is nowhere vanishing. Let Ht : M Ñ R be a time-
dependent Hamiltonian, where t P R/Z. For this, we can define the Hamilto-
nian vector field by

dHt = ιXt ω.

The Hamiltonian flow is given by the integral curve of Xt such that ϕt : M Ñ M
is a diffeomorphism for all t, and that ϕ0 = id.

The Hamiltonian Floer homology was the first flavour of Floer homologies,
defined by Floer [?floer1988morse]. The configuration space is given by

B Ă C8(S1, M)

containing all null-homotopic loops. On B there is a functional f : B Ñ R/dZ,

f (γ) = ´

ż

D
ω +

ż 1

0
Ht(γ(t)) dt.

Here D is a compressing disk for γ. We will see that critical points of f are
time 1 periodic orbits of the Hamiltonian flow, and the flowlines are given by
holomorphic cylinders between such orbits. We can then form the Hamiltonian
Floer homology HF̊ (M, ω, Ht).

Theorem 0.1. Under certain assumptions, we have

HF̊ (M, ω, Ht) – H˚(M),

the Morse homology of M.
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This leads to a proof of the famous Arnold conjecture:

Theorem 0.2 (Arnold conjecture). The number of periodic orbits of (M, ω, Ht) is
as least as the sum of Betti numbers of M.

Lagrangian Floer homology

Let us keep the convention that (M2n, ω) is a symplectic manifold. A
submanifold L is said to be Lagrangian if it has dimension n and satisfies
ω

ˇ

ˇ

L = 0. The study of Lagrangians is an important part of modern symplectic
geometry.

Given two Lagrangians L0 and L1 that intersect transversely, we can form
the configuration space as the path space

B = P(L0, L1) = tγ : [0, 1] Ñ M : γ(0) P L0, γ(1) P L1u,

and f is some kind of “area functional” on B. It is defined similar to the case
of Hamiltonian Floer homology with Ht = 0. We will see that critical points
of f are just intersections of L0 and L1, and the flowlines correspond to the
holomorphic disks between two intersections. From this, we will produce the
Lagrangian Floer homology HF̊ (L0, L1).

Theorem 0.3. Under certain assumptions, we have

HF̊ (L0, L1) = HF̊ (L0, ψ(L1)),

where ψ is a Hamiltonian transformation on M.

Theorem 0.4. Under certain assumptions, we have

HF̊ (L, L; Z/2Z) – H˚(L; Z/2Z).

As a corollary, we can show the Arnold conjecture for Lagrangian inter-
sections in good cases.

Conjecture 0.5 (Arnold–Givental conjecture). Let L be a Lagrangian, and ψ be
a Hamiltonian transformation on M. Assume that L intersects ψ(L) transversely.
Then

#(L X ψ(L)) ě rank H˚(L; Z/2Z).

Another application of Lagrangian Floer homology is due to Gromov:

Theorem 0.6 (Gromov, [?gromov1985pseudo]). There does not exist compact exact
Lagrangians in R2n with standard symplectic structure.

The idea of the proof is that we can translate Lagrangians in the Euclidean
space such that it doesn’t intersect the original one, and then use it to compute
the Lagrangian Floer homology.
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Contact homology

Contact geometry is the odd-dimensional analog of symplectic geometry.
A contact manifold is a pair (M2n´1, α), where α is a 1-form on M such that
α ^ (dα)n´1 is nowhere vanishing. Given a contact form α, we can talk about
the Reeb field on M, which is a vector field Rα determined by the condition

#

ιRα dα = 0,
ιRα α = 1.

As the Hamiltonian vector field, Reeb field also produces a flow on M. We
can consider

B = C8(S1, M)

and
f : B Ñ R, f (γ) =

ż

γ
α.

The critical points of f are closed Reeb orbits, and flowlines correspond to
holomorphic cylinders in the symplectization (M ˆ R, d(etα)). From this, we
can form the (cylindrical) contact homology HCcyl

˚ (M, α).

There are many generalization of this construction. The contact homol-
ogy HC˚(M, α) is defined as the homology of a chain complex generated by
unions of Reeb orbits, and the differential counts holomorphic curves looking
as in the left of Figure 1. A more general construction is the symplectic field
theory, whose differential counts general holomorphic curves looking as in the
right of Figure 1.

Figure 1: Holomorphic curve counting in the differentials of contact homology
(left) and symplectic field theory (right).

One application is the following:

Theorem 0.7 (Ustilovsky, [?Ustilovsky1999InfinitelyMC]). The sphere S4k+1

has infinitely many contact structures with the same contact plane field ξ = ker α
(up to smooth isotopy).

One variation of contact homology in dimension 3 is the embedded contact
homology, due to Hutchings–Sullivan [?hutchings2002index,?Hutchings2004RoundingCO,
?Hutchings2004ThePF,?jsg/1197491304,?hutchings2009embedded]. Let (Y, α)
be a closed contact 3-manifold, we can use the count of embedded holomorphic
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curves of any genus in the symplectization to define a differential, and produce
the embedded contact homology ECH(Y, α). It is in fact independent to the
choice of α, and is always nonzero. Using this, one can resolve the following:

Theorem 0.8 (Weinstein conjecture in dimension 3, Taubes [?taubes2007seiberg]).
There exists at least one closed Reeb orbit for any closed contact 3-manifold (Y, α).

Floer theory in low-dimensional topology

Instanton (Yang–Mills) Floer homology

Instanton Floer homology was originally defined by Floer in 1988. Let Y3 be
a closed, oriented, smooth 3-manifold, and let E Ñ Y be an SU(2)-bundle,
or equivalently, a rank 2 complex vector bundle with Hermitian metric. The
configuration space is

B = t(nontrivial) SU(2)-connections on Eu/ Aut(E).

Here the space of nontrivial SU(2) connections can be identified with 1-forms
valued in Lie algebra Ω1(Y; su(2)), and Aut(E) is called the gauge group. The
Chern–Simons functional cs on B is a R/Z-valued function defined by

cs(A) =
1

8π2

ż

Y
tr(A ^ dA +

2
3

A ^ A ^ A).

The critical points of cs correspond to the nontrivial SU(2)-representation
of π1(Y) (up to conjugacy). The gradient flow of cs corresponds to solutions of
the Yang–Mills equation on R ˆ Y. These define the instanton Floer homology
group I˚(Y).

There is a variant of I˚(Y) defined for a pair (Y, K), where K is a knot
in Y. The singular instanton Floer homology I˚(Y, K) is defined by considering
connections singular along K.

The most famous application of instanton Floer homology is the proof of
property P for knots:

Theorem 0.9. Let K be a knot in S3. If π1(S3
r (K)) = 1, then K is the unknot.

The idea of proof is to show that I˚(Y) ­= 0, where Y = S3
r (K) and K is

not the unknot, to imply that the fundamental group has a nontrivial SU(2)-
representation.

Monopole (Seiberg–Witten) Floer homology

Monopole Floer homology is another gauge-theoretic invariant for 3-manifolds.
It has several versions, defined by Kronheimer–Mrowka [?Kronheimer2007MonopolesAT],
Marcolli–Wang [?marcolli2001equivariant], and Manolescu [?manolescu2003seiberg].
Let Y3 be a closed, oriented, smooth 3-manifold, and S Ñ Y is a spinor bundle
over Y. Let

B = (tU(1)-connections on Su ‘ Γ(S)) /gauge,
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and f be the Chern–Simons–Dirac functional. The critical points of f correspond
to solutions to the Seiberg–Witten equations on Y, and flowlines correspond to
the Seiberg–Witten equations on Y ˆ R. It outputs the monopole Floer homology
HM˚(Y).

One of the most famous application of monopole Floer homology is the
Gordon conjecture:

Theorem 0.10 (Kronheimer–Mrowka–Ozsváth–Szabó [?kronheimer2007monopoles]).
Let K Ă S3 be a knot, and let U be the unknot. If there is an orientation-preserving
diffeomorphism

S3
r (K) – S3

r (U)

for some rational number r, then K = U.

Another important application is a negative answer for the triangulation
conjecture:

Theorem 0.11 (Manolescu [?manolescu2016pin]). For every integer n ě 5, there
is a non-triangulable topological manifold of dimension n.

Heegaard Floer homology

We continue considering a closed, oriented, smooth 3-manifold Y. It ad-
mits a Heegaard splitting, i.e. we can write

Y = U0 YΣg U1,

where Ui are handlebodies of genus g. The symmetric product

M = Symg(Σ) = Σg/Sg

has a symplectic structure, and the data of Ui gives us two Lagrangians Tα, Tβ

in M. Following Ozsváth–Szabó [?ozsvath2004holomorphic,?ozsvath2004holomorphic1],
we then define the Heegaard Floer homology HF̊ (Y) as the Lagrangian Floer
homology of Tα, Tβ in M.

More or less surprisingly, three theories we have mentioned up to now are
actually the same!

Theorem 0.12 (Taubes, Kutluhan–Lee–Taubes, Colin–Ghiggini–Honda). We
have

HF̊ (Y) = HM˚(Y) = ECH(Y, α).

One variation is the knot Floer homology HFK(Y, K) [?ozsvath2004holomorphic2,
?rasmussen2003floer], defined for knot K Ă Y. Knot Floer homology detects
the unknot:

Theorem 0.13 (Ozsváth–Szabó [?ozsvath2004holomorphic3]). If

HFK(S3, K) = HFK(S3, U),

then K = U.

Comparing with other Floer-theoretic invariants, Heegaard Floer homol-
ogy (knot Floer homology) might be the easiest to calculate, which makes the
research very active.
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Symplectic instanton homology

From the Heegaard splitting Y = U0 YΣ U1, one can produce the La-
grangian Floer homology in another way. Let

M = trepresentations π1(Σ) Ñ SU(2)u/ SU(2),

and
Li = trepresentations π1(Ui) Ñ SU(2)u/ SU(2).

We expect to define the symplectic instanton homology as the Lagrangian Floer
homology of L0 and L1 in M. The name of this construction comes from the
following conjecture:

Conjecture 0.14 (Atiyah–Floer conjecture, [?atiyah1988new]). The symplectic
instanton homology is isomorphic to the instanton homology of Y.

It has been partially proved by Daemi–Fukaya–Lipyanskiy [?daemi2021lagrangians]
in 2021.

Symplectic Khovanov homology

The last invariant we want to mention is the symplectic Khovanov homol-
ogy, due to Seidel–Smith [?Seidel2004ALI]. Starting from a knot K Ă S3 in a
braid position, as in Figure 2. For each t P [0, 1], the slice gives 2n points on

Figure 2: A braid position of the unknot

R2. The phases at t = 0 and 1 are the same, namely 2n points z1, z2, . . . , z2n.
Consider the space

S = tu2 + v2 +
2n
ź

k=1

(z ´ zk) = 0u Ă C3.

There is a distinguished Lagrangian L in an open set Yn P Hilbn(S), the Hilbert
scheme of n points in S. The data of the braid gives us a diffeomorphism β
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on Yn, and the symplectic Khovanov homology Khsymp(K)is defined as the
Lagrangian Floer homology of L and β(L) in Yn. While the definition involves
complicated symplectic geometry stuff, it actually coincides with the ordinary
Khovanov homology, which is defined in a combinatorial way.

Theorem 0.15 (Abouzaid–Smith, [?abouzaid2019khovanov]). We have

Khsymp(K; Q) – Kh(K; Q).
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1 Morse theory and Morse homology

1.1 Classical Morse theory (lecture 2)

Let us begin with classical Morse theory. Roughly speaking, it studies
properties of manifolds using “nice” smooth functions on them.

Definition 1.1. Let X be a closed, smooth n-manifold. A smooth function F is
said to be Morse if every critical point p of f is non-degenerated, i.e.

ker Hessp f = 0.

The following theorem claims that Morse functions are “generic”:

Theorem 1.2. Every smooth function f P C8(X) can be approximated by Morse
functions.

Given that f is Morse, at each critical point p of f , we can decompose the
tangent space TpX as a direct sum of its eigenspaces of positive (negative)
eigenvalue:

TpX = T+
p X ‘ T´

p X.

The index of p is the dimension of the negative eigenspace T´
p X. The local

behaviour of Morse functions is determined by its index.

Theorem 1.3 (Morse lemma). Let p be a critical point of a Morse function f with
index k. Then there are local coordinates x1, x2, . . . , xn near p, such that locally f can
be written as

f (x) = f (p) ´

k
ÿ

i=1

x2
i +

n
ÿ

i=k+1

x2
i .

The importance of critical points is that the topology of X only changes
when we cross critical points. More precisely:

Theorem 1.4. Let
Xc = f ´1(´8, c].

Let c1 ă c2 be two real numbers.

• If there is no critical value in [c1, c2], then Xc1 and Xc2 are diffeomorphic.

• If there is exactly one critical value in [c1, c2], namely c P (c1, c2), assume in
further that there is exactly one critical point p such that c = f (p). Then Xc2
is diffeomorphic to Xc1 with one k-handle attached, which means

Xc2 – Xc1

ď

BDkˆDn´k

(
Dk ˆ Dn´k

)
.

See Figure 3 for a standard example. Recall that handles are the thickened
analogues of cells. This theorem says that we can obtain a CW structure on
the manifold from a Morse function on it.

As a corollary, we have the Morse inequality.
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Figure 3: Passing an index 1 critical point of a Morse function on the torus
leads to a two dimensional 1-handle attachment.

Corollary 1.5. Let ck be the number of critical points of f with index k. Let bk be the
k-th Betti number of X. Then for each integer k ě 0, we have

k
ÿ

l=0

(´1)lck´l ě

k
ÿ

l=0

(´1)lbk´l .

Proof. The Morse function f gives CW structure on X. Consider the k-skeleton
X(k) of X. That is, the union of all the cells with dimension at most k. Then
we have

k
ÿ

l=0

(´1)lck´l = (´1)kχ(X(k)) =
k

ÿ

l=0

(´1)k´l rank Hl(X(k)).

On the other hand,

k
ÿ

l=0

(´1)lbk´l =
k

ÿ

l=0

(´1)k´l rank Hl(X).

From the cellular homology, we know that

rank Hl(X(k)) = Hl(X)

for l ă k, and Hk(X(k)) ě Hk(X). The result follows.

1.2 Morse homology

The idea of Morse homology originated from Milnor [?milnor2015lectures].
In 1980s, Witten wrote it in its modern form. Possible references for Morse ho-
mology include [?schwarz1993morse,?banyaga2004lectures,?audin2014morse].

We will focus on the part that can be generalized to infinite dimensions,
i.e. the setting of Floer theories.
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To define Morse homology, we first need to formulate the Morse–Smale
condition. Fix a Riemannian metric g on X. We can make sense of the gradient
flow of f . The (negative) gradient flowline equation for a curve γ : R Ñ X is

γ1(t) = ´∇ f (γ(t)).

It generates a flow ϕt : X Ñ X.

Definition 1.6. Let p be a critical point of f . The stable and unstable manifold
are defined respectively as

Ws(p) = tx P X : lim
tÑ+8

ϕt(x) = pu,

and
Wu(p) = tx P X : lim

tÑ´8
ϕt(x) = pu.

Example 1.7. Consider an index 1 critical point on a surface. Locally the
Morse function can be written as f = x2 ´ y2 + c, and the flow looks as in
Figure 4.

Figure 4: The local behaviour of a Morse function near an index 1 critical
point.

Proposition 1.8. We have

Ws(p) – T+
p (X), Wu(p) – T´

p (X).

Definition 1.9. Let X be a closed, smooth n-manifold. A pair ( f , g) is said to
be Morse–Smale if under the Riemannian metric g, for all critical points p, q of
f , we have Wu(p) and Ws(q) intersect transversely.

When fixing a metric g, we often say a function is Morse–Smale. We need
to justify that the class of Morse–Smale functions is large enough to do pertur-
bation. To make this precise, recall that a subset A in a complete metric space
B is said to be generic if it contains a countable intersection of open dense sets.
In particular, it is dense by Baire category theorem.

Theorem 1.10 (Kupka–Smale). Let (X, g) be a Riemannian manifold. The class of
Morse–Smale functions is generic in C8(X).
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Remark 1.11. One can also fix the function f and this is also true for generic g.

From now on we assume that ( f , g) is Morse–Smale. The transversality
condition tells us that

M(p, q) = Wu(p) X Ws(q)

is a smooth manifold of dimension ind p ´ ind q. Unwrapping the definition,
we see that M(p, q) is the union of flowlines from p to q. It carries a R-action
by translation. Hence we can consider the unparametrized moduli space

xM(p, q) = M(p, q)/R.

It is a smooth manifold of dimension

dim xM(p, q) = ind p ´ ind q ´ 1.

Elements of this space are unparametrized flowlines, or trajectories.

An orientation on Wu(p) – T´
p X induces an orientation on xM(p, q) since it

also induces an orientation on Ws(p) – T+
p (X) by requiring the isomorphism

T´
p (X) ‘ T+

p (X) – TpX

preserves orientations. In particular, when ind p = ind q + 1, xM(p, q) is a
compact, oriented, 0-manifold, i.e. points with signs. It gives a signed count

# xM(p, q) P Z.

We can now define the Morse complex:

Definition 1.12. The Morse complex for X and a Morse–Smale pair ( f , g) con-
sists of the following data:

• for each integer k, an abelian group CMk(X, f , g), generated by index k
critical points;

• for each integer k, a differential

B : CMk(X, f , g) Ñ CMk´1(X, f , g),

given by
Bp =

ÿ

q
# xM(p, q) ¨ q

for each critical point p.

Remark 1.13. One can also do this in a more canonical way. Namely, we assign
a rank 1 free abelian group Λp for each critical point p by

Λp = xo1, o2y/(o2 = ´o1),

where o1, o2 are orientations of T´
p X. We can then define the Morse complex

as
CM˚(X, f , g) =

à

p
Λp

and similarly define the differential.
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While saying Morse complex, we have not really proved that it is a complex.
The following theorem justifies this. It also shows that Morse homology is
actually an invariant of X.

Theorem 1.14. (a) The Morse complex CM˚(X, f , g) is indeed a chain complex, i.e.
we have B2 = 0.

(b) The homology H˚(CM˚(X, f , g)) is independent of the choice of ( f , g).

(c) There is a natural isomorphism

H˚(CM˚(X, f , g)) – H˚(X).

Here (c) is specific to finite dimensional case, while (a) and (b) can be
generalized to the Floer theoretic settings.

1.3 Invariance of Morse homology (lecture 3)

We sketch several proofs of Theorem 1.14, keeping an eye on whether these
proofs can generalize to infinite dimensions.

The first proof

The first proof we sketch is from [?banyaga2004lectures], following Sala-
mon. It is the most elementary one.

This proof relies on the following fact:

Proposition 1.15. Let X be a topology space with a filtration

H = U´1 Ă U0 Ă U1 Ă ¨ ¨ ¨ Ă X =
ď

Ui.

Assume that H˚(Uk, Uk´1) is supported in dimension k. Let B denote the composition

Hk(Uk, Uk´1)
δ

ÝÑ Hk´1(Uk´1) Ñ Hk´1(Uk´1, Uk´2),

where δ is the connecting homomorphism in the long exact sequence for pair (Uk, Uk´1).
Then B2 = 0, and the homology of the complex (H˚(U˚, U˚´1), B) recovers H˚(X).

It generalizes the machinery of cellular homology. We can apply this to

Uk = tϕt(x) : t ě 0, x is in a neighbourhood of a critical point p with ind p ě ku.

It is clear that H˚(Uk, Uk´1) is a free abelian group supported in degree k,
generated by critical points of index k. We can show that B counts # xM(p, q),
and hence it gives the homology of X.

Unfortunately, this proof makes no sense in Floer theory settings because
we cannot talk about “neighbourhood of p”, neither the index of p.
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Proof from Audin–Damian [?audin2014morse]

The idea of the second proof is to compactify the moduli spaces of flow-
lines. To this end, we need to work with pseudo-gradient, which is vector field
X that equals to the negative gradient near critical points of f , and such that
d fp(Xp) ă 0 elsewhere.

Theorem 1.16. The unparametrized moduli space xM(p, q) can be compactified by
broken flowlines:

xM(p, q) =
ž

lě0

ž

r1,...,rlPCr( f )

(
xM(p, r1) ˆ xM(r1, r2) ˆ ¨ ¨ ¨ ˆ xM(rl , q)

)
.

In general, xM(p, q) is a manifold with corners. The codimension 1 stratum
is given by

ž

r

xM(p, r) ˆ xM(r, q),

as showed in Figure 5.

Figure 5: The compactified moduli space of flowlines.

The topology of xM(p, q) is given by looking at intersections with the
boundaries of standard neighbourhoods of cirtical points. Using the com-

pactness of boundaries of these neighbourhoods, we can show that xM(p, q)
is indeed compact. Notice that this doesn’t work in infinite dimensions since
the unit sphere of an infinite dimensional Hilbert space is not compact! To
show this gives a manifold with corners, we also need a gluing theorem, which
says that unbroken trajectories can be arbitrarily close to every fixed broken
trajectory.

Now the proof of part (a) in Theorem 1.14 is clear. Let p be a critical point,
and q be a critical point of index ind p ´ 2. The coefficient of q appearing in
B2 p is

ÿ

ind r=ind p´1

# xM(p, r)# xM(r, q) = #

(
ž

r

xM(p, r) ˆ xM(r, q)

)
.

By the compactification, we know that
ž

r

xM(p, r) ˆ xM(r, q) = B

(
xM(p, q)

)
,
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and the count is zero since it appears as the boundary of a 1-dimensional
manifold.

To prove part (b), given two Morse–Smale pairs ( f0, g0) and ( f1, g1), we can
choose a family of Morse–Smale pairs ( ft, gt) (t P [0, 1]) connecting these two
pairs, by the genericity of Morse–Smale functions, and extend to ( ft, gt) (t P

R) by constants. We construct a map

F : CM˚(X, f0, g0) Ñ CM˚(X, f1, g1)

as follows. Let p, q be critical points of f0 and f1 respectively. Consider

N (p, q) = tγ : R Ñ X : γ1(t) = ´∇ ft(γ(t)), γ(´8) = p, γ(+8) = qu.

Unlike the previous M(p, q), now we don’t have a R-action. The space
N (p, q) is an oriented smooth manifold of dimension ind p ´ ind q. It can
be compactified with boundary

BN (p, q) =

(
ď

r

(
xM f0(p, r) ˆ N (r, q)

))
ď

(
ď

r

(
N (p, r) ˆ xM f1(r, q)

))
.

The two components reflect two possibilities of the index decreasing that it
can happen on either the t = 0 side or the t = 1 side. We define

F(p) =
ÿ

ind q=ind p

#N (p, q) ¨ q.

Exercise 1.17. Show that
FB = BF,

i.e. F is a chain map, by counting points in BN (p, q).

We construct a chain map

G : CM˚(X, f1, g1) Ñ CM˚(X, f0, g0)

in the same spirit. One can show that F, G give chain homotopy inverses to
each other. Hence

F̊ : H˚(CM˚(X, f0, g0)) Ñ H˚(CM˚(X, f1, g1))

gives an isomorphism on Morse homologies.

The proof of part (c) in Theorem 1.14 is not so interesting to us because
the result doesn’t even hold in infinite dimensions. Hence we only list some
approach to show this.

• Check explicitly that the differential B in our first proof coincides with
the cellular map of the cellular chain complex.

• Show that the map
CM˚(X, f , g) Ñ C˚(X)

given by
p ÞÑ [Wu(p)]

is a chain homotopy equivalence.

• Verify Eilenberg–MacLane axioms hold for Morse homology.
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Proof from Schwartz [?schwarz1993morse]

The idea of our second proof is great, but as we have seen, its proof tech-
niques cannot be generalized to infinite dimensions directly. We now intro-
duce an alternative proof for the compactification theorem, which is the most
relevant to Floer theory.

Let γn P xM(p, q) be a sequence of flowlines. For each γn, we can consider
its energy

E(γn) =

ż

R

|γ1
n(t)|

2 dt.

It turns out that

E(γn) =

ż

R

xγ1
n, ´∇ f (γn)y dt =

ż

R

d
dt
(´ f (γn(t))) dt = f (p) ´ f (q).

The sequence
ż

R

|γn ´ γ0|2 dt

is also uniformly bounded. Hence the L2
1-norm of γn is uniformly bounded.

By Alaoglu’s theorem, there is a subsequence γnk converging weakly to γ in
L2

1, and hence also converging strongly in L2
loc. Now looking back on the

flowline equation
γ1

n(t) = ´∇ f (γn),

we can see γ1
nk

also strongly converges in L2
loc. In other words, γnk converges

to γ in L2
1,loc.

This is a typical step of bootstrapping: from a sequence γn that has uni-
formly bounded L2

1-norms, we find a subsequence converging in L2
1,loc. Re-

peating this process, by passing to subsequences, we can eventually find a
sequence, still called γn for simplicity, that converges to γ in C8

loc. It does
satisfy the flowline equation, but it is not necessarily a flowline from p to q.
Nonetheless, we can show that it does converge to some intermediate flow-
lines. Using this, we can establish the compactness theorem again.

Theorem 1.18. There exists critical points r1, r2, . . . , rm and translations τn,j P R,
such that τn,jγn converges to a flowline from rj´1 to rj.

1.4 Conley index

The classical Morse homology only treats closed manifold, i.e. compact
manifold without boundary. It is natural to ask what happens if X is not com-
pact or has boundary. We first discuss the case that X doesn’t have boundary
but might be non-compact.

The issue here is that CM˚( f , g) might not be a complex.

Example 1.19. Let X = R2. Consider a function with level set showed in
Figure 6. There are three critical points p, q, and r. Here p is a local maximum,
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and r is a local minimum. There are exactly two flowlines, one from p to q,
and the other from q to r. We thus have

Bp = ˘q, Bq = ˘r, B2 p = ˘r ­= 0.

In this case, CM˚(X, f , g) is not a complex. The problem here is that

xM(p, r) = (0,+8),

while the “compactification”

xM(p, r)
ď

(
xM(p, q) ˆ xM(q, r)

)
= [0,+8)

is not compact!

Figure 6: A function on R2. The black lines indicate level sets, and the blue
lines are flowlines.

One way to resolve this is to consider only the good case. Let ϕt be the
(partially-defined) negative gradient flow. Let

S = tx P X : ϕt(x) exists for all t, ϕ˘8(x) are critical points of f u.

Assume that S is compact. Then the proof that B2 = 0 still works, but now the
question is that what is our homology HMorse(X, f , g)?

Example 1.20. Consider X = R, and flowlines are showed in Figure 7. In the
first case, S is a point, and the Morse homology is Z. In the second case, we
have S – [0, 1], and the Morse homology is zero.

This example indicates that the homology HMorse(X, f , g) is not necessarily
the homology of X or S. To fix this, we need to take a compact neighbourhood
of S together into account, which motivates the Conley index [?conley1978isolated].
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Figure 7: The non-compact manifold R with different flowlines.

Definition 1.21. Let ϕt be a flow on a smooth manifold X. For a compact
subset N Ă X, the invariant subset of N is defined as

Inv(N, ϕ) : = tx P N : ϕt(x) P N, for all t P Ru.

A compact subset S Ă X is said to be an isolated invariant set if there exists a
compact neighbourhood N such that S Ă int N, and that S = Inv(N, ϕ).

For example, let ϕ be the negative gradient flow, and S be as before. Then
S is an isolated invariant set for any compact neighbourhood N Ą S.

Definition 1.22. Let S be an isolated invariant set for (X, ϕt). An index pair
(N, L) for S is a pair of compact sets L Ď N Ď X, such that the following
conditions hold.

(i) We have
Inv(NzL, ϕ) = S Ă int(NzL).

(ii) L is an exit set for N, i.e. for any x P N and t ą 0 with ϕt(x) R N, there is
a smaller τ P [0, t) such that ϕτ(x) P L.

(iii) L is positive invariant in N, i.e. for any x P L and t ą 0 with ϕs(x) P N for
all s P [0, t], we have ϕs(x) P L for all s P [0, t].

The following figure provides a schematic example and a counterexample.

Figure 8: Left: a schematic example of an index pair. Right: L is an exit set
but is not positive invariant.
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Definition 1.23. The Conley index of S is the based homotopy type

I(ϕ, S) = (N/L, [L]),

where (N, L) is n index pair for S.

The existence and invariance of Conley indices rely on the following theo-
rems.

Theorem 1.24 (Conley). Every S admits an index pair.

In fact, we can set N to be a manifold with boundary L Y L1 satisfying that
BL = BL1 = L X L1, and that L is a codimension 0 submanifold in BN. We can
think of L as the exit set and L1 as the entrance set.

Theorem 1.25. The Conley index I(ϕ, S) is independent of the choice of (N, L).
Further, it is invariant under continuation maps. More precisely, let ϕλ = tϕλ

t u be a
family of flows, and N be an isolating neighbourhood for all Sλ (λ P [0, 1]). Then the
Conley index I(ϕλ, Sλ) is independent of λ.

Notice that in our definition, Conley index is a homotopy type, which means
we actually obtain a family of homotopic equivalent spaces in the theorem
above.

Let us see some examples.

Example 1.26. Consider a single isolated critical point p of a Morse-Smale
function f , and let ϕ be the negative gradient flow of f . Locally we have

f = ´

k
ÿ

i=1

x2
i +

n
ÿ

i=k+1

x2
i + f (p).

Here k is the Morse index of p. Now we can take N = Dn´k ˆ Dk, and
L = Dn´k ˆ BDk. See Figure 9. Then

Figure 9: Conley index associated to a single isolated critical point.

I(ϕ, tpu) » Dk/BDk – Sk.

Hence the Conley index indeed captures the information about critical points.
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Example 1.27. Let X be a compact manifold now, and let S = X. Then we can
take N = X and L = H, and then I = X+ = X

š

˚. In this case, we have

rH˚(I) = H˚(X).

Hence the Conley index indeed recovers the original Morse homology for
compact manifolds.

Example 1.28. We now give a really interesting example, the monkey saddle.
Consider the following vector field on R2 as in Figure 10. Let S = tpu be

Figure 10: The monkey saddle.

the critical point. We can take N as a closed disk, and N is three arcs on the
boundary. From this, we see that

I(S, ϕ) » S1 _ S1.

In general, the Conley index does recover the Morse homology in good
cases. The idea is that we attach a k-cell starting from L when passing an
index k critical point, and show that it recovers X.

Theorem 1.29. Let ϕ be the flow of a Morse–Smale pair ( f , g) on X, and

S = tx P X : ϕt(x) exists for all t, ϕ˘8(x) are critical points of f u

be the set of points between critical points. Assume that S is compact. Then

rH˚(I(ϕ, S)) – HMorse,˚(X, f , g).

The construction of Conley index is purely in finite dimensions. However,
we will see it helps us to simplify some infinite-dimensional problems in the
end of the class.

1.5 Morse homology for manifolds with boundaries (lecture
4)

We have treated the Morse theory when X is a manifold without boundary
(but not necessarily compact). Now we turn to the case that X is compact but
has boundary.
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Let S be the set of points between critical points. If S Ď int X, then we
reduce to the previous case by using int X, and obtain a homology rH˚(I(S)).
This formalism can be slightly generalized:

Example 1.30. If f is maximal on the boundary, then ´∇ f is inward on BX.
We can simply choose (N, L) = (X, ϕ) to be an index pair, and obtain

HMorse(X) = rH˚(X+) = H˚(X).

Example 1.31. If f is minimal on the boundary, then ´∇ f is outward on BX.
In this case, we can choose (N, L) = (X, BX), and the result homology is

rH˚(X/BX) = H˚(X, BX).

In general, we should have discrete critical points, but they might be on
the boundary. Kronheimer and Mrowka treat this topic in detail in their book
[?Kronheimer2007MonopolesAT], as a finite dimensional model for their con-
struction of monopole Floer homology.

For a manifold with boundary X, we can consider its double

DX = X YBX X,

which carries a natural involution ι. We assume that our function f comes
from an ι-invariant Morse function on DX. In this case, ∇ f is tangent to the
boundary BX.

There are three types of cirtical points:

• critical points in the interior int X;

• critical point p P BX such that

Hess( f )p(ν, ν) ą 0,

where ν is the (outwards) normal vector. In this case, we have Wu(p) Ă

BX, and we say p is boundary-stable;

• critical point p P BX such that

Hess( f )p(ν, ν) ă 0.

In this case, we have Ws(p) Ă BX, and we say p is boundary-unstable;

Figure 11 provides an illustration of boundary-stable and boundary-unstable
critical points.

We can divide the critical points into three parts:

Cr( f ) = Co Y Cs Y Cu.

Because of the existence of the boundary, we cannot expect a complete transver-
sality as the Morse–Smale condition. The replacement is the following:
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Figure 11: Critical points on the boundary: p is boundary-stable while q is
boundary-unstable.

Definition 1.32. A smooth function f on X is said to be regular if Wu(p) and
Ws(q) intersect transversely in X, except the “boundary obstructed” case that
p is boundary-stable and q is boundary-unstable. In this case, we require
Wu(p) and Ws(q) intersect transversely in BX, i.e.

TxWu(p) + TxWs(q) = Tx(BX).

One can easily see that f is regular implies f is Morse–Smale restricted to
the boundary. Under this assumption, the moduli space

M(p, q) = Wu(p) X Ws(q)

is a smooth manifold (possibly with boundary) of dimension

d =

#

ind p ´ ind q + 1, p, q are in the boundary-obstructed case;
ind p ´ ind q, otherwise.

It has boundary precisely when p is boundary-unstable, and q is boundary-
stable. See Figure 12. In this case, we have

Figure 12: The boundary-obstructed case.

MB(p, q) := BM(p, q) = Wu(p) X Ws(q) X BX.
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These moduli spaces also carry an R-action, and we define the unparametrized
moduli spaces

xM(p, q) = M(p, q)/R, xMB(p, q) = MB(p, q)/R.

Using these, we can define three flavours of Morse chain complexes.

• The “bar” version
Ck = Cs

k ‘ Cu
k+1,

where Cs
k and Cu

k are sets of critical points of index k in Cs and Cu,
respectively. The differential is defined by counting flowlines on the
boundary:

Bp =
ÿ

q
# xMB(p, q) ¨ q.

• The “to” version
qCk = Co

k ‘ Cs
k

with differential
qB =

(
Bo

o ´Bu
o B

s
u

Bo
s B

s
s ´ Bu

s B
s
u

)
.

Here
Bα

β : Cα
k Ñ Cβ

k´1

is defined for α, β P to, s, uu, and counts # xM(p, q) in X, while the corre-
sponding B

α
βs count flowlines in BX.

• The “from” version
pCk = Co

k ‘ Cu
k

with differential
pB =

(
Bo

o Bu
o

´B
s
uBo

s ´B
u
u ´ B

s
uBu

s

)
.

Remark 1.33. Here these mysterious differentials are constructed by looking at
all possible broken trajectories, and organized in a way such that B2 = 0.

These constructions do give us the correct information of Morse homology,
as the following theorem indicated.

Theorem 1.34. We have isomorphisms

H˚(C˚) = H˚(BX), H˚( qC˚) = H˚(X), H˚( pC˚) = H˚(X, BX).

Idea of the proof. The first one is nothing more than the original Morse homol-
ogy. For the second, one can first show that H˚( qC˚) is independent of the
choice of ( f , g), using continuation maps. We then choose a Morse–Smale
function f on BX and extend it on a collar neighbourhood by

f (x, t) = f
ˇ

ˇ

BX(x) ´ t2, t P [0, ϵ),
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and then extend it to all of X. For this f , there is no boundary-stable critical
points, and hence, the to version Morse chain complex is the same as the
Morse chain complex in int X. Thus it recovers H˚(X). For the from version,
the proof is similar: we choose

f (x, t) = f
ˇ

ˇ

BX(x) + t2, t P [0, ϵ).

1.6 Morse homology in infinite dimensions

To conclude the first part of our class, we briefly mention some early ap-
plications of Morse theory in infinite dimensions in the simplest situation, c.f.
[?milnor1963morse]. Notice that this is not what is called Floer theory.

Let X be a Hilbert manifold, i.e. atlases of charts of X are modelled on open
subsets of a separable Hilbert space, and transition functions are smooth. One
can define the tangent space TpX for p P X, which is a Hilbert space; from
this one can also define Riemannian metrics on X. We can also talk about
smooth functions on X and the Hessian of a smooth function. Under suitable
setting, many theorems in finite-dimensional differential topology, such as
inverse function theorem and Sard’s theorem, still work.

Definition 1.35. A smooth function f on a Hilbert manifold X is a Morse
function if its Hessian

Hessp( f ) : TpX Ñ TpX

is an isomorphism for all critical point p.

In infinite dimensions, we need to be careful to control the behaviour of
convergence.

Definition 1.36. A smooth function f on a Hilbert manifold X satisfies the
Palais–Smale condition if for any subset A Ă X satisfying the following condi-
tions:

• f is bounded on A;

• the closure of
t}∇ f (x)} : x P Au

in R contains 0,

we can find a sequence xn P converging to a critical point of f .

Let A be f ´1[a, b] X Cr( f ). We obtain:

Corollary 1.37. Let f be a Morse, Palais–Smale function. Then for any finite real
numbers a ă b, there are only finitely many critical points in f ´1[a, b].

Theorem 1.38. Let f be a Morse, Palais–Smale function, and let p1, . . . , pk be all
critical points of f with critical values in [a, b]. Then f ´1[a, b] is homeomorphic to
the product f ´1(a) ˆ [a, b], with a handle D(T´

p X) ˆ D(T+
p X) attached for each pi

along BD(T´
p X) ˆ D(T+

p X).
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Notice that here T˘
P X can have infinite dimensions. If T´

p X is finite-
dimensional for all critical point p, and f is bounded below, we can make
sense of the index of p. In this case, X is homotopy equivalent to a CW com-
plex. When ( f , g) is Morse–Smale, the homology again recovers the singular
homology for X.

Application: the topology of path spaces

Let M be a finite-dimensional, closed, smooth Riemannian manifold, and
let p, q P M. Look at the path space

X = Ω2
1(M, p, q) := tγ : [0, 1] Ñ M : γ(0) = p, γ(1) = q, }γ}L2

1
ă 8u.

The tangent space of X at γ is

TγX = tλ P L2
1([0, 1], TM) : λ(t) P Tγ(t)X, λ(0) = 0 = λ(1)u,

on which we have an inner product

xλ, τy =

ż 1

0
xλ1(t), τ1(t)y dt.

It defines a Riemannian metric on X. There is a natural functional on X,
namely the energy function, defined by

E(γ) =
1
2

ż 1

0

›

›γ1(t)
›

›

2 dt.

Theorem 1.39. The energy functional E satisfies the Palais–Smale condition.

Critical points of E correspond to geodesics from p to q as they have con-
stant speeds. The dimension of ker Hessγ(E) equals to the dimension of Jacobi
fields along γ, which is nonzero if p, q are conjugate. For example, when p, q
are antipodal points on Sn. If this is zero, then E is Morse, and we can talk
about the index

i(γ) = #tγ(t) : t P (0, 1) such that γ(t) is conjugate to γ(0) along γu.

Homotopy theory tells us that Ω2
1(M, p, q) is homotopy equivalent to the

loop space ΩM. Hence using this machinery, we can calculate the homology
of loop spaces.

Example 1.40. Let X = Sn. Choose p, q that are not antipodal points, and let
p1 be the antipodal point of p. The geodesics from p to q are pq, pp1q, pqp1 pq,
and so on. They have degree 0, n ´ 1, 2(n ´ 1), . . . and generate the Morse
chain complex for ΩX. When n ą 2, there is no room for differentials. Hence
we have

Hk(ΩSn) –

#

Z, n ´ 1 | k;
0, otherwise.

One can also use Morse theory to study the stable homotopy group of Lie
groups, and prove the famous Bott periodicity theorem.
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2 General discussion on Floer homologies

Before starting the discussion on concrete theories, we first talk about some
common features of Floer homologies. We are trying to make sense of some
general principles rather than prove meta-theorems.

2.1 The basic setting (lecture 5)

Generally speaking, we perform Floer homology on an infinite-dimensional
background space B, called the configuration space. Typically, B can be C8(S1, X),
where X is some finite-dimensional Riemannian manifold, or C8(X; E), where
E is a smooth vector bundle over a smooth manifold X. These are the two
main families of configuration spaces we deal with.

These configuration spaces are somewhat “smooth”, and we can make
sense of tangent spaces. For example, for B = C8(S1, X), the tangent space
at a loop γ is

TγB = tvector fields on X along γu;

for B = C8(X; E), the tangent space is C8(X; TX b E).

The second ingredient to perform Floer homology is a “Morse” function

f : B Ñ R.

The problem here is that B is not a Banach manifold (locally modelled on
Banach spaces) in general, but only a Fréchet manifold. To resolve this, we
complete B with respect to some Sobolev norm L2

k on B. Recall that this
means we have a bound for all derivatives up to order k. Denote the Sobolev
completion by Bk Ą B. The Sobolev embedding theorem tells us

8
č

k=1

Bk = B.

The functional f extends to
fk : Bk Ñ R

continuously for k " 0. We’ll often omit the subscript in context. The comple-
tion spaces Bks are Hilbert manifolds, and we can look at the formal gradient
flow of f with respect to the L2-metric on B0:

γ1(t) = ´∇ f (γ(t)), (2.1)

where
x∇ f , vyL2 = d f (v).

Ideally, the Floer chain complex CF̊ is a chain complex generated by critical
points of f , with the differential

Bp =
ÿ

q
# xM(p, q) ¨ q.
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The Floer homology is defined as the homology of CF̊ . There are many issues
to make sense of this definition.

First of all, the flowline equation involves the operator

d
dt

+∇ f : tγ : R Ñ Bu Ñ tR Ñ TBu.

The source space can be written into a more familiar form. It is C8(S1 ˆ R, X)
when B = C8(X, S1), and is C8(X ˆ R; π˚E) when B = C8(X; E). The point
here is that:

this operator should be an elliptic partial differential operator.

What does this mean? Let

P =
ÿ

|α|ďm

aα(x)Bα

be a pseudo-differential operator of degree m on an open set Ω Ă Rn, i.e.
aα ­= 0 for some |α| = m. It is said to be elliptic if its symbol

σP(ξ) =
ÿ

|α|=m

aα(x)ξα

is nonzero for all x P Ω and ξ = (ξ1, ξ2, . . . , ξn) ­= 0. In general, a differential
operator (on maps or sections on a smooth manifold X) is elliptic if it looks
elliptic locally.

Examples 2.2. The Laplacian

∆ =
n

ÿ

i=1

B2
i

on Rn is elliptic since it has symbol

σ =
n

ÿ

i=1

ξ2
i = |ξ|2.

The Cauchy–Riemann operator

B̄ =
1
2
(Bx + iBy)

is elliptic since it has symbol σ = z/2 on C.

If P is an elliptic operator not involving Bt, then Bt + P is parabolic, which
means solution to the corresponding equation has (short time) existence and
uniqueness properties. For example, setting P = ∆, we get the heat equation:

d f
dt

+ ∆ f = 0.
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Elliptic equations don’t satisfy this. So this is an issue for d
dt +∇ f . For

example, the Cauchy–Riemann equation

B̄u = 0,

viewed as an initial value problem on the upper half-plane R ˆ [0,+8) with
given initial value f : R Ñ R, has a holomorphic extension only if u is real-
analytic. In short, unlike in Morse theory, the flowline equation 2.1 might not
have solutions!

Even worse, sometimes ∇ f itself may not exist. Recall that the original
gradient is

∇ f : B Ñ TB.

However, after completions, it becomes Bk Ñ TBk´1 (not to TBk!). Hence
even the gradient field does not exist on a single Bk. We need to consider all
the completions Bk. Nevertheless, one can still define the moduli space

M(p, q) = tγ : R Ñ B : γ1(t) = ´∇ f (γ(t)), γ(´8) = p, γ(+8) = qu.

Secondly, the Hessian

Hessp( f ) : (TpB)0 Ñ (TpB)0

is a self-adjoint unbounded operator and iot has unbounded spectrum in both
directions. As a result, T+

p B and T+
p B are infinite-dimensional for all critical

point p of f . In this case, there is no well-defined index for critical points!

Nevertheless, we can still define a relative index µ(p, q) P Z for critical
points p, q, satisfying

µ(p, q) + µ(q, r) = µ(p, r).

It plays the role of ind(p)´ ind(q) in Morse theory. The dimension of M(p, q)
is expected to be µ(p, q) (notice that this presumes M(p, q) is a finite-dimensional
manifold). We then define the unparametrized moduli space

xM(p, q) = M(p, q)/R.

Now the differential can be formalized as

Bp =
ÿ

µ(p,q)=1

# xM(p, q) ¨ q.

As a result of the relatively-defined index, the Floer homology group is only
relatively graded in general. If we have some preferred critical point p0 of f ,
then we can set an absolute grading by ind(p0) = 0 and ind(p) = µ(p, p0).

2.2 Analysis on moduli spaces (lecture 6)

To make everything perform well, there are analysis problems that needs
to be done in any Floer theory.

30



Fredholmness

Let H1, H2 be Hilbert spaces. Recall that a bounded linear operator

F : H1 Ñ H2

is said to be a Fredholm operator if it has closed image and finite-dimensional
kernel and cokernel. For Fredholm operator F, we can define its index by

ind(F) = dim ker F ´ dim coker F.

Example 2.3. All linear operators are Fredholm if H1 and H2 are finite-dimensional.
In this case, we always have

ind(F) = dim H1 ´ dim H2.

Example 2.4. Elliptic operators on a closed manifold are Fredholm. For ex-
ample, let X be a closed smooth manifold. Consider

d + d˚ : Ωeven(X) Ñ Ωodd(X).

It is a Fredholm operator. By Hodge theory, it has index χ(X).

Proposition 2.5. The indices of Fredholm operators are invariant under continuous
deformation.

Fredholmness allows us to mimic some classical theorems in an infinite-
dimensional setting.

Theorem 2.6 (Sard–Smale theorem). Let

F : X Ñ Y

be a map between Hilbert manifolds. Assume that X is connected, and the differential

dFx : TxX Ñ Tf (x)Y

is Fredholm for all x P X. Then F´1(y) is a smooth manifold of dimension ind(F)
for generic y P Y.

Notice that here the index of F makes sense because of the last proposition.
In our case, we view M(p, q) as a subset of Pk(p, q), the L2

k-completion of

P = tγ : R Ñ B : γ(´8) = p, γ(+8) = qu.

Then M(p, q) is the zero set of

F : Pk(p, q) Ñ TPk´1, F(γ) = (
d
dt

+∇ f )(γ).

We want to use the Sard–Smale theorem to show that M(p, q) is a manifold,
so the task is to examine the differential dFγ. We have

dFγ(τ) = d(
d
dt

+∇ f )γ(τ) = (
D
dt

+ Hess( f )γ)(τ),

where D
dt means the covariant derivative. Hence, we need:
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Requirement the operator

L =
D
dt

+ Hess( f )

is Fredholm.

Assuming this, we can make sense of the index of a flowline. Notice that
the space P may not be connected. When applying Sard–Smale theorem, we
must restrict ourself to connected components of P . As a result, there might
be issues to talk about index between critical points.

The question now is how to compute the Fredholm index. For a path
γ, let Ht = Hess( f )γ(t), which should be a self-adjoint elliptic compact op-
erator, and has a discrete spectrum of eigenvalues. Assume that p, q are
non-degenerated, we can define the spectral flow SF(Ht) as the number of
eigenvalues crossing the zero-line as t runs from ´8 to +8, counted with
sign. See Figure TBD. The following theorem states that the spectral flow of
Ht reflects the Fredholm index.

Theorem 2.7. We have

ind(
D
dt

+ Ht) = SF(Ht).

Idea of the proof. For simplicity, we assume that Ht has spectrum λk(t) with
eigenvectors uk that are constant in t. Let

u(t) =
8
ÿ

k=1

ck(t)uk.

Then

(
d
dt

+ Ht)u(t) = u1(t) +
8
ÿ

k=1

ck(t)λk(t)uk =
8
ÿ

k=1

(c1
k(t) + ck(t)λk(t))uk.

If u P ker(D
dt + Ht), then

c1
k(t) = ´ck(t)λk(t),

and
ck(t) = ake´

ş

λk(s) ds.

This is asymptotically e´tλk(˘8) as t Ñ ˘8, and thus, the dimension of the
kernel equals the number of eigenvalues that change from negative to positive
when t runs from ´8 to +8. Similarly, the dimension of the cokernel equals
the number of eigenvalues that from positive to negative.

Transversality

Recall that the moduli space M(p, q) = F´1(0), where

F : Pk(p, q) Ñ TPk´1(p, q), F =
D
dt

+∇ f .
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Assuming Fredholmness, then a generic point in TPk´1(p, q) is a regular
value. To make M(p, q) become a smooth manifold of finite dimension, ide-
ally we want 0 is a regular value. This is too much. In practice, we want to
find a large set S of perturbations tβs : B Ñ R : s P Su such that for generic
s P S, the operator

FS =
D
dt

+∇ fS, fs := f + βs

has 0 as a regular value. We can then define the Fredholm index µ(p, q)
through a perturbation s. The space Ms(p, q) = F´1

s (0) may depend on s,
but a continuation argument will show that the Floer homology group is in-
dependent to the choice of s.

Compactness and bubbling

To count the number of solutions in the moduli spaces, we need to have
some compactness result to ensure the finiteness. This is the hardest thing in
Floer theory. It really depends on which equation we are studying.

In general, for a sequence of solutions γn P M(p, q), we want to find a
subsequence converging (in C8) to a broken trajectory. The rough plan is as
follows. Starting from the energy argument

ż

R

|γ1
n|2 =

ż

xγ1
n, ´∇ f (γn)y = f (p) ´ f (q),

we obtain a uniform bound for γn in L2
1. Using the Arzela–Ascoli lemma, we

can find a subsequence converging in L2. Then we do elliptic bootstrapping
to get a subsequence converging in C8

loc.

Sometimes there is an issue: we might lost energy in the limit. As a result,
the moduli space may have bubbles. In this case, the compactified moduli
space typically looks like

ď

(
xM(p, r1) ˆ ¨ ¨ ¨ ˆ xM(rn, q) ˆ tspace of bubblesu

)
.

To ensure B2 = 0, we need to show that bubbles only happen on high codi-
mensions (at least 2).

Gluing

To compactify the moduli spaces as a manifold (with boundary or with
corner), we also need to show that near any broken trajectory (possibly with
bubbles), there are unbroken trajectories. This involves some implicit function
theorem in infinite dimensions.

Orientations

To count the number of points with signs, we need to orient µ(p, q). Recall
that in Morse homology, we orient µ(p, q) by orientations on X and T´

p X for
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all critical points p. Now T´
p X is infinite-dimensional, and

TγM(p, q) = ker
(

Lγ =
D
dt

+ Hess(γ(t)
)

,

assuming all moduli spaces cut out transversely. We can define a “virtual
bundle” over all P(p, q), thought as [ker(Lγ)]´ [coker(Lγ)], which has a well-
defined (actual!) determinant line bundle

Λp,q,γ =

top
ľ

(ker(Lγ)) b

top
ľ

(coker(Lγ)).

We want to orient this over M(p, q) such that this is compatible with gluing,
which is needed to prove B2 = 0. This translates to a pushout diagram

Λp,q b Λq,r b R Λp,r

Pp,q ˆ Pq,r ˆ [0, ϵ) Pp,r

.

Such orientations may or may not exist, depending on the topology of B.
For example, they do exist if M is contractible. In this case we just need
to trivialize all Λp,p0 Ñ Pp,p0 , where the base space is contractible. It such
orientation doesn’t exists, then we can just use Z/2Z-coefficients.
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3 Hamiltonian Floer homology

3.1 Review of symplectic geometry

The first kind of Floer theory we introduce is the Hamiltonian Floer ho-
mology. Historically, it was developed to solve the Arnold conjecture. We
start by recalling some basic symplectic geometry.

Definition 3.1. A symplectic manifold is a pair (M2n, ω), where M is a smooth
manifold of dimension 2n, and ω is a non-degenerated closed 2-form. Recall
that non-degeneracy means that ωn gives a volume form.

Examples 3.2. We give some examples of symplectic manifolds.

• The simplest example is

(R2n, ωcan = dx1 ^ dy1 + ¨ ¨ ¨ + dxn ^ dyn).

In fact, Darboux theorem claims that every symplectic manifold locally
looks like this.

• A surface Σ together with an area form on it gives a symplectic manifold.

• The complex projective space CPn together with the Fubini–Study form
ωFS forms a symplectic manifold.

• Any smooth projective algebraic variety V Ă CPn is a symplectic mani-
fold (equipped with the restriction of ωFS).

• For any smooth manifold M, the cotangent bundle T˚M together with
the canonical form ωcan gives a symplectic manifold. This generalizes
the case of R2n.

Definition 3.3. A symplectic manifold (M, ω) is said to be exact if ω is exact,
i.e. ω = dλ for some λ P Ω1(M).

For example, T˚M is an exact symplectic manifold for any M. On the
other hand, closed symplectic manifolds can never be exact.

We can now consider the time-dependent Hamiltonians, which are simply
smooth functions Ht : M Ñ R. We assume that they are 1-periodic, i.e. Ht =
Ht+1 for all t, and hence, induce

H : M ˆ S1 Ñ R, H(x, t) = Ht(x).

From this, we can define the Hamiltonian vector field Xt by the condition that

ω(Xt, ´) = dHt(´) P Ω1(M),

and the Hamiltonian flow ϕt by

d
dt

ϕt(x) = Xt(ϕt(x)).
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Example 3.4. Consider (R2n, ωcan). Then the Hamiltonian flow equation be-
comes

ẋi =
BH
Byi

, ẏi = ´
BH
Bxi

,

which indicates the motion of particles.

Definition 3.5. The Hamiltonian transformation is defined as the time-1 map
Φ = ϕ1.

Exercise 3.6. Verify that Φ is a symplectomorphism, i.e. Φ˚ω = ω.

We are interested in the closed orbits of the Hamiltonian flow, or equiva-
lently, fixed points of Φ. We say a closed orbit of Xt is non-degenerated if

det(I ´ dΦ(x(0))) ­= 0.

Example 3.7. To justify the meaning of this, let us consider the constant Hamil-
tonian Ht ” H0. Then the non-degeneracy of closed orbits is same as the
non-degeneracy of critical points of H0. In this case, we have

#tclosed orbits of Xtu ě # Cr(H0) ě

2n
ÿ

i=0

bi(M)

by Morse inequality.

This example also motivates the following famous conjecture.

Conjecture 3.8 (Arnold conjecture (weak form)). Let (M2n, ω) be a closed sym-
plectic manifold, and let Ht be a periodic Hamiltonian on it. Then

#tclosed orbitsu ě

2n
ÿ

i=0

bi(M).

Many mathematicians made great contributions to this conjecture! It was
first proved by Conley–Zehnder [?conley1983birkhoff] for T2n. Floer [?floer1988morse]
invented Hamiltonian Floer homology and established the Arnold conjecture
for monotone symplectic manifolds, which was generalized by Hofer–Salamon
[?hofer1995floer] and Ono [?ono1995arnold]. For general case, Fukaya–
Ono [?fukaya1999arnold], Liu–Tian [?liu1998floer], and Ruan [?ruan1999virtual]
showed this conjecture (in this form). More recent progresses include works of
Pardon [?pardon2016algebraic], Abouzaid–Blumberg [?abouzaid2021arnold],
and Bai–Xu [?bai2022arnold].

To establish the Hamiltonian Floer homology, we need to be able to do
“complex analysis” on symplectic manifolds, which needs the concept of al-
most complex structure.

Definition 3.9. An almost complex structure J on a manifold M is a smooth
section T P Γ(End(TM)) such that J2 = ´ Id. A symplectic form ω on M is
said to be compatible with J if

gJ(v, w) := ω(v, Jw)

defines a Riemannian metric on M.
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Roughly speaking, the action of an almost complex structure J can be
thought as “multiplication by i” on M.

Example 3.10. Consider (R2n, ωcan). Then J(xi) = yi, J(yi) = ´xi gives a com-
patible almost complex structure. The corresponding metric is the standard
metric on R2n.

Theorem 3.11. Let (M, ω) be a symplectic manifold. Then the space of compatible
almost complex structures is non-empty and contractible.

A choice of the almost complex structure J gives a structure of complex
vector bundle on the tangent bundle TM. We can then talk about the first
Chern class c1 of TM, which is the Poincaré dual of the zero set of a generic
section of the determinant line bundle Λtop

C
(TM). It is independent of the

choice of J (but still depends on ω), and hence we denote it by c1(M, ω), or c1
for short. Let g = gJ be the corresponding compatible metric.

3.2 Hamiltonian Floer homology: the simplest case (lecture 7)

We are now ready to define the Hamiltonian Floer homology.

Settings and assumptions

The configuration space is given by

B := tx P C8(S1, M) : x is null-homotopic, u

with the tangent space

TxB = tξ : S1 Ñ TM : ξ(t) P Tx(t)Mu.

It naturally equips an L2 inner product induced from g:

xξ, νy =

ż 1

0
(ξ(t), ν(t)) dt.

From which we can perform Sobolev completions on B to obtain Bk, which
have their own inner products, but we only care about the norm.

The functional F : B Ñ R is given by

F(x) = ´

ż

D2
u˚ω +

ż 1

0
Ht(x(t)) dt, (3.12)

where u : D2 Ñ M is a smooth extension of x (recall that x is null-homotopic).

The immediately coming question is that does this depend on the choice
of u? Let us choose two extension disks u, v : D2 Ñ M. Then we have

ż

D2
(u˚ω ´ v˚ω) =

ż

S2
(u#(´v))˚ω = ([ω], f˚[S2]),
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where f = u#(´v) is the concatenation, living in π2(M). Hence the functional
can differ by ω(π2(M)). To make it well-defined, the simplest way is to ask
π2(M) = 0, which includes all the surface Σg (g ą 0) and their products. In
fact, it is enough to require that (M, ω) is symplectic aspherical, i.e. ω

ˇ

ˇ

π2(M)
= 0.

To explore the idea of Hamiltonian Floer homology, let us make the fol-
lowing assumption in this subsection:

Assumption (the simplest case) We assume that (M, ω) is symplectic as-
pherical and in further c1

ˇ

ˇ

π2(M)
= 0.

We will see why we need the second condition later.

Floer’s equation

To find the critical points of F, we calculate the gradient:

(dF)x(ξ) =

ż 1

0
ω(ẋ(t), ξt) dt ´

ż 1

0
(dHt)x(t)(ξt) dt

=

ż 1

0
ω(ẋ(t) ´ Xt(x(t)), ξt) dt

=

ż 1

0
(J(ẋ(t) ´ Xt(x(t))), ξt) dt.

It is zero for all ξ at a critical point x, and we have ẋ(t) = Xt(x(t)). Therefore:

Proposition 3.13. The critical points of F are exactly the periodic orbits of Xt.

We now look at the gradient flow lines. They are maps from R to B Ă

C8(S1, M), or equivalently, map u : R ˆ S1 Ñ M, satisfying the gradient equa-
tion

Bu
Bs

= ´(∇L2 F)(u(s)).

From this, we obtain Floer’s equation:

Bu
Bs

+ J(u)
Bu
Bt

= J(u)Xt(u). (3.14)

Here s and t are coordinates on R and S1, respectively.
Remark 3.15. Floer’s equation can be viewed as a perturbed Cauchy–Riemann
equation. To see this, we introduce the partial bar operator B̄J =

B
Bs + J B

Bt , and
Floer’s equation can be written as

B̄Ju = J(u)Xt(u).

If we set the right hand side to be zero, then it is precisely the Cauchy-
Riemann equation, and its solutions are called J-holomorphic cylinders.

From our general discussion of Floer homologies, we need to study the
Fredholmness, compactness, transversality, and orientation. Let us do these
in order.
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Fredholmness

We first discuss the Fredholmness, which will give us grading on the Floer
chain complex.

Theorem 3.16. Let x, y be two critical points of F, and γ be a path connecting x and
y. Then the operator

D
dt

+ Hessγ(t)

is Fredholm of index µ(x, y) = µCZ(x)´ µCZ(y). Here µCZ is the Conley–Zehnder
index.

So actually we have an absolute grading on critical points, but what is the
Conley–Zehnder index? Roughly speaking, it counts the rotation number of a
symplectic path. In general, for a non-degeneracy contractible orbit

x : S1 Ñ M, x(t) = ϕt(x(0)),

we can trivialize the symplectic bundle (x˚TM, ω) through an extending disk
u : D2 Ñ M. The differential of the flow

dϕt(x(0)) : Tx(0)M Ñ Tx(t)M

gives a linear symplectomorphism ψt : R2n Ñ R2n. In other words, we obtain
a symplectic path ψt P Sp(2n). The non-degeneracy of x means that

det(I ´ ψ1) ­= 0.

We first define the Conley–Zehnder index for such symplectic paths. No-
tice that the set

tA P Sp(2n) : det(I ´ A) = 0u

divides Sp(2n) into two simply connected components. We can concatenate ψ
with a path ψ1 : [1, 2] Ñ Sp(2n), from ψ1 to either B+ = ´I or

B´ = diag(2, ´1, . . . , ´1,
1
2

, ´1, . . . , ´1),

to obtain a path rψ : [0, 2] Ñ Sp(2n). Let ρ be that composition of the following
maps

Sp(2n) r
Ñ U(n) det

Ñ S1.

Then the Conley–Zehnder index of ϕt is defined as

µCZ(ϕt) = deg(´ρ2 ˝ rψ).

We then define the Conley–Zehnder index of x as µCZ(x, u) := µCZ(ϕt). It
doesn’t depend on the choice of the extending disk u under our assumption
that c1

ˇ

ˇ

π2(M)
= 0, thanks to the following proposition.

Proposition 3.17. Let A P π2(M). Then

µCZ(x, u#A) ´ µCZ(x, u) = 2c1([A]).
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Compactness

To discuss the compactness, we need the concept of energy.

Definition 3.18. Let u : R ˆ S1 Ñ M be a J-holomorphic cylinder. The energy
of u is defined as

E(u) =
ż

R

›

›

›

›

Bu
Bs

›

›

›

›

2

L2(S1)
ds.

Here s is the coordinate on the R factor.

Simple calculation gives

E(u) =
ż

RˆS1
x

Bu
Bs

, ´J
Bu
Bt

+ J(u)Xt(u)y

=

ż

RˆS1

(
ω(

Bu
Bs

,
Bu
Bt

) ´ ω(
Bu
Bs

, Xt(u))
)

=

ż

RˆS1
u˚ω ´

ż

RˆS1
dHt(

Bu
Bs

).

Hence:

Proposition 3.19. Let x˘ be two critical points of F. Assume that u Ñ x˘ as
s Ñ ˘8. Then

E(u) = F(x´) ´ F(x+).

We can now give the statement of the compactness theorem, which is due
to Gromov [?gromov1985pseudo].

Theorem 3.20 (Gromov compactness theorem). Any sequence of solutions of
Floer’s equation 3.14 from x to y with bounded energy has a convergent subsequence,
which converges to a union of broken trajectories and sphere bubbles.

[TBD] Sphere bubbles

Example 3.21. We give an example of the bubbling phenomenon. Consider a
sequence of holomorphic maps un : CP1 Ñ CP2, given by

[x : y] ÞÑ [xy : y2 :
1
n

x2].

Then (un)˚[CP1] = 2 P H2(CP2). Away from y = 0, un can be written as

[x : y] ÞÑ [
x
y

: 1 :
1
n
(

x
y
)2],

and it tends to a CP1 Ă CP2, given by [a : 1 : 0]. By reparametrizing away
from x = 0, it tends to another sphere given by [b : 0 : 1]. Hence the limit of
un is a union of two spheres.

Bubbles may affect the proof on B2 = 0. However, in our case, there is no
sphere bubble! This can be seen by considering the energy: if such a bubble u
exists, then

E(u) =
ż

S2

›

›

›

›

Bu
Bz

›

›

›

›

2
=

ż

S2
u˚ω = 0.
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Transversality, gluing, and orientations

We don’t discuss too much about transversality, but it can be ensured by
perturbing J to be time dependent. Alternatively, one can also perturb the
Hamiltonian.

For the orientation on the moduli space M(x, y), which is the preimage of
0 under the map B̄J ´ JXt, we consider the linearization

TM(x, y) = ker(D(B̄J ´ JXt)).

Here D(B̄J ´ JXt) is a Fredholm operator of index µCZ(x) ´ µCZ(y), and we
consider the determinant of the index bundle

det(index bundle) =
top
ľ

(ker) b

( top
ľ

(coker)

)˚

.

One can deform D(B̄J ´ JXt) into a simply B̄J , which gives canonical orienta-
tions on the kernel and cokernel.

Hamiltonian Floer homology

Finally we can define the Hamiltonian Floer homology! At the chain level,
the Hamiltonian Floer chain complex CF̊ (M, ω, Ht, Jt) is generated by critical
points of F with coefficient Z, and the differential is given by

Bx =
ÿ

µ(x,y)=1

# xM(x, y) ¨ y.

The homology of it, denoted by HF̊ (M, ω, Ht, Jt) temporally, is called the
Hamiltonian Floer homology of (M, ω).

Theorem 3.22 (Floer). The graded group HF̊ (M, ω, Ht, Jt) is independent of the
choice of Ht and Jt. In fact, it is isomorphic to the ordinary homology H˚(M).

Sketch of the proof. The independence is proved by considering the continua-
tion maps, as in the finite-dimensional case. After that, we can pick a Morse–
Smale function f : M Ñ R and choose the Hamiltonian Ht = ϵ f . When ϵ ą 0
is small enough, one can imagine that the flow is too slow to have periodic
orbits other than the critical points of f . One can also show that solutions
to Floer’s equations are one-to-one corresponding to negative gradient flow-
lines of f . Hence the Hamiltonian Floer homology, calculated using ϵ f , is
isomorphic to the Morse homology of M.

Recall Proposition 3.13 states that critical points of F are exactly the peri-
odic orbits of the Hamiltonian flow. Now the Arnold conjecture (in its weak
homological form) is an immediate corollary of Theorem 3.22.

Corollary 3.23. The number of periodic orbits of (M, ω, Ht) is as least as the sum of
Betti numbers of M.
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3.3 The monotone case (lecture 8)

We now turn to the discussion of a slightly more general case that (M, ω)
is monotone.

Definition 3.24. A symplectic manifold (M, ω) is said to be monotone if there
exists a positive constant τ such that c1(A) = τ ¨ ω(A) for all A P π2(M).

Remark 3.25. The requirement that τ is positive is essential. We will see this
later.

Examples 3.26. The sphere S2 together with an area form dA, and more gen-
erally, all the complex projective spaces with the Fubini–Study form ωFS, are
monotone. Much more generally, all complex Grassmannians, and even all
Fano varieties are examples of monotone symplectic manifolds.

But how does it help? Recall that in the simplest case, we exploit the
conditions to give the well-defined R-valued functional F and the absolute Z-
grading µCZ. We will see that the monotonicity helps us to give a well-defined
F and µCZ in an acceptable manner.

Definition 3.27. The minimal Chern number of (M, ω) is an integer N ą 0 such
that NZ = im(c1(π2(M))) Ă Z.

From the monotonicity, we have

im([ω](π2(M))) =
1
τ

NZ.

By rescaling ω, we can assume [ω](π2(M)) Ă Z. Recall that when defining
the function F by 3.12, different choices of the extending disk differ the value
of F by [ω]

ˇ

ˇ

π2(M)
. Hence we have a well-defined functional F : B Ñ R/Z. We

can lift it to an R-valued functional, but it is not necessary.

For the Conley–Zehnder index, the situation is similar. Recall from Propo-
sition 3.17 that for A P π2(M), we have

µCZ(x, u#A) ´ µCZ(x, u) = 2c1([A]) P 2NZ.

Hence we have a well-defined Z/2NZ grading on CF̊ .

For a sequence of solutions un : R ˆ S1 Ñ M with the same index, their
homotopy classes may differ by A P π2(M) such that c1(A) = 0, which implies
[ω](A) = 0, and the energy is bounded. Hence Gromov compactness applies
in this case.

Even though, bubbles may exist, which may threaten B2 = 0. To explore
this, we consider moduli spaces of index 2. Assume that a bubble class A
appears in the limit of a sequence of index 2 J-holomorphic cylinders. Then
we have

2 = µCZ(γ#A) = µCZ(γ) + 2c1(A) ě 2c1(A),

and hence 1 ě c1(A) P NZ. The monotonicity implies c1(A) = τ[ω](A) ą 0
(notice that here we use the condition that τ ą 0 in an essential way!). If
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N ą 1, we are already done. The only remaining case is that N = 1 and
c1(A) = 1, and µCZ(γ) = 0, i.e. γ is a constant path.

So what happens next? We have the following index formula (thought as
a variant of Riemann–Roch theorem).

Theorem 3.28. The expected dimension of the moduli space of parametrized J-holomorphic
spheres in class A is 2n + 2c1(A), where dim M = 2n.

By “parametrized”, we mean different maps may represent the same sphere.
They differ by a biholomorphic map ϕ : S2 Ñ S2, i.e. an action of PSL(2, C).
Hence the expected dimension of unparametrized spheres is 2n + 2c1(A) ´ 6.

In our case, c1(A) = 1, so the expected dimension is 2n ´ 4. The union
of all such spheres then has expected dimension 2n ´ 2, i.e. codimension 2.
The periodic orbits have dimension 1, so they don’t intersect generically! In
summary:

Proposition 3.29. We can choose the almost complex structure Jt such that no sphere
bubble exists.

We can then define the Hamiltonian Floer homology as in the easiest case!
The only difference is that we can only get a (Z/2NZ)-graded theory now.
Theorem 3.22 still holds in this case:

Theorem 3.30. HF̊ (M, ω) » H˚(M) as (Z/2NZ)-graded abelian groups.

3.4 The general case

We conclude this section by discussing the most general case that (M, ω)
is an arbitrary closed symplectic manifold. We will see that things become
much more complicated in the general setting.

Compactness and the Novikov ring

The first issue is that bounded index doesn’t imply bounded energy, which
is needed to apply Gromov compactness. This can be resolved by considering
the Novikov ring.

Definition 3.31. The Novikov ring and Novikov field are respectively defined as

Λ0 = t

+8
ÿ

i=1

aiTλi : ai P Q, λi P R λi ě 0, λi Ñ +8u

and

Λ = t

+8
ÿ

i=1

aiTλi : ai P Q, λi P R, λi Ñ +8u.

We can think of Λ0 and Λ as replacements of Z and Q. In the definition in
the general case, we use Λ0 as the coefficient ring, and the differential is given
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by
Bx =

ÿ

yPCr(F)

ÿ

γPπ0(P(x,y)), µCZ(γ)=1

# xM(x, y)TE(γ) ¨ y.

Here
P(x, y) = tγ : R Ñ B : γ(´8) = x, γ(+8) = yu.

The energy E(γ) = F(x, u) ´ F(y, γ#u), where u is an extending disk for x.
One can similar define the index of γ and show that they are independent of
the choice of u.

The usage of the Novikov ring allows us to define a finite differential,
and to “separate” different levels of energy, and then we can apply Gromov
compactness at each level. However, sphere bubbles may exist, and in fact,
transversality is a severe issue.

Transversality issue

We try to construct the moduli space of bubbles and find its expected
dimension. Suppose that γ is a trajectory and u is a J-holomorphic sphere
such that µ(γ) = 2k + 1 ą 1, and c1(u) = ´k. Then we have

µ(γ#u) = µ(γ) + 2c1(u) = 1,

and hence, xM(µ#u) has expected dimension 0. This means that there are
solutions given by the union of a cylinder and a sphere bubble generically. If
we precompose it with the degree two map ψ : CP1 Ñ CP1, ψ(z) = z2, then
c1(u ˝ ψ) = ´2k, and

µ(γ#(u ˝ ψ)) = 1 ´ 2k ă 0,

i.e. the expected dimension is negative, but solution exists generically! Hence
the transversality is impossible in general!

People invented many new tools to deal with this phenomenon, such
as “multivalued perturbations” and “Kuranishi chart”. We treat xM(γ) as
branched manifolds. In this setting, a multi-ply cover bubble v, as described
in the last paragraph, should be counted with a weight 1/# Aut(v), where

Aut(v) = tψ P PSL(2, C) : v ˝ ψ = vu.

The weight is a rational number, and that is why we have to use Q-coefficient
in this case. Using this construction, we can make sense of HF̊ (M, ω) as a
module over Λ0 and resolve the Arnold conjecture over Q.

Rational coefficient kills all torsions and gives a somewhat weak lower
bound. More recently, people can also deal with the torsion part using deep
machineries: Abouzaid and Blumberg [?abouzaid2021arnold] established the
Fp-coefficient case using Morava K-theory, and Bai and Xu [?bai2022arnold]
managed to resolve the integral case.
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4 Lagrangian Floer homology

4.1 Basic settings (lecture 9)

We now turn to the discussion of Lagrangian Floer homology, which can
be thought as a relative version of Hamiltonian Floer homology.

Through out the section, assume that (M2n, ω) is a symplectic manifold
(not necessarily closed).

Definition 4.1. A Lagrangian in M is a n-dimensional submanifold L Ă M
such that ω

ˇ

ˇ

L = 0.

One can show that the isotropic subspace of a symplectic form has dimen-
sion at most n. That Lagrangians are the isotropic submanifolds of maximal
dimension.

Examples 4.2. We give some examples of Lagrangians:

• Rn ˆ t0u Ă T˚Rn. The physical meaning is the “position space” lying in
the “phase space”.

• More generally, the zero section of a tangent bundle: Q Ă T˚Q;

• curves on surfaces.

Roughly speaking, Lagrangian Floer homology concerns the number of in-
tersection points of Lagrangians. It corresponds to another Arnold conjecture
(“Arnold conjecture for Lagrangian intersections”).

Let L0, L1 be two Lagrangians in (M, ω). Assume that L0 and L1 are com-
pact, and intersect transversely. So they intersect at finitely many points. We
are going to construct a homology theory HF̊ (L0, L1).

The configuration space is the path space between L0 and L1:

B = tx : [0, 1] Ñ M : x(0) P L0, x(1) P L1u.

It may have many components, and we choose a basepoint x0 (i.e. a path from
L0 to L1) in each component. On B there is a functional F : B Ñ R, defined by

F(x) = ´

ż

D2
u˚ω.

Here u is a path from x0 to x in B, i.e. a homotopy u : I ˆ I Ñ M, as showed
in Figure TBD. The value of this integral may depend on the choice of u, and
a general solution is to consider a cover

rB = t(x, α) : x P B, α is a homotopy class from x0 to x in Bu.

Then F : rB Ñ R is well-defined. In fact, assume that u0, u1 are homotopic
paths from x0 to x in B. Then we have a map C : I ˆ I ˆ I Ñ M, such that
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C(t, 0, r) = x0(t), C(t, 1, r) = x(t) for all r, C(t, s, i) = ui(t, s) for i = 0, 1. See
Figure TBD. Notice that C(i, s, r) P Li for i = 0, 1, and Stokes theorem gives

0 =

ż

I3
C˚(dω)

=

ż

IˆIˆt1uY(´IˆIˆt0u)Yt1uˆIˆIY(´t0uˆIˆI)
C˚ω

=

ż

D2
u˚

1 ω ´

ż

D2
u˚

0 ω.

After choosing a compatible almost complex structure J, we can form the
gradient of f . This is similar and even easier than the Hamiltonian case: the
gradient is given by

∇F(x) = J(x)
Bx
Bt

.

Hence:

Proposition 4.3. A path x is a critical point of F if and only if x is a constant path
i.e. x P L0 X L1.

We can also derive the equation of flowlines. A flowline from x to y is
a map u : R ˆ [0, 1] Ñ M, with u(s, i) P Li for i = 0, 1, u(´8, t) = x, and
u(+8, t) = y, which satisfies the J-holomorphic strip condition:

Bu
Bs

+ J(u)
Bu
Bt

= 0. (4.4)

Ideally, we can form the chain complex by CF̊ (L0, L1) = ZxL0 X L1y and

Bx =
ÿ

µ(x,y)=1

# xM(x, y) ¨ y.

We then show that B2 = 0 and obtain the Lagrangian Floer homology group
HF̊ (L0, L1). However, as usual, we still have many works to be done: com-
pactness, Fredholmness, grading, transversality, bubbling, etc. We need to
add conditions on (M, ω, L0, L1) to make life simpler.

4.2 The exact case (Lecture 10)

In the simplest case, we make the following assumptions.

Definition 4.5. A symplectic manifold (M, ω) is said to be exact if ω is exact
i.e. ω = dλ for some λ P Ω1(M). In this case, we say a Lagrangian L Ă M is
exact if [λ

ˇ

ˇ

L] = 0 P H1(L).

Definition 4.6. A symplectic manifold (M, ω) is said to be convex at infinity if
for every compact set K Ă M, there exists a compact neighbourhood K1 Ą K
such that all J-holomorphic curves in M with boundary on K live in K1.
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Assumptions In this subsection, we assume that

• (M, ω) is exact and convex at infinity;

• L0, L1 are exact in M.

Before exploring how do these assumptions help, let us first get some
intuition of these conditions by looking at examples.

Example 4.7. Stein manifolds are analog of affine algebraic varieties. A Stein
manifold is a complex manifold (M, J) together with a plurisubharmonic func-
tion h : M Ñ R such that h´1((´8, a]) is compact for all a. Here “plurisubhar-
monic” means that the complex Jacobian (B2h/BziB̄zj) is positive semidefinite.
The standard example is Cn together with

h =
n

ÿ

k=1

|zk|2.

It can be showed that all Stein manifolds are convex at infinity. Roughly
speaking, it argues that any J-holomorphic cannot be tangent to level sets of
h in its interior by a version of maximal principle.

Example 4.8. Any level set h´1((´8, a) of a Stein manifold (M, J, h) is convex
at infinity. This is an example of Liouville domains. That is a compact manifold
(V, ω) with boundary such that there is a primitive λ (i.e. dλ = ω), such that
the vector field X defined by ιXω = λ is transverse with the boundary BV.
The standard example is the ball in R2n: V = B2n(r). In this case, we have

λ =
1
2

n
ÿ

k=1

(xkdyk ´ ykdxk),

and X = 1
2 rBr. One can show that the interior of a Liouville domain is convex

at infinity.

Example 4.9. Another example for convexity at infinity is the cotangent bun-
dle T˚Q. The idea is that the function h(q, p) = |p|2 prevents J-holomorphic
curves from escaping.

Examples 4.10. We also give some (non-)example of exact Lagrangians.

• The zero section of cotangent bundle T˚Q is exact.

• Consider a section L : S1 ãÑ T˚S1. It is exact if and only if the (signed)
area bounded by L and the zero section is zero.

• More generally, a section σ : Q Ñ T˚Q is exact if and only if it is exact
as a 1-form.

• A non-example is given by any circle S1 Ă R2.
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So why do we care about exactness? First, it gives a well-defined functional
F : B Ñ R. In fact, assume that u and v are paths in B from x0 to x. Let
α : S1 ˆ [0, 1] be the concatenation u#v. Then the exactness of M and Li gives

ż

IˆI
u˚ω ´

ż

IˆI
v˚ω =

ż

S1ˆI
α˚ω =

ż

S1ˆI
d(α˚λ)

=

ż

S1ˆt1uY(´S1ˆt0u)
α˚λ = 0.

Compactness

To discuss the compactness, we need to introduce Gromov compactness in
the strip case.

Theorem 4.11 (Gromov compactness for strips). A sequence of J-holomorphic
strips with bounded energy has a subsequence converging to a broken strip, possibly
with trees of sphere and disk bubbles. See Figure TBD.

Example 4.12. Example as in Heegaard Floer homology. TBD

Another distinguished advantage of exactness is that there is no bubble at
all! To see this, consider a sphere bubble u : S2 Ñ M. Then by the exactness
of M, we have

E(u) =
ż

S2
u˚ω = 0.

Similarly, exactness of Li implies there is also no disk bubble. Great!

Fredholmness and relative grading

We now turn to the problem of grading. Let x, y P L0 X L1, and Px,y be the
path space

tγ : R Ñ B : γ(´8) = x, γ(+8) = yu.

Then the moduli space decomposes as

xM(x, y) =
ž

ϕPπ0(Px,y)

xM(ϕ).

For ϕ P π0(Px,y), pick a representative γ P ϕ, and we have

µ(ϕ) = ind(DγB̄J).

Here DγB̄J is an elliptic operator since it can be written as B̄+(zero order
terms), and µ(ϕ) is the Maslov index defined similarly to µCZ, as follows.

We trivialize the symplectic bundle γ˚(TM, ω) and its Lagrangian subbun-
dle γ˚TL0 simultaneously as (R2n, ωcan) and Rn ˆ t0u. We cannot trivialize
γ˚TL1 at the same time, but it gives a path in the Lagrangian Grassmannian
L(n), which collects Lagrangian subspaces of R2n and has homotopy type
U(n)/ O(n). We then define µ(ϕ) = µ(γ) as an element in π1(L(n)) – Z.
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Example 4.13. TBD

Maslov index shares similar properties as the Conley–Zehnder index:

Proposition 4.14. Let ϕ1, ϕ2, ϕ be strips, D be a disk bubble, and A be a sphere
bubble. Then we have

µ(ϕ1#ϕ2) = µ(ϕ1) + µ(ϕ2), µ(ϕ#D) = µ(ϕ) + µ(D), µ(ϕ#A) = µ(ϕ) + 2c1(A).

In summary, we have a map µ : π0(Px,y) Ñ Z. The image of µ has the form
k + NZ, and hence we can define a Z/NZ grading on L0 X L1 by

µ(x, y) = µ(ϕ) (mod N),

given that Px,y is nonempty.

Remark 4.15. This seems not so satisfactory, but at least there is something:
µ(D) is even if Li are orientable, and N is an even number. So at least we
obtain a Z/2Z grading.

Absolute grading

Sometimes we can get an absolute Z grading, due to Seidel [?seidel2000graded].
The idea is to encode the uncertainty on gradings into the Lagrangian Grass-
mannian itself.

More specifically, we can consider the universal cyclic cover ĆL(n) of L(n),
called the graded Lagrangian Grassmannian. The tangent bundle TM Ñ M
induces a bundle of Lagrangian Grassmannians L(TM) Ñ M in an obvious
way. If 2c1(M, ω) = 0 P H2(M; Z), then L(TM) has an infinite cyclic cover
rL(TM) with fibers ĆL(n).

A Lagrangian L Ă M induces a section of L(TM)
ˇ

ˇ

L. Seidel showed that
there is an obstruction class µL P H1(L), called the Maslov class, such that TL
lifts to a section θ P Γ(rL(TM)

ˇ

ˇ

L) if and only if µL vanishes. In this case, the
pair rL = (L, θ) is called a graded Lagrangian submanifold.

Given two graded Lagrangian submanifold rL0, rL1 and x P L0 X L1, there is
a preferred path from TxL0 in TxL1 given by the graded structure. Concate-
nating this with a canonical shortest path gives a loop in L(Tx M), and hence
an absolute grading µ(x) P Z.

Remark 4.16. There are also weaker conditions to ensure the existence of an
absolute Z/NZ grading.

Transversality

We again don’t talk too much about transversality. The idea is still to
make J time-dependent. Since there is no bubbling issue in the exact case,
we immediately obtain the moduli space xM(ϕ) of dimension µ(ϕ) for ϕ P

π0(Px,y).
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Orientation

The moduli spaces may not be oriented even though we assumed the ex-
actness. Hence, we can only get a Z/2Z coefficient theory in general.

Sometimes we can do better. Recall that Pin(n) is the double cover of the
orthogonal group O(n).

Definition 4.17. A Pin(n)-structure on a manifold L is a lift of its frame O(n)-
bundle Fr(L) to a Pin(n)-bundle.

Proposition 4.18. Pin(n)-structure exists if and only if the second Stiefel–Whitney
class w2 vanishes. If it exists, then there is a non-canonical 1-1 correspondence be-
tween Pin(n) structures and H1(L; Z/2Z).

Remark 4.19. Pin-structure is a non-oriented analogue of Spin-structure which
might be more familiar to readers.

Theorem 4.20. Pin-structures on L0 and L1 give orientations on xM(x, y) for all
x, y P L0 X L1.

Remark 4.21. In fact, we just need relative Pin-structure, corresponding to the
condition

w2(TL) P im(H2(M; Z/2Z) Ñ H2(L; Z/2Z)).

In the best case, we consider Lagrangian frame L7 = (L, θ, P), where θ is a
grading on L, and P is a Pin-structure on L. For two Lagrangian frames L7

0, L7
1,

we can define a homology theory HF̊ (L7
0, L7

1), which is absolutely Z-graded
with coefficient in Z. In general, we can only expect a relatively Z/NZ-
graded theory with coefficient in Z/2Z.

Lagrangian Floer homology and an application

We finally establish our Lagrangian Floer homology HF̊ (L0, L1). Using
continuation maps, one can show that:

Theorem 4.22. The Lagrangian Floer homology HF̊ (L0, L1) is invariant under
exact perturbations, i.e. perturbation through a smooth family of exact Lagrangians.

In spirit of Theorem 4.22, if L0 and L1 don’t intersect transversely, we can
still define HF̊ (L0, L1) by exact perturbations. This is particularly important
when L0 = L1:

Theorem 4.23. We have
HF̊ (L, L) – H˚(L).

Here both sides are considered as Z/NZ-graded groups with coefficients in Z/2Z

or Z if Pin-structures exist.

Sketch of the proof. By a Darboux-type theorem for Lagrangian neighbourhoods,
we have isomorphism

HF̊ (L, L; M) – HF̊ (L, L; T˚L).
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Pick a Morse–Smale function f : L Ñ R and consider the exact deformation
Lt, given by Lt = Γ(td f ). Then

L0 X Lt = td f = 0u = Cr( f ).

When t is small, J-holomorphic strips correspond to negative gradient flow-
lines, and hence HF̊ (L, L) is isomorphic to the Morse homology of L.

Remark 4.24. Hamiltonian Floer homology can be viewed as a special case of
Lagrangian Floer homology. Given a Hamiltonian transformation ψ, we can
consider the graph

Γ(ψ) Ă (M ˆ M, π˚
1 ω ´ π˚

2 ω),

which is a Lagrangian submanifold of the product. Notice that the graph of
the identity is the diagonal ∆, and the intersection ∆ X Γ(ψ) gives the fixed
point set of ψ. One can also show that J-holomorphic strips between ∆ and
Γ(ψ) are the same as J-holomorphic cylinders in M ˆ M. Hence the Hamil-
tonian Floer homology HF̊ (M, ω, ψ) is isomorphic to the Lagrangian Floer
homology HF̊ (∆, Γ(ψ)) (as long as the latter makes sense).

One can consider an intermediate case: Floer homology for symplectomor-
phisms. That is, for symplectomorphism ϕ : M Ñ M, we can produce the
Lagrangian Floer homology HF̊ (∆, Γ(ϕ)). It is not isomorphic to H˚(M) in
general, and can be used to show that some symplectomorphisms are not
Hamiltonian isotopic to the identity.

As an application, we can prove the following theorem.

Theorem 4.25 (Gromov). There is no compact exact Lagrangian L in (R2n, ωcan).

Proof. Otherwise consider the exact perturbation Lt = L + t, t P [0, T]. When
T is large, L X LT = H. Hence

HF̊ (L, L) = HF̊ (L, LT) = 0

since there is no generator for Lagrangian Floer chain complex. This implies
H˚(L) = 0 by Theorem 4.23, which is impossible as L is compact.

Remark 4.26. Gromov’s original proof doesn’t use this Floer-theoretic formal-
ism, but it is still based on analysis of J-holomorphic curves.

Remark 4.27. Any one of the two conditions in Theorem 4.25 cannot be re-
moved: S1 Ă C is compact but not exact; R Ă C is exact but non-compact.

4.3 General cases (lecture 11)

We now breifly discuss some more general case.
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Case II: M is compact with [ω]
ˇ

ˇ

π2(M,Li)
= 0

Similar to the exact setting, we still have no bubbles in this case. Hence
after dealing with transversality, B2 = 0 is guaranteed, and we can form the
Lagrangian Floer homology HF̊ (L0, L1).

Recall that we have exact perturbation invariance in the exact case. We
want to explore a similar result in this setting. Assume that Li (i = 0, 1, 2) are
Lagrangians, and Lt

ˇ

ˇ

tP[1,2] is a Lagrangian isotopy such that “the area swept
out by the isotopy is 0 for all t P [1, 2]”. More precisely, let

L1 ˆ [1, 2] Ñ M

be the Lagrangian isotopy, which produces a time-dependent vector field Xt
for t P [1, 2]. We require that

ż

S1
ιXt ω = 0

for any S1 Ñ Lt to control the energy of the isotopy. In this case, we can use
the continuation map to show that

HF̊ (L0, L1) – HF̊ (L0, L2).

This happens e.g. if
ιXt ω = dHt

for some Hamiltonian Ht, i.e. Lt = ϕt(L1), where ϕt is the corresponding
Hamiltonian flow. In conclusion, we have:

Theorem 4.28. Let L0, L1 be Lagrangians and ϕ be a Hamiltonian transformation.
Then

HF̊ (L0, L1) – HF̊ (L0, ϕ(L1)).

Example 4.29. Torus with two Lagrangians. TBD

Question from the class How to classify Hamiltonian isotopies on a surface?

A: Basically by area conditions. So there is nothing interesting in the sur-
face case.

We can similarly define HF̊ (L, L) by Hamiltonian perturbations in this
case, and Theorem 4.23 also holds. Roughly speaking, Lagrangian Floer ho-
mology categorifies the number of intersection points of Lagrangians. As a
corollary of this isomorphism, we have the Arnold–Givental conjecture.

Theorem 4.30 (Arnold–Givental conjecture, Floer). Let L be a Lagrangian in
(M, ω), and ψ : M Ñ M be a Hamiltonian transformation. Assume that M is
compact, [ω]

ˇ

ˇ

π2(M,L) = 0, and that L is transverse to ψ(L). Then

#(L X ψ(L)) ě

n
ÿ

k=0

dim Hk(L; Z/2Z) ě

n
ÿ

k=0

bk(L).
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Case III: (M, Li) is monotone

Recall that monotonicity helps us to control the energy for fixed index
in Hamiltonian Floer homology. In Lagrangian Floer homology, we can do
similar things.

Definition 4.31. We say (M, Li) is monotone if there is a constant τ ą 0, such
that

c1
ˇ

ˇ

π2(M)
= τ ¨ [ω]

ˇ

ˇ

π2(M)
,

and also
µ

ˇ

ˇ

π2(M,Li)
= 2τ ¨ [ω]

ˇ

ˇ

π2(M,Li)

for i = 0, 1.

Here the coefficient 2 comes from the behaviour of Maslov index under
concatenations, Proposition 4.14. In the equality in the definition, the left
hand side corresponds to the expected dimension of holomorphic disks, and
the right hand side corresponds to the energy. Hence, the energy is bounded
for a fixed index, and Gromov compactness applies.

There might be disk and sphere bubbles. Nonetheless, as in the Hamilto-
nian Floer case, we can avoid them. For a Lagrangian L, we define NL ě 0
such that

µL : π2(M, L) Ñ Z

has image NLZ.

Proposition 4.32. Assume that NLi ą 2 for i = 0, 1. Then bubbles can only happen
in codimension 3 or higher.

In this case, they don’t affect B2 = 0, and we have a well-defined La-
grangian Floer homology.

The most general case

We discuss the most general case informally. There are many issues:

• Now index doesn’t control the energy. The standard solution is to work
with Novikov ring Λ0, as we did in Hamiltonian Floer homology. In this
case, we have

Bx =
ÿ

y

ÿ

ϕPπ0(Px,y)
µ(ϕ)=1

# xM(x, y)TE(ϕ) ¨ y.

Gromov compactness works in this setting.

• Transversality issues also exist, as there might by multiply covered bub-
bles, but they can be dealt with for sphere bubbles.
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• In general B2 ­= 0. Instead, we have

B2 = (βL0 ´ βL1) ¨ id .

Here βLi is the number of disk bubbles of index 2 with boundary in Li,
counted with coefficient TE(D).

Example 4.33. Let us calculate an example for B2 ­= 0. Let L0, L1 be two circles
in punctured complex plane Cztpu, as in Figure TBD. They intersect at two
points x and y.We have

CF̊ (L0, L1) = Λ0xx, yy, Bx = ˘TAy By = ˘TBx,

where A, B are the areas of two regions bounded by L0 and L1. Hence

B2x = (βL0 ´ βL1)x, B2y = (βL0 ´ βL1)y,

where βL0 = TA+B, βL1 = 0.

Hence, we cannot expect a homology theory in the most general case. One
solution is to introduce more algebra: a graded abelian group together with a
map B such that B2 = C ¨ id is called a curved chain complex. One can also study
the homological algebra of curved chain complexes.

On the other hand, if βL0 = βL1 and L0, L1 are spin (which allows us to
define the Novikov ring over Q), we can from a homology group HF̊ (L0, L1)
as a Λ0-module. It still has Hamiltonian isotopy invariance, but Theorem 4.23

doesn’t hold because of the existence of disk bubbles.

4.4 Application: symplectic Dehn surgery

We now describe another application of Lagrangian Floer homology, due
to Seidel [?seidel1999lagrangian]. It exemplifies that two Lagrangians can
be smoothly isotopic but not Hamiltonian isotopic. To do this, we first intro-
duce an operation called symplectic Dehn twist.

In the simplest case, a Dehn twist for surface is the following procedure:
given an embedded circle S1 in a surface S, pick a tubular neighbourhood
S1 ˆ [0, 2π] Ă S, and rotate S1 ˆ tθu by θ, as showed in Figure TBD. This gives
a diffeomorphism of S to itself, given by a twist on the neck. We will see that
this can be generalized to the high-dimensional and symplectic setting.

Let (M2n, ω) be a symplectic manifold, and Sn Ă M be a Lagrangian
sphere. Lagrangian neighbourhood theorem gives us a tubular neighbour-
hood of Sn that is symplectomorphic to a neighbourhood N of the zero section
in T˚Sn. We choose the coordinate as (u, v) P T˚Sn Ă Rn+1 ˆ Rn+1, and let

H(u, v) =
1
2

|v|

be a Hamiltonian on T˚SnzSn. The Hamiltonian flow induced by H is the
geodesic flow on T˚SnzSn, identified with TSnzSn by the round metric on Sn.
This gives a map

σ : R/2πZ Ñ Aut(T˚SnzSn),
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thought as the rotation. In particular, σ(π) is the antipodal map, which can
be extended to the zero section Sn Ă T˚Sn. We denote this extension by A.

Now pick a bump function ψ : Rě0 Ñ R, such that ψ(0) = π, ψ(x) P (0, π)
for x P (0, ϵ), supp ψ = [0, ϵ]. The symplectic Dehn twist τ : M Ñ M is a
symplectomorphism defined by

τ(p, ξ) =

$

’

&

’

%

σ(eiψ(|ξ|))(p, ξ), ξ ­= 0;
A(ξ), ξ = 0;
id, away from the ϵ-neighbourhood.

Proposition 4.34. In the case of n = 2, τ2 is smoothly isotopic to the identity.

Sketch of the proof. The idea is that we can use cross product in R3. The map
σ involves rotations about the axis u ˆ v for (u, v) P T˚S2. We can interpolate
from this to the rotation about u via tu + (1 ´ t)(u ˆ v). At t = 1, it is well-
defined even for v = 0. Now τ2 is a Dehn twist in each fiber around a
contractible circle and hence isotopic to the identity.

Now let M be the plumbing of 3 spheres. Recall that it means gluing
disk bundles over these spheres by switching two factors of D2 ˆ D2.There
are three Lagrangian spheres Li (i = 0, 1, 2) living in M, as the zero section of
S2 in T˚S2. A schematic picture is showed in Figure TBD. From the picture,
we can see L1 intersects L0 and L2 in one point respectively, and L0 and L2 are
disjoint. Hence HF̊ (L0, L2) = 0.

Let L1
0 be the image of L0 under the symplectic Dehn twist with respect to

L1. We want to investigate the Lagrangian Floer homology HF̊ (L1
0, L2). We

can arrange that L0 X L1 is the antipode of L1 X L2. Recall that τ2 is a rotation
by 2ψ(|ξ|), and τ interchanges two S1 on L0 and L2, which corresponds to
the rotation by π. Hence L1

0 X L2 = S1, i.e. they don’t intersect transversely.
Nevertheless, they have clean intersection, which means that L1

0 X L2 is a smooth
submanifold of M and satisfies

T(L1
0 X L2) = (TL1

0
ˇ

ˇ

S1) X (TL2
ˇ

ˇ

S1).

In this case, a theorem of Pozniak holds, which generalizes Floer’s Theorem
4.23.

Theorem 4.35 (Pozniak). Assume that Lagrangians L and L1 intersects cleanly.
Then

HF̊ (L, L1) – H˚(L X L)

with appropriate coefficients and gradings.

Hence HF̊ (τ(L0), L2) = HF̊ (L1
0, L2) – H˚(L1

0 X L2) ­= 0. In other words,
L0 and L1

0 are smoothly isotopic but are not Hamiltonian isotopic. In the
case that H1(Li) = 0, it is equivalent to say they are not isotopic through
Lagrangians. Hence we have found an isotopy class that contains two different
Lagrangian representatives. We also conclude that τ2 is isotopic to the identity
smoothly but not symplectically.
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4.5 Fukaya categories (lecture 12)

We conclude this section by introducing Fukaya categories very sketchily.
The standard reference is Seidel’s book [?seidel2008fukaya]. Another (maybe
more friendly) reference is Auroux’s notes [?auroux2014beginner].

Let (M, ω) be a symplectic manifold that is compact or convex at infinity.
The Fukaya category Fuk(M, ω) consists of the following data:

• objects: graded Lagrangians, or “branes”, L7 = (L, θ, P), where L is a
Lagrangian in M, θ is a grading on L (in the sense in Subsection 4.2),
and P is a Pin-structure on L.

• operations: for positive integer k and graded Lagrangians L7
0, L7

1, . . . , L7

k,
we have map

µk : CF˚(L7

k´1, L7

k) b ¨ ¨ ¨ b CF˚(L7
0, L7

1) Ñ CF˚´2+k(L7
0, L7

1),

defined by

µk(xk, . . . , x1) =
ÿ

y
# xM(x1, x2, . . . , xk, y) ¨ y,

where xM(x1, x2, . . . , xk, y) is the moduli space of J-holomorphic poly-
gons with boundaries on L0, . . . , Lk and vertices x1, . . . , xk, y.

The maps µk satisfy the following A8-relations:

k
ÿ

l=1

k´l
ÿ

j=0

(´1)j+
ř

deg xj µk+1´l(xk, . . . , xj+l+1, µl(xj+l , . . . , xj+1), . . . , x1) = 0.

In general, any collection of objects and operations satisfying these relations
is called an A8-category.

Example 4.36. The first A8 relation is just (µ1)2 = 0, i.e. µ1 serves as the
differential on Floer chain complexes. Hence we write µ1 = B.

The second relation reads as

B[a, b] = ˘[Ba, b] + [a, Bb],

where [a, b] = µ2(a, b). Hence µ2 should be thought as a multiplication.

This multiplication is not strictly associative, but it is associative up to ho-
motopy, which is encoded in the third A8 relation:

˘[[a, b], c] ˘ [a, [b, c]] = ˘Bµ3(a, b, c) ˘ µ3(a, Bb, c) ˘ µ3(a, b, Bc).

The first and the most important motivation to study Fukaya categories
is homological mirror symmetry (HMS), due to Kontsevich. Given a symplectic
manifold (M, ω), people conjectured that there is a mirror Calabi–Yau mani-
fold M̌, such that the derived Fukaya category DbFuk(M, ω) is equivalent (in
some sense) to DbCoh(M̌), the derived category of coherent sheaves on M̌.
This conjecture has been showed for many cases, but remains open in general.
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5 Instanton Floer homology

We now discuss of Floer homology in low-dimensional topology. The first
invariant we are going to talk about is the instanton Floer homology. Given
a closed 3-manifold Y with a SO(3) or SU(2) bundle (with some additional
conditions), it outputs a group I˚(Y).

The standard reference for instanton Floer homology is Donaldson’s book
[?donaldson2002floer].

5.1 Connections and curvatures

We first review some basic notions. In this section, let E Ñ X be a (real or
complex) vector bundle. We’ll focus on the case that E is an Hermitian rank 2
complex vector bundle.

Connections

We denote the collection of E-valued p-forms by

Ωp(X; E) = Γ(
p

ľ

T˚X b E).

Definition 5.1. A connection on E is a linear map

∇ : Γ(E) Ñ Ω1(X; E),

satisfying the Leibniz role:

∇( f s) = f∇s + d f b s

for f P C8(M), s P Γ(E).

Remark 5.2. Given a connection on E, there is a standard process to form a
connection on E ‘ E, E b E, ^kE, det E, etc.

Remark 5.3. As in the case of Riemannian geometry, connection helps us make
sense of covariant derivative along a vector field V P X (X) by

∇Vs = (∇s)(V) P Γ(E)

for s P Γ(E). In particular, given a path γ on X, we can define the parallel
transport along γ.

Let ∇,∇1 be two connections, and let a = ∇ ´ ∇1. Then we have

a( f ¨ s) = f ¨ a(s)

for all f P C8(M), s P Γ(E). It means that a is tensorial, i.e. a C8(X)-module
map. Hence a P Ω1(X, End(E)). In general, we have:
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Proposition 5.4. There is a non-canonical one-to-one correspondence between con-
nections on E and forms in Ω1(X, End(E)). Fixed a base connection A0, this corre-
spondence is given by a ÞÑ A0 + a.

On a local chart U, we always have the trivial connection d, and hence we
can write a connection as ∇ = d + A, where A P Ω1(U, End(E

ˇ

ˇ

U)). Because
of this, sometimes we write a connection ∇ as dA or ∇A.

There is a similar notion of connections for principal bundles. Let G be a
Lie group. Recall that a principal G-bundle is a fiber bundle P Ñ X together
with a right G action on P that is free and transitive on fibers. Let g be the Lie
algebra of G.

Definition 5.5. A connection on P is a g-valued 1-form A P Ω1(P, g), which
is invariant under the G action, and restricts to the canonical right invariant
form on fibers.

Remark 5.6. A connection A on P defines a family of horizontal spaces Hp =
ker Ap, i.e. a choice of splitting

TpP = Hp ‘ TpFp,

where Fp is the fiber of P over p. From this, we can also form the notion of
parallel transport.

A vector bundle is the same as it frame bundle, which is a principal bundle
with the corresponding structure group G. According to our need, we restrict
ourself to the case of SU(2)-bundles.

Proposition 5.7. We have the following correspondences:

complex rank 2 vector bundle E ú GL(2, C)-bundle P = Fr(E)
connections on E ú connections on P
Hermitian metrics on E ú U(2) structures on P
Hermitian metrics with trivializations of det E ú SU(2) structures on P
compatible connections on E ú SU(2)-connections on P

Here in the last row, the compatibility requires an additional condition that the
connection induces the trivial connection d on det E.

We can hence think a connection on E as a su(2)-valued 1-form on X.
Recall that su(2) contains traceless antisymmetric endomorphisms of a rank 2
complex space. In our case, the 1-form a as in Proposition 5.4 actually lies in
Ω1(X; su(2)), or written as Ω1(X; gE) for more generality.

Gauge theory considers gauge equivalent principal bundles as the same.

Definition 5.8. The gauge group GE is defined as the collection of structure-
preserving automorphisms of E.

In our case, the gauge group G contains fiber-preserving automorphisms
u : E Ñ E that preserves the Hermitian metric on E and induces the identity
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on det E. It naturally acts on the sections of E by pointwise multiplication,
and on SU(2)-connections by

∇u(A)s = u∇A(u´1s),

or locally
u(A) = uAu´1 ´ (du)u´1.

Curvatures

Given a connection A, we can extend its action to higher degree E-valued
forms, and hence form a sequence

Ω0(X; E)
dA
ÝÑ Ω1(X; E)

dA
ÝÑ Ω2(X; E)

dA
ÝÑ ¨ ¨ ¨

by
dA(ω ^ θ) = dω ^ θ + (´1)deg ωω ^ dAθ,

where ω is an ordinary form on X, and θ is an E-valued form.

Definition 5.9. The curvature FA is given by d2
A : Ω0(X; E) Ñ Ω2(X; E).

We list some basic properties of curvature.

Proposition 5.10. Let A be a connection on E, and FA is the curvature of A. Then:

• FA( f s) = f ¨ FA(s) for f P C8(X) and s P Γ(E), i.e. FA P Ω2(X; End(E)).

• FA+a = FA + dAa + a ^ a for a P Ω1(X; gE).

• (Bianchi identity) dAFA = 0.

• Locally we have FA = dA + A ^ A, where ∇ = d + A.

• For u P GE, we have FuA = uFAu´1.

Recall that for an oriented Riemannian manifold X of dimension n, we
have the Hodge star operator

‹ : Ωp(X) Ñ Ωn´p(X).

It can be easily generalized to E-valued forms

‹ : Ωp(X; E) Ñ Ωn´p(X; E).

For this, we can define the “codifferential”

d˚
A : Ωp(X; E) Ñ Ωp´1(X; E)

by
d˚

A = (´1)np+1 ‹ d ‹ .

It is the adjoint of dA under the L2-norm:
ż

X
xdAs, ty =

ż

X
xs, d˚

Aty.

Remark 5.11. TBD
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The Yang–Mills functional

Definition 5.12. The Yang–Mills equation is the following:

d˚
AFA = 0.

We focus on the case that X has dimension 4 and E is an SU(2)-bundle on
X. In this case, the Hodge star operator acts as an involution on Ω2(X), and
hence gives eigenspace decomposition Ω2(X) = Ω+(X) ‘ Ω´(X), given by

a ÞÑ (
a + ‹a

2
,

a ´ ‹a
2

).

Similar result holds for Ω2(X; E).

A particular family of solutions to the Yang–Mills equation is the anti-self-
dual (ASD) connections. That is, a connection A satisfying the anti-self-dual
equation

‹FA = ´FA,

or equivalently,
F+

A = 0.

Why do we care about ASD solutions?

Definition 5.13. For SU(2)-connection A on E, the Yang–Mills functional is
defined as

YM(A) =

ż

X
|FA|2.

When X is closed, the Yang–Mills functional can be written as

YM(A) =

ż

X
|F+

A |2 +

ż

X
|F´

A |2.

On the other hand, we have
ż

X
(|F´

A |2 ´ |F+
A |2) =

ż

X
tr(FA ^ FA) = 8π2k,

where k = c2(E)[X] P Z is the instanton number. Hence

YM(A) = 2
ż

X
|F+

A |2 + 8π2k(E),

and:

Proposition 5.14. ASD solutions are corresponding to the minimal points of the
Yang–Mills functional.

Remark 5.15. Similarly, we can also consider the self-dual solutions, which
are the maximal points of the Yang–Mills functional. We’ll see that solutions
of the Yang–Mills equation correspond to critical points of the Yang–Mills
functional.
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Remark 5.16. What do A ^ A and tr(FA ^ FA) actually mean? In general, let
A, B P Ω˚(X; gE), locally written as

A = Ai1 ...im dxi1 . . . dxim , B = Bj1 ...jn dxj1 . . . dxjn .

Then

A ^ B = Ai1 ...im Bj1 ...jn dxi1 . . . dxim dxj1 . . . dxjn P Ωn+m(X; End(E)).

Notice that it is not valued in gE in general. However, when A = B is a 1-form,
then

A ^ A =
ÿ

iăj

(Ai Aj ´ Aj Ai)dxidxj =
ÿ

iăj

[Ai, Aj]dxidxj

is valued in gE. This is not true if A ­= B or A is a 2 form. It makes sense to
talk about the trace of the components in FA ^ FA.

5.2 Yang–Mills equation in dimension 4 (lecture 13)

We briefly introduce the moduli space of solutions to the Yang–Mills equa-
tion in dimension 4. As usual, to form a nice moduli space, we need to discuss
Fredholmness, transversality, compactness, orientation, etc.

Proposition 5.17. The ASD equation

F+
A = 0

is elliptic modulo gauge.

Recall that the gauge group GE acts on SU(2)-connections by conjugation.
It descends onto the collection of Yang–Mills connections naturally. Proposi-
tion 5.17 states that after choosing a gauge, it becomes an elliptic PDE (sys-
tem). The most common choice is the Columb gauge

d˚(A ´ A0) = 0.

Yang–Mills equation together with the Columb gauge equation form an ellip-
tic system of PDEs.

Theorem 5.18. Fixed an instanton number k. For generic Riemannian metric on X,
the moduli space

MX,k = tsolutions to F+
A = 0 for k(E) = ku/GE

is a smooth manifold of dimension 8k ´ 3(1 ´ b1 + b+2 ).

Here b1 is the first Betti number of X, and b+2 is the maximal possible
dimension of subspaces of H2(X) with the restricted intersection form positive
definite.

Remark 5.19. Here the situation is nice - we don’t need to perturb the equation.
However, we’ll need to do this for 3-dimensional case.
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For compactness, we have the following:

Theorem 5.20 (Uhlenbeck compactness). A sequence of ASD connections with
bounded energy has a convergent subsequence up to gauge. More precisely, let Ak be
a sequence of ASD connections with bounded energy. Then we can find a subsequence
Ank and gauge transformations uk such that uk Ank converges to an ASD solution A,
possibly with some bubbles.

Here bubbles mean the phenomenon that energy concentrates near a point.
After changing the metric, it can be viewed as a splitting X – X#S4, and the
connection restricts to a standard solution on S4 with instanton number 1.
From this, we can get the following:

Theorem 5.21. We have compactification

MX,k = MX,k
ž

(MX,k´1 ˆ X)
ž

(
MX,k´2 ˆ Sym2(X)

)
ž

¨ ¨ ¨ .

Here the second term corresponds to the case that there is one bubble point
(which causes the instanton number decreases by 1), and so on. Recall from
Theorem 5.18 that MX,k´1 has codimension 8 in MX,k, and MX,k´1 ˆ X has
codimension 4. In other words:

bubbles only happen in codimension at least 4.

In particular, the moduli space is compact if its expected dimensional is at
most 3.

The orientation of the moduli space is given by the trivialization of the
index bundle of

d+A ‘ d˚
A : Ω1(X; E) Ñ Ω0(X; E) ‘ Ω2(X; E).

By Hodge theory, it is same as choosing an orientation for H1(X) ‘ H+
2 (X).

Definition 5.22. Let k be the instanton number such that the expected dimen-
sion of MX,k is zero. Then the Donaldson invariant DX P Z is defined as the
oriented count of points in MX,k.

Remark 5.23. In general, we can define Donaldson invariants for higher di-
mensional moduli spaces by integration on certain hypersurfaces.

5.3 The idea of instanton Floer homology

Donaldson invariant is independent on the choice of metrics, and hence
is an invariant for smooth manifolds. It can detect exotic smooth structures.
However, it is difficult to compute directly from the definition. That was the
original motivation of Floer to define instanton Floer homology, and a relative
version of Donaldson invariants.

The plan is as follows. For a closed manifold X4 with an embedded hy-
persurface Y3, we can cut X along Y to obtain two pieces X1 and X2, with
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boundary Y and ´Y respectively as in Figure TBD. For a manifold Xi with
boundary Y, we can define a quantity DXi , the relative Donaldson invariant, liv-
ing in the instanton Floer homology group of the boundary I˚(Y), such that
the following gluing formula holds.

Theorem 5.24. Let X = X1 YY X2. Then

DX = xDX1 ,DX2y,

where DX2 lives in I˚(´Y), which is canonically isomorphic to the dual I˚(Y)_, and
the pairing is the natural pairing.

But we have not even defined the group I˚(Y)! OK, let’s give a sketch here
first. Let Y be a closed 3-manifold. The instanton Floer chain complex CI˚(Y)
consists of the following data:

• the coefficient ring can be Z;

• generators are time-independent solutions to the ASD equation on R ˆ

Y, modulo gauge;

• the differential of an ASD connection x is

Bx =
ÿ

y
# xM(x, y) ¨ y,

where # xM(x, y) counts solutions to the ASD equation asymptotic to x
as t Ñ ´8 and to y as t Ñ +8, modulo gauge.

We then define the instanton Floer homology I˚(Y) as the homology of
CI˚(Y). We will see many problems in this process, but now we just pretend
everything is fine for now. Let X be a 4-manifold with boundary Y. We can
add an infinity cylindrical end to form a manifold-without-boundary

pX = X YY (Y ˆ Rě0) .

Define
ΦX =

ÿ

x
# xM( pX, x) ¨ x P CI˚(Y),

where we count 0-dimensional moduli spaces of solutions to the ASD equa-
tion on pX asymptotic to x. The element ΦX is closed because we have com-
pactification

BM( pX, x) =
ď

(M( pX, yn) ˆ xM(yn, yn´1) ˆ ¨ ¨ ¨ ˆ xM(y1, x)).

When dimM( pX, x) = 1, we have

BM( pX, x) =
ď

y
(M( pX, y) ˆ xM(y, x)).

We then define
DX = [ΦX ] P I˚(Y).
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5.4 Chern–Simons functional

We now come into details on defining I˚(Y).

The first task is to understand ASD solutions on the infinity cylinder R ˆ Y.
Recall that SU(2)-bundles on Y3 are trivial, and the same holds on Y ˆ R.
This can be seen by looking at the classifying map Y3 Ñ HP4 = BSU(2), and
notice that HP4 has a trivial 3-skeleton. From now on, we fix a trivialization
E = Y ˆ C2, and SU(2)-connections are now canonically corresponding to
elements in Ω1(Y; gE) by comparing with the trivial connection on E.

Let A be a connection on π˚E, where π is the projection from R ˆ Y to Y.
Write A as

A = A(t) + α(t)dt,

where A(t) is a family in Ω1(Y; su(2)), and α(t) P C8(Y; su(2)).

Lemma 5.25. We can arrange α(t) = 0 after gauge. In this case, we say the connec-
tion is in temporal gauge.

Proof. Let u : R ˆ Y Ñ SU(2) be a gauge transformation. Its action on A is
given as

A ÞÑ uAu´1 ´ (du)u´1,

which has dt component(
u(t)α(t)u´1(t) ´

Bu
Bt

u´1(t)
)

dt.

Eliminating this is a first order ODE, and hence can be done. Furthermore,
the choice of the gauge is unique if u(0) is fixed.

We can now expand the ASD equation on the cylinder in temporal gauge.
To avoid confusion, we denote the Hodge star and differential on R ˆ Y by
‹4 and d4, and use the original ‹ and d to denote operations in dimension 3.
Under this convention, we have

FA = d4 A + A ^ A = dA(t) +
BA(t)

Bt
dt + A(t) ^ A(t),

and

‹4FA = ´dt ^ (‹dA(t) + ‹(A(t) ^ A(t))) ´ ‹
BA(t)

Bt
= ´dt ^ ‹FA(t) ´ ‹

BA(t)
Bt

.

Therefore the ASD equation is equivalent to

BA(t)
Bt

= ‹FA(t). (5.26)

Solutions constant in t are just flat connections modulo gauge, or equiva-
lently, SU(2)-representations of the fundamental group π1(Y) modulo conju-
gation. They don’t depend on the metric on Y.
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We claim that Equation 5.26 is a negative gradient flowline equation on the
configuration space

B = tSU(2)-connections on Yu/G.

Recall that on a closed 4-manifold X we have
ż

X
tr(FA ^ FA) = 8π2k(E) P 8π2Z. (5.27)

The Chern–Simons functional is defined as a relative version of this:

Definition 5.28. Let A be an SU(2)-connection on Y3. Choose X4 such that
BX = Y, and extend A to a connection on X. The Chern–Simons functional is
defined as

CS(A) =
1

8π2

ż

X
tr(FA ^ FA).

Remark 5.29. The existence of such null-cobordism X comes from general
cobordism theory.

Given two choices of the extensions, we can close them up to obtain a
closed 4-manifold with separated hypersurface Y. We then deduce from Equa-
tion 5.27 that:

Proposition 5.30. The quantity CS(A) is well-defined in R/Z, i.e. it is independent
of the choice of X and the extension of the connection.

Lemma 5.31. Let A be a connection in temporal gauge on [0, 1] ˆ Y. Then

tr(FA ^ FA) = d
(

tr(A ^ dA +
2
3

A ^ A ^ A)

)
.

Proof. This follows from direct calculation:

LHS = tr ((dA + A ^ A) ^ (dA + A ^ A))

= tr ((dA ^ dA + 2dA ^ A + A ^ A ^ A ^ A))

= tr ((dA ^ dA + 2dA ^ A))

= RHS.

Here the points are tr(A ^ B) = tr(B ^ A), and A ^ A ^ A ^ A = 0 since there
is no dt component appearing in A.

Using this lemma, we can actually write CS in a more “intrinsic” form.

Proposition 5.32. We have

CS(A) =
1

8π2

ż

Y
tr
(

A ^ dA +
2
3

A ^ A ^ A
)

.

Proof. Fix a null-cobordism X. We choose a bump function β such that β = i
near t = i, i = 0, 1. We then extend A by β(t)A on X = X YY (Y ˆ [0, 1]). Now
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by Lemma 5.31, we have

CS(A) =
1

8π2

ż

Yˆ[0,1]
tr(FA ^ FA)

=
1

8π2

ż

Yˆ[0,1]
d
(

tr(A ^ dA +
2
3

A ^ A ^ A)

)
=

1
8π2

ż

Y
tr
(

A ^ dA +
2
3

A ^ A ^ A
)

.

Exercise 5.33. The Chern–Simons function, valued in R/Z, is gauge invariant.

Proposition 5.34. The gradient flow of CS is given by

∇CS(A) =
1

4π2 ‹ FA.

Proof. This is also direct calculation:

dCSA(a) = lim
hÑ0

CS(A + ha) ´ CS(A)

h

=
1

8π2

ż

Y
tr (a ^ dA + A ^ da + 2A ^ A ^ a)

=
1

4π2

ż

Y
tr (a ^ (dA + A ^ A))

=
1

4π2 xa, ‹FAy.

Here the third line uses

d tr(A ^ a) = tr(dA ^ a ´ A ^ da).

In conclusion:

ASD connections on R ˆ Y ú downward gradient flowlines of ´4π2CS.

5.5 Instanton Floer homology (lecture 14)

Formally, the instanton Floer homology is the Floer homology of

´4π2CS : B Ñ R/4π2Z.

However, there will be many issues. Let us discuss them in order.
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Completion

Ideally, we want to complete the configuration space B by a L2
k-completion

of the affine space

A = tSU(2)-connectionsu = Ω1(Y, su(2)),

quotient by the L2
k+1-completion of the gauge group Gk+1. However, the re-

sulting Bk is not a Hilbert manifold. This is because the gauge group action is
not free. In fact, it only acts freely on irreducible connections.

Definition 5.35. Let A be an SU(2)-connection on Y. Let

ΓA = tu P G : u˚ A = Au

be its stabilizer. It has three possibilities: t˘1u (the center of SU(2)), S1, or
the whole SU(2). We say A is irreducible if ΓA = t˘1u; otherwise we say it is
reducible.

Remark 5.36. Reducibility of A means that the parallel transport induced by
A preserves a line subbundle of E. For flat connection, it corresponds to the
reducibility of the corresponding SU(2)-representation.

Hence we only want to deal with irreducibles. Let

A˚ Ă A

be the open set of irreducibles, and let

B˚ = A˚/G.

We can now perform the L2
k-completion and get a Hilbert manifold B˚

k .

Fredholmness and grading

Recall from Proposition 5.17 that the ASD equation is elliptic modulo
gauge. For a general path A(t) in B, we can make sense of its index

µ(A) = ind
(

DA(
d
dt

+ ‹F)
)

.

In particular, for irreducible flat connections (which are generators of the Floer
chain complex CI˚(Y)) x and y, and an ASD solution A on R ˆ Y that asymp-
totic to x and y as t Ñ ˘8 respectively, the index µ(A) gives the expected
dimension of the moduli space xM(x, y) near A.

For such x, y, we have

1
8π2 E(A) =

1
8π2

ż

RˆY
tr(FA ^ FA) ” CS(x) ´ CS(y) (mod Z).

Recall that on a closed manifold 1
8π2 E(A) = k P Z, and Theorem 5.18 tells us

that the mod 8 expected dimension of the ASD moduli space doesn’t depend
on k. This also holds in our case. There is an infinite cyclic cover

ĂB˚ = A/G0 Ñ B˚,
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where G0 consists of gauge transformations that homotopic to the identity,
and the Chern–Simons function and the index are well defined on ĂB˚ as R-
valued functions under the convention that the index of the trivial connection
is zero. Furthermore, let u0 be a generator of π0(G) – Z. Then we have

CS(u0 ¨ A) = CS(A) + 1, µ(u0 ¨ A) = µ(A) + 8.

In conclusion, we have a well-defined Z/8-grading on CI˚(Y), given by
µ(x, y) = µ(A). In further, we also see that the index controls the energy, as
in the monotone case in Lagrangian Floer homology.

Transversality

The first issue on transversality is that the generators of CI˚(Y) may not
be discrete (for example, on Brieskorn sphere Σ(2, 3, 5, 7)). Recall that they
are irreducible flat connections on E and are independent of the choice of
the metric. Hence one cannot make them discrete by perturbing the metric.
Nonetheless, we can still achieve this by perturbing the equation.

Theorem 5.37. The space of solutions of the equation

‹FA = η

modulo gauge is discrete for generic η.

The second issue is that we require the moduli space M(x, y) is a smooth
manifold of the expected dimension µ(x, y) P Z/8. This needs more general
perturbation, called the “holonomy perturbation”, which we will not discuss
here. It is complicated but at least doable!

Compactness and gluing

As in the closed case Theorem 5.21, we can form a compactification of
M(x, y) that bubbles only appear in moduli spaces of dimension 8 or higher.
Hence, we can expect that bubbles don’t hurt B2 = 0, which only needs moduli
spaces of dimension at most 2.

The serious problem is that flowlines may involve reducible connections,
which are excluded from the generators of CI˚(Y). More precisely, the com-
pactification has the form

M(x, y) = M(x, y)
ž

(M(x, z1) ˆ ¨ ¨ ¨ ˆ M(zk, y))
ž

(bubbles),

and the zk’s may be reducible.

This is indeed a problem when H1(Y) ­= 0. For now, we assume that
H1(Y) = 0, i.e. Y is an integral homology sphere. This has already contained
many interesting examples, such as the 1/n-surgery on knots.

In this case, let A be a reducible flat connection. Then the corresponding
representation ρ : π1(Y) Ñ SU(2) factors through a circle S1, and hence factors
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through the abelization H1(Y) = 0. Hence, the only reducible is the trivial
connection θ.

We split the quotient process into two steps. Let Ą

yM(x, y) be the space of
ASD solutions quotient a free action by based gauge transformations. Then

xM(x, y) = Ą

yM(x, y)/ SO(3).

The point is that the gluing process can be done on Ą

yM(x, y). Therefore, we
have

dim
(

Ą

yM(x, θ) ˆ
Ą

yM(θ, y)
)
= dim Ą

yM(x, y) ´ 1.

After quotient SO(3), we have

[dim
(

xM(x, θ) ˆ xM(θ, y)
)
= dim xM(x, y) ´ 4.

After perturbation, θ can only appear in non-negative dimensions. Hence it
doesn’t affect B2 = 0!

Question from the class Why do we need the connection θ to be trivial?

A: Because SO(3) acts trivially in this case. Others might have stabilizer
S1, and it will drop the dimension only by 1, which is not enough for proving
the invariance using continuation map.

Orientations

Recall that we need an orientation of H1(X) ‘ H+
2 (X). In our case that

X = R ˆ Y and H1(Y) = 0, this is automatic.

Finally we can form the instanton Floer homology group I˚(Y) for integral
homology sphere Y! It is a Z/8-graded, Z-coefficient invariant of Y.

Example 5.38. We have I˚(S3) = 0 because there is no irreducible connection.

Example 5.39. Let P be the Poincaré homology sphere. Then

π1(P) = xa, b, c | a2 = b3 = c5 = abcy,

which has 2 irreducible representations modulo conjugation. Calculation on
indices then gives I˚(P) = (Z, 0, 0, 0, Z, 0, 0, 0).

Another invariant of 3-manifold related to the representation of funda-
mental groups is the Casson invariant λ(Y). It is related to the instanton Floer
homology we just constructed:

Theorem 5.40. We have
χ(I˚(Y)) = 2λ(Y).
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Extra structure on I˚(Y)

We can extract more information on I˚(Y). The first two maps are from
the trivial connection θ. Let x be a generator of CI1(Y). Define D1(x) to be the
count of 0-dimensional moduli space from x to θ. One can show that D1B = 0,
and it gives a function

D1 : I1(Y) Ñ Z.

Dually, we can define a map

D2 : Z Ñ CI4(Y)

by
D2 =

ÿ

x
# xM(θ, x) ¨ x,

which gives an element in I4(Y).

There is also an action on the Floer chain complex CI˚(Y; Q) as follows.
Recall that for irreducibles x and y, we have

xM(x, y) = Ą

yM(x, y)/ SO(3).

The suspension of it gives the parametrized moduli space

Σ xM(x, y) Ă B˚ = ĂB˚/ SO(3).

Here the last quotient is free since we are only considering irreducibles, and
it gives an SO(3)-bundle on Σ xM(x, y), i.e. a map

f : Σ xM(x, y) Ñ BSO(3).

Using Q-coefficient, it is easy to compute the cohomology of the classifying
space:

H˚(BSO(3); Q) = H˚(BSU(2); Q) = Q[u],

where u is an element of degree 4. It is a universal characteristic class: the
pullback f ˚u gives information about the SO(3)-bundle on Σ xM(x, y). Let

tx,y = ( f ˚u)[Σ xM(x, y)] P Q.

Here we only pair f ˚u with 4-dimensional moduli spaces, i.e. µ(x, y) = 4. We
then have a map

U : CI˚(Y; Q) Ñ CI˚´4(Y; Q),

given by
x ÞÑ

ÿ

y
tx,y ¨ y.

It is not always a chain map because of the existence of reducibles.

Proposition 5.41. Under this setting, we have

BU ´ UB = ´
1
4

D2D1.

Remark 5.42. We can also do this with Z or Z/2Z coefficients, but rational
coefficient is the easiest to deal with.
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5.6 Variants of instanton Floer homology (lecture 15)

Up to now we only establish the instanton Floer homology for integral
homology spheres, which is Floer’s original work. In the case of H1(Y) ­= 0,
we have several modifications.

Floer homology for admissible bundles

The first solution is that we can consider an SO(3)-bundle P over Y with
flat connections on P. The second Stiefel–Whitney class w2(P) P H2(Y; Z/2Z)
characterizes such bundle P. Recall that there is a map

U(2) = SU(2) ˆZ/2Z S1 Ñ SU(2)/t˘1u = SO(3),

given by projection to the first factor.

Proposition 5.43. Any such P can be lifted to a U(2)-bundle.

Proof. Recall that U(2)-bundles are characterized by the first Chern class c1(P) P

H2(Y; Z), which restricts to the second Stiefel–Whitney class w2(P). Now the
result follows from the fact that the connecting homomorphism b in the long
exact sequence

¨ ¨ ¨ Ñ H2(Y; Z) Ñ H2(Y; Z/2Z)
b

ÝÑ H3(Y; Z) Ñ ¨ ¨ ¨

associated to the coefficient change

0 Ñ Z
2
ÝÑ Z Ñ Z/2Z Ñ 0

is zero, since H3(Y; Z) = Z is torsion-free.

We continue the discussion in the language of vector bundles. We choose
a U(2) lift, which produces a rank 2 Hermitian vector bundle E. Let

A = tconnections on E with fixed induced connection on det Eu.

The gauge group G acts on A in a similar way.

Lemma 5.44. Reducible solution doesn’t exist if and only if h(w2(E)) ­= 0, where

h : H2(Y; Z/2Z) Ñ Hom(H2(Y); Z/2Z).

We say E is admissible if h(w2(E)) ­= 0. The lemma tells us admissible
bundles don’t admit no reducible solution.

Example 5.45. Let Y = S1 ˆ S2. Then H2(Y; Z/2Z) = Z/2Z. There are two
SO(3)-bundles over Y: one is trivial and another is admissible.

We can form the instanton homology group I˚(Y, P). It also carries a U-
map of degree ´4. Because of the avoidance of reducibles, U is a chain map
now, and it descends onto an action on I˚(Y, P).

When does admissible bundle exist?
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Proposition 5.46. Admissible bundle exists if and only if b1(Y) ą 0, i.e. Y is not a
rational homology sphere.

Hence we can define instanton homology for all 3-manifolds but rational
homology spheres that are not integral homology sphere. Weird!

Framed instanton Floer homology

We can use a trick to define Floer homology for all 3-manifolds.

Definition 5.47. Let Y be a 3-manifold. Let P0 be the trivial SO(3)-bundle over
Y, and let Padm be an admissible bundle over T3. The framed instanton Floer
homology is defined as the instanton homology for admissible pairs

I#
˚(Y) = I˚(Y#T3, P0#Padm).

Remark 5.48. There is essentially one admissible bundle over T3 because of the
homogeneous action on T3.

Remark 5.49. For integral homology sphere Y, H#(Y) can be expressed in terms
of (I˚(Y), D1, D2, U), due to Scaduto [?scaduto2015instantons].

Equivariant instanton homology

Another way to define instanton homology of rational homology spheres
is to take all the reducibles into account in an equivariant way. This is due to
Miller [?miller2019equivariant].

We first recall some basics of equivariant homology. Let G be a Lie group
acting on a space X. The Borel homology is defined as the “homotopy quotient”

HG
˚ (X) = H˚(X ˆG EG),

where EG Ñ BG is the universal G-bundle. It gives a H˚(BG)-module.

Example 5.50. We have
HG

˚ (X) = H˚(X/G)

if G acts freely on X. When the action is trivial, we have

HG
˚ (X) = H˚(X ˆ BG).

Recall that under the SO(3)-action by constant gauge transformations, re-
ducibles can have stabilizers SO(3) or S1, and irreducibles have stabilizers
t1u. Hence the orbit can be a point, a sphere S2 = SO(3)/S1, or the whole
SO(3) = RP3.

We now construct the Floer chain complex ĂCI˚(Y) by

ĂCI˚(Y) =
à

a
C˚(Oa),
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where the sum takes for all flat connection on the trivial SU(2)-bundle over Y
modulo gauge, Oa refers to the orbit of a under the SO(3)-action, and C˚(Oa)
is the “geometric homology” chain complex [?lipyanskiy2014geometric].
We can define differential ĂCI˚(Y) that counts solutions from a chain to an-
other, by the geometric homology construction, which generates the chain
complex by manifolds with corners. It then produces the tilde version instan-
ton Floer homology rI˚(Y), which is also Z/8Z-graded.

The equivariant version is defined through the dg tensor product with the
dg module of the universal bundle:

I+˚ (Y) = H˚(ĂCI˚(Y) bC˚(SO(3)) C˚(E SO(3))).

Similar to the ordinary Borel homology, it carries an action of H˚(B SO(3); Z).
These invariants can also be recovered from (I˚(Y), D1, D2, U) when Y is an
integral homology sphere.

5.7 Applications of instanton Floer homology

We sketch some topological applications of instanton homology.

Frøyshov invariant

Let Y be an integral homology sphere. From the data I˚(Y), D1, D2, U),
one can extract a numerical invariant h(Y) P Z, called the Frøyshov invari-
ant [?froyshov2002equivariant]. Roughly speaking, it measures how much
irreducible solutions affect the reducible solution.

Frøyshov invariant can be used to study the structure of homology cobor-
dism group. Recall that a homology cobordism between two integral homology
spheres Y0, Y1 is a cobordism W, such that BW = (´Y0)

š

Y1, and H˚(W, Yi) =
0. The homology cobordism group

Θ3
Z = tintegral homology spheresu/homology cobordisms.

Theorem 5.51. The Frøyshov invariant is stable under homology cobordisms. Hence
it descends onto a homomorphism

h : Θ3
Z Ñ Z.

Further, we have
h(P) = 1

for Poincaré sphere P. Therefore h is surjective, and this gives a Z-summand of Θ3
Z.

People also uses other invariants, such as (equivariant) monopole Floer
homology and involutive Heegaard Floer homology, to study the homology
cobordism group, but this is the first known infinity summand of Θ3

Z.
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Khovanov homology detects unknot

Khovanov homology [?khovanov2000categorification] is a combinato-
rial invariant for knots. It outputs a bigraded abelian group Kh(K) for a knot
K.

Theorem 5.52 (Kronheimer–Mrowka [?kronheimer2011khovanov]). There is a
spectral sequence with E2 page isomorphic to Kh(K) and converging to I7(Kr)). Here
I7 is the singular instanton homology, defined using connections singular along the
knot, and Kr denotes K with orientation reversed.

As a corollary of the spectral sequence, the rank of Khovanov homology
is always at least the rank of singular instanton homology. Kronheimer and
Mrowka also showed that I7 detects unknot:

Theorem 5.53 (Kronheimer–Mrowka [?kronheimer2011khovanov]). If rank I7(K) =
2, then K is the unknot.

Hence if rank Kh(K) = 2, then K is the unknot. That is to say, Khovanov
homology is an unknot-detector.

Knot surgeries

Generators of the instanton Floer chain complex correspond to the SU(2)-
representations of the fundamental group. Thus, instanton Floer homology
can give us information about representations of the fundamental group.

The first example is Kronheimer–Mrowka’s proof of the property P for
knots, which can be viewed as a special case of the Poincaré conjecture.

Theorem 5.54 (Kronheimer–Mrowka [?kronheimer2004witten]). Assume that
Y = S3

r (K) is simply connected. Then K is the unknot, and Y = S3.

They argued by showing that I˚(Y) ­= 0 if K is not the unknot, and hence
it admits a nontrivial SU(2)-representation. Similar technique is used in their
sequent paper:

Theorem 5.55 (Kronheimer–Mrowka [?Kronheimer2004DehnST]). Let r P [0, 2]
be a rational number, and let K be a nontrivial knot. Then the fundamental group
of Y = S3

r (K) admits a nontrivial SU(2)-representation (i.e. a representation with
non-abelian image).

The same result holds for r = 4 by Baldwin–Sivek [?baldwin2022instantons]
and r = 3 by Baldwin–Li–Sivek–Ye [?baldwin2021small]. It is not true for
r = 5: the 5-surgery on the trefoil yields a lens space L(5, 2), which has
abelian fundamental group Z/5. It remains open for many rationals in (2, 5).

5.8 Atiyah–Floer conjecture (lecture 16)

Recall that each 3-manifold has a Heegaard decomposition

Y = U0 YΣ U1,
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where U0 and U1 are genus g handlebodies with common boundary Σ. One
can stretch the neck by inserting a cylinder Σ ˆ [´T, T]. Atiyah’s observation
is that the ASD equation on R ˆ Y, as T Ñ +8, is the same as the Cauchy–
Riemann equation for strips

R ˆ [0, 1] Ñ M(Σ)

with certain boundary conditions on M(Ui). It hence builds a relation be-
tween gauge theory (ASD equation) with symplectic geometry (Cauchy–Riemann
equation).

More precisely, M(Σ) contains flat SU(2)-connections on the trivial SU(2)-
bundle on Σ modulo gauge, or equivalently, contains rank 2 degree 0 stable
holomorphic bundles on Σ, or SU(2)-representations of π1(Σ) modulo con-
jugations. It has dimension 6g ´ 6. One can similar formulate M(Ui) as the
collection of SU(2) representations of π1(Ui) modulo conjugations, which has
dimension 3g ´ 3. We focus on the irreducible part: in this case,

M˚(Σ) Ă M(Σ)

is a smooth manifold of dimension 6g ´ 6. It admits a canonical symplectic
form

ω(a, b) =
ż

Σ
tr(a ^ b)

for a, b P Ω1(Σ, su(2)). The irreducible part M˚(Ui)(i = 0, 1) are Lagrangians
in M˚(Σ) Ă M(Σ). Ideally, we can consider their Lagrangian Floer homol-
ogy, and the Atiyah–Floer conjecture claims that it is the same as the instanton
Floer homology!

Conjecture 5.56 (Atiyah–Floer conjecture, [?atiyah1988new]). Let Y be an inte-
gral homology sphere. Then

I˚(Y) – HF̊ (M˚(U0),M˚(U1)).

Here the right hand side is the Lagrangian Floer homology in M˚(Σ).

The right hand side is called the symplectic instanton homology. However,
the issue is that it makes no sense in general! Recall that to define Lagrangian
Floer homology, we need the symplectic manifold to be compact or convex at
infinity, and the Lagrangians should be compact. Neither of them is satisfied
in our setting: M˚(Σ) is not compact and not convex at infinity, and M˚(Ui)
are not compact. The problem is that the action of ignoring all reducibles is
too crude to preserve nice properties of the manifold.

For admissible pairs

One solution is to consider the admissible pairs. Assume that b1(Y) ą 0,
and let P Ñ Y be an admissible bundle. Recall that I˚(Y, P) is defined using
flat connections in a lift of P to a U(2)-bundle.

We can decompose Y as
U0

ď

Σ0
š

Σ1

U1,

75



as showed in Figure TBD. Here Ui are called compression bodies. We require
P

ˇ

ˇ

Σi
are nontrivial, i.e. c1(P) P H2(Σi; Z) are odd. From this, we can define

M1(Σi) as the collection of flat U(2)-connections on an odd degree U(2)-
bundle with fixed determinant on Σi modulo gauge, or equivalently, stable
holomorphic bundles on Σi with fixed determinant bundle and odd degree,
or representations

ρ : π1(Σiztzu) Ñ SU(2)

such that ρ(γz) = ´I modulo conjugations. Here z is a fixed basepoint on Σ,
and γz is a loop around z.

As above, M1(Σi) is a smooth symplectic manifold, and similarly formed
M1(Ui) are Lagrangians in M1(Σ0)ˆM1(Σ1). The point is that now M1(Σ0)ˆ

M1(Σ1) is compact, and M1(Ui) are monotone. Hence the Lagrangian Floer
homology

HF̊ (M1(U0),M1(U1))

is sensible as a Z/4-graded theory. Now we can state the Atiyah–Floer con-
jecture in a rigorous way, which has been proved recently:

Theorem 5.57 (Daemi–Fukaya–Lipyanskiy [?daemi2021lagrangians]). Under
this setting, we have

I˚(Y, P) – HF̊ (M1(U0),M1(U1))

as Z/4-graded abelian groups.

For equivariant instanton homology

In the case of b1(Y) = 0, recall that we can define equivariant instanton
homology rI(Y), I+(Y). We expect to find the symplectic instanton counterpart
for them.

Recall that
M(Σ) = tπ1(Σ) Ñ SU(2)u/ SO(3),

where the space tπ1(Σ) Ñ SU(2)u has dimension 6g ´ 3, but not smooth. We
can construct M(Σ) from another point of view. Consider

π : W = SU(2)2g Ñ SU(2), (Ai, Bi) ÞÑ

g
ź

i=1

[Ai, Bi].

Then M(Σ) = π´1(I)/ SO(3). The idea of Huebschmann–Jeffrey is to con-
sider the “extended moduli space”. More explicitly, consider

N (Σ) = t(Ai, Bi) :
g

ź

i=1

[Ai, Bi] = e2πiθ , θ P su(2), tr(θ) ą 0u

as a subspace of W. There is a natural map

ψ : N (Σ) Ñ su(2)
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sending an element (Ai, Bi) P N (Σ) to the corresponding θ P su(2)(recall that
the exponential function is injective on a neighbourhood of I). The idea is that
the larger space N (Σ) is an appropriate replacement of M(Σ). In fact, one can
show that N (Σ) is a monotone symplectic manifold, and ψ is a Hamiltonian
moment map generating the action of SO(3) on N (Σ). From this, we can
recover M(Σ) as the symplectic quotient ψ´1(0)/ SO(3).

We similarly define Li = N (Ui), which are Lagrangians in N (Σ). Manolescu
and Woodward [?manolescu2011floer] showed that we can make sense of
HF(L0, L1) inside N (Σ). Now we can state the Atiyah–Floer conjecture for
rational homology spheres:

Conjecture 5.58. We have

rI(Y) – HF(L0, L1).

In the equivariant setting, we have

I+(Y) – HFSO(3)(L0, L1).

Here the right hand side is a version of equivariant Lagrangian Floer homology, de-
fined by Cazassus [?cazassus2022equivariant].
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6 Monopole Floer homology

We now turn to our last main topic: monopole Floer homology. Kro-
nheimer and Mrowka’s book [?Kronheimer2007MonopolesAT] is a compre-
hensive reference for this topic, and another shorter reference is Lin’s notes
[?lin2016lectures].

As instanton Floer homology, monopole (Seiberg–Witten) invariants also
have a 4-dimensional counterpart. For closed smooth oriented 4-manifold X
with b+(X) ą 1 and a spinc-structure s, Seiberg and Witten [?seiberg1994electric,
?witten1994monopoles] formulate the monopole (Seiberg–Witten) equations
from some duality in physics. They contain two equations and are an elliptic
system modulo gauge. By counting solutions in 0-dimensional moduli spaces,
we can define the Seiberg–Witten invariant SWX,s P Z.

For closed 3-manifold Y with a spinc-structure s, after choosing a Rieman-
nian metric g, we can form the monopole Floer chain complex CM˚(Y, s). Its
generators are R-invariant solutions to the Seiberg–Witten equations on R ˆ Y,
i.e. solutions to the Seiberg–Witten equations on Y. The differential from x
to y counts solutions to the Seiberg–Witten equations on R ˆ Y, asymptotic to
x and y as t Ñ ˘8, and it can be interpreted as the gradient flowline of the
Chern–Simons–Dirac functional.

Relations and differences between Yang–Mills theory and Seiberg–Witten
theory are worthwhile to discuss:

• The key feature of Seiberg–Witten equations is that they have compact
moduli spaces, which means there is no issue on compactness and bub-
bles. Hence the analysis used in Seiberg–Witten theory is somewhat
easier than Yang–Mills theory.

• Many results, originally proved by Yang–Mills theory, such as Donald-
son’s diagonalization theorem and exotic smooth structure detection,
can be showed using Seiberg–Witten theory.

• Witten’s conjecture relates Seiberg–Witten invariants to Donaldson (in-
stanton) invariants for closed 4-manifolds. However, it is unclear what
happens in dimension 3.

• Each theory has its own feature. For example, instanton Floer homol-
ogy helps us study the representations of fundamental groups, and
monopole Floer homology has a stable homotopy refinement.

6.1 Spinc structures and Dirac operators

Spinc structures

Recall that π1(SO(n)) = Z/2Z for n ě 3. The spin group Spin(n) is defined
as the universal (double) cover of SO(n). It carries an involution τ by deck
transformation. The spinc group Spinc(n) is defined by

Spinc(n) = Spin(n) ˆZ/2Z S1 = t(g, θ)u/((g, θ) „ (τg, ´θ)).
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Definition 6.1. Let (Xn, g) be an oriented Riemannian manifold. A spinc-
structure on X is a lift of its frame bundle Fr(X) as an SO(n)-bundle to a
Spinc(n)-bundle.

In the case of n = 3, we have

Spinc(3) = SU(2) ˆZ/2Z S1 = U(2).

Hence a spinc-structure on Y3 is a rank 2 Hermitian vector bundle S Ñ Y
together with an orientation preserving bundle isometry

ρ : TY Ñ su(S) = tA P End(S) : tr A = 0, A + A˚ = 0u,

called the Clifford multiplication. Locally speaking, we can find frame ei(i =
1, 2, 3) such that ρ(ei) = σi. Here σi are the Pauli matrices:

σ1 =

(
i

´i

)
, σ2 =

(
´1

1

)
, σ3 =

(
i

i

)
.

They satisfy relations σiσj = ´σjσi (i ­= j), σ2
i = ´I. Hence we can use the

Riemannian metric to extend ρ to a map

Λ˚TY b C Ñ End(S).

Basic existence and classification results of spinc structures are collected in
the following proposition.

Proposition 6.2. Let Y be a closed oriented 3-manifold. Then:

• spinc-structure on Y always exists since TY is trivial;

• spinc structures on Y are one-to-one, non-canonically corresponding to complex
line bundles over Y, or equivalently, elements in H2(Y; Z);

• Given a spinc structure (S, ρ) on Y, then a line bundle L gives another spinc

structure (S b L, ρ b id), and their Chern classes are related by

c1(S b L) = c1(S) + 2c1(L);

• in particular, S is determined by its first Chern class if H1(Y; Z) has no 2-
torsion.

Definition 6.3. A connection A on a spinor bundle S is spinc if it is compatible
with the Hermitian metric, and satisfies the Leibniz rule

∇A(ρ(X)ψ)(v) = ρ(∇v(X))ψ + ρ(X)∇Aψ(v).

Here X and v are vector fields on Y, ψ P Γ(S) is a spinor, and ∇ is the Levi-
Civita connection on TY.

As general connections, spinc connections are corresponding to imaginary-
valued 1-forms in a non-canonical way.
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Proposition 6.4. We have the following non-canonical correspondences:

connections on S ú Ω1(Y; End(S))
Hermitian connections on S ú Ω1(Y; u(S))
spinc connections on S ú Ω1(Y; iR)

.

Further, a spinc connection A on S induces a connection At on det S. Under the last
correspondence, we have

(A + a)t = At + 2a.

Dirac operators

To write down the Seiberg–Witten equation, we need the notion of Dirac
operators.

Definition 6.5. Let s = (S, ρ) be a spinc structure on Y, A be a spinc connec-
tion on S, and g be a Riemannian metric on Y. The Dirac operator DA is the
composition

Γ(S)
∇A
ÝÝÑ Γ(S b T˚Y)

g
ÝÑ Γ(S b TY)

ρ
ÝÑ Γ(S).

Locally the Dirac operator can be written as

DA =
3

ÿ

i=0

σiBi.

6.2 Chern–Simons–Dirac functional (Lecture 17)

We construct monopole Floer homology followed the usual procedure. We
need to specify the configuration space and the functional on it first.

The configuration space

The ordinary configuration space of monopole Floer homology is

C = t(A, ϕ) : A is a spinc connection on Y, ϕ P Γ(S)u.

It possesses an action by the gauge group

G = tu : Y Ñ S1u

by
uA = uAu´1 ´ (du)u´1 = A ´ u´1du,

and uϕ by pointwise multiplication. Here we can see that one advantage of
the U(1)-gauge group is that the form of action is simper than the non-abelian
setting.
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As before, the action is not free, and the quotient space

B = C/G

is not a manifold.

Definition 6.6. A configuration (A, ϕ) is reducible if if has nontrivial stabilizer
under the gauge group action; otherwise it is irreducible.

It is easy to see (A, ϕ) is reducible if and only if ϕ = 0, and in this case it
has stabilizer S1, the constant gauges. One can first take the quotient by the
based gauge group

G0 = tu : Y Ñ S1, u(p) = 1u

to obtain
rB = C/G0.

Recall that
[Y, S1] = H1(Y; Z),

and an element u P G0 is null-homotopic if and only if u = eθ for some
θ P C8(Y; iR). We have a non-canonical identification

rB – Ω1(Y; iR) ‘ Γ(S)/(C8(Y; iR) ‘ H1(Y; Z)).

Here the first factor of the quotient acts by

θ(A, ϕ) = (A ´ dθ, eθϕ),

and the second factor corresponds to harmonic functions u : Y Ñ S1. Recall
Hodge decomposition gives

Ω1(Y; iR) = im d ‘ im d˚ ‘ H1(Y; iR).

Therefore
rB – (im d˚) ‘ (Γ(S) ‘ H1(Y; R))/H1(Y; Z).

We get a vector bundle (with infinite dimensional fibers) over the torus Tb1(Y).
Now we can do L2

k-completion to obtain a Hilbert manifold rBk, which pos-
sesses an S1-action. One can also do this directly by

rBk = Cl/G0,k+1,

where G0,k+1 is the L2
k+1-completion of the based gauge group.

The Chern–Simons–Dirac functional

We are now ready to define the functional on the configuration space.

Definition 6.7. Fixed a spinc connection A0. The Chern–Simons–Dirac func-
tional CSD : C Ñ R is defined as

CSD(A, ϕ) =
1
8

ż

Y
(At ´ At

0) ^ (FAt + FAt
0
) +

1
2

ż

Y
xDAϕ, ϕy.

81



Exercise 6.8. For u P G, we have

CSD(u(A, ϕ)) = CSD(A, ϕ) + 2π2([u] Y c1(S))[Y].

Therefore, CSD descends onto a functional

rB Ñ R/2π2dZ,

where d is the greatest common divisor of (c1(S) Y α)[Y] for α P H1(Y; Z). In
particular, it is R-valued if c1(S) is torsion.

The next task is to compute the formal gradient of CSD (with respect to
the L2 product). Let (A, Φ) be a configuration, and (a, ϕ) be a tangent vector.
Here a P Ω1(Y; iR), and ϕ P C8(Y; iR). Then

d(CSDA,Φ)(a, ϕ) = lim
hÑ0

1
h
(CSD(A + ha, eiϕΦ) ´ CSD(A, Φ))

=
1
8

ż

Y

(
2a ^ (FAt + FAt

0
) + (At ´ At

0) ^ 2da
)

+
1
2

ż

Y
(2xDAΦ, ϕy + 2xρ(a)Φ, Φy)

=
1
4

ż

Y
a ^ 2FAt +

ż

Y
xDAΦ, ϕy +

ż

Y
xa, ρ´1(ΦΦ˚)0y

=
1
2

xa, ‹FAt y + xDAΦ, ϕy + xa, ρ´1(ΦΦ˚)0y.

Here (ΦΦ˚)0 P su(S) is the traceless part of the endomorphism ΦΦ˚ P

End(S). Locally it is given by

Φ = (α, β)T , (ΦΦ˚)0 =

(
|α|2´|β|2

2 αβ

αβ
´|α|2+|β|2

2

)
.

The map ρ´1 sends su(S) to Ω1(Y; iR). In conclusion, we have:

Proposition 6.9. The gradient of CSD is given by

∇CSD(A, Φ) = (
1
2

‹ FAt + ρ´1(ΦΦ˚)0, DAΦ) P Ω1(Y; iR) ‘ Γ(S).

Now the Seiberg–Witten equation on R ˆ Y is the same as the gradient
flow equation on Y:

d
dt
(A(t), Φ(t)) = ´∇CSD(A(t), Φ(t)).

The critical points of CSD correspond to the t-invariant solutions on R ˆ Y:

∇CSD(A, Φ) = 0.

On Y, it can be written as
#

1
2 ‹ FAt + ρ´1(ΦΦ˚)0 = 0
DAΦ = 0

.
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Its solutions are called monopoles. Notice that unlike the instanton case, they
depend on the Riemannian metric on Y.

Reducibles are flat U(1) connections on det S modulo gauge. Recall Chern–
Weil theory tells us

c1(S) = [´
1

2πi
FAt ] P im

(
H2(Y; Z) Ñ H2(Y; R)

)
.

In particular, there is no reducibles if c1(S) is non-torsion. If c1(S) is torsion,
the reducibles form a torus H1(Y; R)/H1(Y; Z) of dimension b1. One can
imagine the quotient space as an infinite-dimensional cone over this torus, as
showed in Figure TBD. We have the quotient space

Bk = rBk/S1.

6.3 The Blown-up configuration space (lecture 18)

The naïve idea is to do Floer homology on the irreducible part B˚
k Ă Bk.

Recall that in the instanton case, we can do this when Y is an integral ho-
mology sphere and there is only one reducible connection θ. It succeeds be-
cause the phenomenon that broken flowlines with θ involved only appear in
codimension 4 = dim SU(2) + 1. In the monopole case, it may happen in
codimension dim U(1) + 1 = 2. It may not affect B2 = 0, for which only con-
siders unparametrized moduli spaces of dimension 1, but it definitely affects
the invariance of the homology group under the change of metrics, which
involves 2-dimensional moduli spaces with no R-action. It does become a
trouble when c1(s) is torsion.

Hence, we must develop a machinery to treat the reducibles. This can be
down by blowing up.

Near a reducible, the quotient B = C/G looks locally like

C8/S1 ‘ R8.

The first factor is a cone over CP8. We can blow up the quotient along the
singular point. That is, replace the cone by CP8 ˆ [0,+8). Globally, we have

Cσ = t(A, r, Φ) : A is a spinc connection, r ě 0, Φ P Γ(S), }Φ}L2 = 1u.

It carries a map
π : Cσ Ñ C, (A, r, Φ) ÞÑ (A, rΦ).

One can easily see that π is an isomorphism when restricted to the irreducible
part, and the preimage of a reducible is the unit sphere in C8. The action of
G is now free on Cσ. The plan is to perform Floer homology on

Bσ = Cσ/G,

or more precisely, on the completion

Bσ
k = Cσ

k /Gk+1,

which is a Hilbert manifold with boundary, locally like H or H ˆ [0,+8),
where H is a Hilbert space.
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Question from the class Can we do the same construction in the instanton
case?

A: Maybe! However, the advantage of the U(1) gauge is that there is
only one type of reducibles, and we can resolve them in one time, while the
stabilizer can be SU(2) or S1 in the instanton case.

One cannot directly pull back the Chern–Simons–Dirac functional to the
quotient of the blown-up configuration space. Nonetheless, we have the fol-
lowing:

Fact 6.10. The gradient ∇CSD pulls back to a gradient-like vector filed (∇CSD)σ

on Bσ. Stationary points of (∇CSD)σ have two types:

• irreducible solutions to the Seiberg–Witten equations, which correspond
to the ordinary irreducible solutions;

• pairs (A, ψ), where (A, 0) is a reducible solution to the Seiberg–Witten
equation, and ψ is an eigenvector of DA.

Remarks 6.11. The Dirac operator DA is a self-adjoint Fredholm operator with
infinitely many eigenvalues

¨ ¨ ¨ ď λ´2 ď λ´1 ď 0 ď λ0 ď λ1 ď . . . .

The model of the definition above is CP8 with the function

f (z) =
1
2

xz, Lzy,

where L is a self-adjoint bounded linear map on C8.

6.4 Monopole Floer homology

Now we are ready to define the monopole Floer homology through the
blown-up configuration space.

We first briefly recall the finite dimensional case, Morse theory for mani-
fold with boundary. Let X be a (finite dimensional) manifold with boundary,
and f be a Morse–Smale function on X. There are three types of critical points:

Cr( f ) = Cs Y Cu Y Co,

which are collections of boundary stable, boundary unstable, and interior crit-
ical points. We then define three chain complexes

(Č = Co ‘ Cs, B̌), (Ĉ = Co ‘ Cu, B̂), (C̄ = Cu ‘ Cs, B̄),

whose homology recover

H˚(X), H˚(X, BX), H˚(BX)

respectively.
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We want to do the same with monopoles. A boundary critical point is
stable if and only if it has positive eigenvalue; otherwise it is unstable. For
generic metric g, the Dirac operator DA has nonzero simple spectrum, i.e. we
have

¨ ¨ ¨ ă λ´2 ă λ´1 ă 0 ă λ0 ă λ1 ă . . . .

For critical points x = (A, ϕ) and y = (B, ψ), we can define the relative
grading

gr(x, y) P Z/d(s)Z,

where d(s) is the greatest common divisor of (c1(S) Y α)[Y] for α P H1(Y; Z),
as the index of the linearization of ∇CSD from x to y along a path. Here
we only have a Z/dZ grading because the configuration space B or Bσ has
nontrivial topology:

B – Tb1(Y) ˆ Cone(CP8) ˆ R8,

Bσ – Tb1(Y) ˆ CP8 ˆ [0,+8) ˆ R8.

One the blown-up space, we have

gr(((A, 0), ψk), (B, ψ)) = gr((A, 0), (B, ψ)) + 2k.

Compactness is particularly easy: the moduli spaces are a priori compact,
and there is automatically no bubbles.

To ensure transversality, we need to perturb the Seiberg–Witten equations
by a 1-form on Y, and we also need more complicated perturbation for Rˆ.
At least it is doable!

As the finite dimensional case, we can now obtain three chain complexes

}CM(Y, s), yCM(Y, s), HM(Y, s),

and the homologies of them give three flavours of monopole Floer homology

}HM(Y, s), yHM(Y, s), HM(Y, s),

read as “HM to”, “HM from”, and “HM bar”.

The U-action

Recall in the instanton setting, we have an SO(3)-bundle over B, which
gives an action of H˚(B SO(3); Q) = Q[U] on I˚(Y), with deg U = ´4. There
is a similar construction in the monopole setting. Namely, there is an S1

bundle
rBσ = Cσ/G0 Ñ Bσ.

From this, we have an action of H˚(BS1; Z) = Z[U] on HM˝ (˝ refers to any
of the from, to, bar versions of monopole Floer homology) with deg U = ´2.
More concretely, let P be the Poincaré dual of the generator of

im
(

H2(CP8) Ñ H2(Bσ)
)

.
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Then the action is given by

Ux =
ÿ

gr(x,y)=2

#(M(x, y) X P) ¨ y.

Similarly, there is an action by Hk(Tb1(Y)) of degree ´k.

The long exact sequence

Recall in the finite dimensional case, three flavours of Morse homology can
be organized into the long exact sequence for the pair (B, BB). Similar result
holds in infinite dimensional setting:

Theorem 6.12. The monopole Floer homology groups fit into a long exact sequence

¨ ¨ ¨
i˚
ÝÑ }HM˚(Y)

j˚
ÝÑ yHM˚(Y)

p˚
ÝÝÑ HM˚(Y)

i˚
ÝÑ }HM˚(Y)

j˚
ÝÑ ¨ ¨ ¨ .

Example 6.13. Consider the simplest case Y = S3. There is a unique spinc

structure s since H2(Y; Z) = 0. We equip S3 with the round metric, which has
positive scalar curvature. An application of the Weitzenböck formula shows
that if Y admits positive scalar curvature, then there is no irreducible solutions
to the Seiberg–Witten equation on Y. For S3, there is a unique reducible since
b1(Y) = 0. After blowing up, there is a generator in each even degree, which
gives the homotopy type of CP8. In the end, we obtain

}HM(S3) = Z[U], HM(S3) = Z[U, U´1], yHM(S3) = Z[U, U´1]/Z[U].

Functoriality

One important feature of monopole Floer homology is that it forms a
(3+1)d-TQFT. More precisely, for a cobordism W4 with BW = (´Y0)

š

Y1 and
a spinc structure on W, we can construct a map

FW,s : HM˝(Y0, s
ˇ

ˇ

Y0
) Ñ HM˝(Y1, s

ˇ

ˇ

Y1
)

by
FW,s(x0) =

ÿ

x1

#M(x0, W, x1) ¨ x1,

where #M(x0, W, x1) counts solutions to the Seiberg–Witten equations on W
with two cylindrical ends

W˚ = (Y0 ˆ (´8, 0])
ď

Y0

W
ď

Y1

(Y1 ˆ [0,+8))

with asymptotic conditions given by x0 and x1. See Figure TBD.

Assume that there is two cobordisms W0 : Y0 Ñ Y1, W1 : Y1 Ñ Y2. We need
to compose cobordisms to ensure the functoriality:
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Theorem 6.14. Let si be spinc structures on Wi respectively (i = 0, 1). Assume that
s0

ˇ

ˇ

Y1
= s1

ˇ

ˇ

Y1
. Then

FW1,s1 ˝ FW0,s0 =
ÿ

sPspinc(W)
s|Wi

=si

FW,s.

Remark 6.15. Here we start from spinc structures on each components, and the
choice of s may not be unique since the map

H2(W) Ñ H2(W0) ‘ H2(W1)

may not be injective.

Recall that HM admits a relative Z/dZ-grading. When c1(s) is torsion,
it not only has a relative Z-grading, but also an absolute Q-grading, which
behaves well under cobordisms.

Theorem 6.16. Let s be a spinc structure on W : Y0 Ñ Y1 such that c1(s|Yi ) are
torsion. Then FW,s changes the absolute grading by

1
4
(c1(s)

2 ´ σ(W)) ´ ι(W),

where
ι(W) =

1
2
(χ(W) + σ(W) + b1(Y1) ´ b1(Y0)),

σ(W) is the signature of W, and χ(W) is the Euler characteristic of W.

Remark 6.17. The mysterious quantity

1
4
(c1(s)

2 ´ σ(W)) ´ ι(W)

is the expected dimension of Seiberg–Witten moduli spaces on closed 4-manifold,
which can be calculated by Atiyah–Singer index theorem.

Exercise 6.18. Verify that for composition of cobordisms, we have

ι(W1 ˝ W0) = ι(W1) + ι(W0).

In fact, one can define the absolute grading in spirit of Theorem 6.16. We set
}HM(S3) have lowest degree 0. For a general 3-manifold Y, pick a cobordism
W : S3 Ñ Y with a spinc structure s with c1(s|Y) torsion. Fir x P }HM(Y, s|Y),
we define

gr(x) = ´ gr(x0, W, x) +
1
4
(c1(s)

2 ´ σ(W)) ´ ι(W).

Here x0 is a generator of the lowest degree summand of }HM(S3), and gr(x0, W, x)
is the expected dimension of M(x0, W, x).
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6.5 Applications of monopole Floer homology

Frøyshov invariant

If b1(Y) = 0, i.e. Y is a rational homology sphere, for each spinc structure
s on Y, there is a unique reducible solution θ. In the instanton theory, we
can simply set gr(θ) = 0, but here we have had an absolute grading already,
which means that the quantity

n(Y, s, g) = gr(θ) P Q

is not an invariant of (Y, s). When Y is an integral homology sphere, we get
an even number n(Y, g) P 2Z/2Z. This leads to the following definition:

Definition 6.19. Let Y be an integral homology sphere. The Frøyshov invariant
of Y is defined by

h(Y) = ´
1
2

min grtx P }HM(Y) : x P im(Un), for all n ą 0u.

Remark 6.20. The Frøyshov invariant consists of the information from the re-
ducible, i.e. the U-tower in yHM(Y). The remaining part is called the reduced
monopole Floer homology, denoted by HMred. See Figure TBD.

One interesting property of Frøyshov invariant is that it controls the inter-
section form of 4-manifolds. To clarify this, we first introduce:

Proposition 6.21. Let W : Y0 Ñ Y1 be a cobordism. Assume that W is negative
definite, i.e. the intersection form

Q : H2(W) ˆ H2(W) Ñ Z

is negatively definite. Then the induced map

}HM(Y0; Z/2Z) Ñ }HM(Y1; Z/2Z)

is nonzero on the tower.

The idea is that showing there is a unique reducible solution on W.

Corollary 6.22. We have

h(Y0) ě h(Y1) + ρ(Q).

Here
ρ(Q) =

1
8
(rank Q ´ inf |Q(c, c)|),

where the infimum runs through characteristic elements of Q.

Proof. The degree shifts by

1
4
(c1(s)

2 ´ σ(W)) ´ ι(W)

by Theorem 6.16. For simplicity we assume that b1(W) = 0, and then ι(W) = 0
since b+2 (W) = 0. We also have σ(W) = ´ rank Q. One can choose s such
that this shift attains 2ρ(Q). The Z/2Z[U]-module structure ensures that the
degree cannot decrease, and the result follows. See Figure TBD.
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Example 6.23. Let X be a closed smooth 4-manifold with b1(X) = b+2 (X) = 0.
Remove two balls from X, and we get a cobordism W = Xz(B4 Y B4) from S3

to S3. Corollary 6.22 says
ρ(Q) ď 0.

By a nontrivial theorem on bilinear forms due to Elkies, it implies that Q is
diagonalizable. This recovers Donaldson’s diagonalization theorem!

Example 6.24. Consider a smooth 4-manifold with boundary BX = P, the
Poincaré sphere. We have h(P) = ´1. In the similar vein, we obtain

ρ(Q) ď 1

from Corollary 6.22. This is a weaker constraint, and Q might not be diagonal
in this case. For example, we can take X be the E8-plumbing, which has
intersection form E8.

One important property of Frøyshov invariant is that it descends onto a
homomorphism from the homology cobordism group Θ3

Z. To see this, con-
sider a homology cobordism W with boundary components Y0 and Y1. We
have ρ(Q) = 0 since Q = 0. Now Corollary 6.22 gives

h(Y0) ě h(Y1).

Reversing W gives the reverse inequality. Hence h(Y0) = h(Y1). It indeed
gives a homomorphism essentially because F[U] is a PID, and we can ap-
ply Künneth formula. As in Theorem 5.51, this gives a Z-summand of Θ3

Z,
generated by the Poincaré sphere.

We breifly mention some of the other famous applications of monopole
Floer homology.

The Gordon conjecture

One of the first application of monopole Floer homology is the proof of the
Gordon conjecture, due to Kronheimer, Mrowka, Ozsváth, and Szabó, which
gives a surgery characterization of the unknot:

Theorem 6.25 (Kronheimer–Mrowka–Ozsváth–Szabó [?kronheimer2007monopoles]).
Let K Ă S3 be a knot, and let U be the unknot. If there is an orientation-preserving
diffeomorphism

S3
r (K) – S3

r (U)

for some rational number r, then K = U.

The idea of the proof is to reduce the problem to the case of r P Z and then
to r = 0, using exact triangles in monopole Floer homology. The case of r =
0 was proved previously by Gabai [?gabai1987foliations] in a completely
different approach, using machinery of foliations and sutured manifolds.
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The Weinstein conjecture

Another famous application is the proof of the Weinstein conjecture, due
to Taubes.

Let (Y3, α) be a contact 3-manifold. This means α is a 1-form on Y such
that α ^ dα is nowhere vanishing. We consider the Reeb flow associated to α,
which is the flow generated by the flow Rα, determined by

#

ιRα α = 1,
ιRα dα = 0.

Theorem 6.26 (The Weinstein conjecture, [?taubes2007seiberg]). For every
contact 3-manifold (Y, α), the Reeb flow ϕα has at least one periodic orbit.

The idea of the proof is to deform the Seiberg–Witten equations using the
contact form α. More specifically, we consider the equations

#

1
2 ‹ FA + r(ρ´1(ΦΦ˚)0 + 2iα = 0,
DAΦ = 0

for r ě 0. This recovers the ordinary (perturbed) Seiberg–Witten equations
when r = 1, and the moduli space keeps stable when r varies by continuation
maps. Kronheimer and Mrowka shows that HM(Y, s) ­= 0, which produces
solutions to the equations. In particular, we get rid of the curvature term in
the first equation when r Ñ +8, and Taubes showed that the zero set of Φ
gives a closed orbit of ϕα.

Remark 6.27. After the theory of embedded contact homology had been devel-
oped, people showed that “HM=ECH”, which gives another description of
the proof of the Weinstein conjecture.

6.6 The Seiberg–Witten Floer stable homotopy type (Lecture
19)

We now introduce an alternative construction of monopole Floer homol-
ogy, due to Manolescu [?manolescu2003seiberg].

In this (and the next) subsection, we assume that b1(Y) = 0, i.e. Y is a
rational homology sphere, unless otherwise specified. The advantage of this
assumption is that there is a unique reducible solution up to gauge, after fixing
the spinc structure s. We choose this reducible solution, or the flat connection
A0, as the base point of the space of connections, and we now have a canonical
isomorphism between Ω1(Y; iR) and spinc-structures on Y.

Recall that
rB = C/G0 – R8 ˆ C8,

where the first factor contains connections, and the second factor contains
spinors. We have an S1-action on this space. Let rBk be the L2

k-completion of rB.
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We take k " 0 (in fact, k ą 5) such that the multiplication is continuous under
L2

k-norms. The Seiberg–Witten map is given by

SW : rBk Ñ rBk´1, (A, Φ) ÞÑ (
1
2

‹ FA + ρ´1(ΦΦ˚)0, DAΦ),

or equivalently,

(a, ϕ) ÞÑ (
1
2

δa, DA0 ϕ) + (ρ´1(ϕϕ˚)0, ρ(a)ϕ) = l(a, ϕ) + c(a, ϕ).

The point here is that l is a linear, elliptic (and hence, Fredholm), self-adjoint
operator, and c is a quadric compact operator. In the case of b1(Y) = 0, the
L2

k-completion rBk is a Hilbert space (not just a Hilbert manifold). Hence we
can do eigenspace decomposition for l.

Let τ, ν be real numbers, τ ! 0 ! ν. Define

rBν
τ =

à

(eigenspace of l with eigenvalue in (τ, ν]) .

It is a finite-dimensional vector space, and we can think of it as a finite dimen-
sional approximation of rB. Let

pν
τ : rB Ñ rBν

τ

be the L2 projection. We then have the restricted Chern–Simons–Dirac func-
tional

SWν
τ = ∇(CSD

ˇ

ˇ

rBν
τ
) = l + pν

τ ˝ c.

It doesn’t preserve c, but it is “small” as a compact operator. It inherits many
good properties from the original Seiberg–Witten equations. The following is
a compactness theorem for the finite-dimensional approximation:

Theorem 6.28. Fix k ą 5.

• All critical points of CSD and finite energy flowlines are inside a ball

B(R) Ă rBk

for some R " 0.

• For ν " 0 " τ, all critical points and flowlines of SWν
τ that stay in B(2R)

actually stay in B(R).

In other words, there is no critical point in B(2R)zB(R), and there is no
flowline with two endpoint in B(R) gets rid of B(R) but not B(2R). See Figure
TBD. Intuitively, we only care about solutions to SWν

τ in B(R) because this is
the behaviour of the original SW.

Now rBν
τ XB(2R) is a non-compact, finite-dimensional manifold, and CSDν

τ
is a function on it. We can hence do Morse homology without referring to any
more infinite-dimensional technique!

Recall from Subsection 1.3 that for Morse theory on a non-compact mani-
fold, we have the machinery of Conley index. We denote the resulted Conley
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index by Iν
τ . We can do rH˚(Iν

τ), but recall that Conley index itself is an invari-
ant of the space, so why not do this on the level of stable homotopy types?

We need to examine the dependence on the choice of ν, τ and the metric g.

Proposition 6.29. The Conley index Iν
τ is unchanged when increasing ν.

Let τ1 ă τ ! 0. Then

Iν
τ1 = ( rBτ

τ1)+ ^ Iν
τ = Σ

rBτ
τ1 Iν

τ .

The idea is that for a simple critical point of index k, the Conley index out-
puts a sphere Sk. Besides, the Conley index is invariant under deformations
of operators, and hence we only need to consider the affect of eigenvalues of
the linear part l.

This suggests us consider the formal desuspension Σ´ rB0
τ Iν

τ , which is inde-
pendent of ν and τ. It remains to investigate the dependence on the metric g
on Y. Recall that the reducible should live in degree n(Y, s, g), but it now in
degree 0, which suggests us add another shift on Σ´ rB0

τ Iν
τ .

Definition 6.30. Let (Y, s) be a rational homology sphere with a spinc struc-
ture. The Seiberg–Witten–Floer stable homotopy type of (Y, s) is a suspension
spectrum

SWF(Y, s) = Σ´
n(Y,s,g)

2 CΣ´ rB0
τ Iν

τ .

According to the discussion above, we see that SWF(Y, s) is an invariant
for (Y, s). Hence its homology gives a version of monopole Floer homology. It
is natural to compare this definition with Kronheimer–Mrowka’s construction.
To proceed, we remark that SWF carries a natural S1-action from the gauge
group action. Using it, we can recover all the flavours of monopole Floer
homology in Kronheimer–Mrowka’s setting from SWF as different versions
of equivariant homology.

Theorem 6.31 (Lidman–Manolescu, [?lidman2016equivalence]). We have iso-
morphisms

}HM(Y, s) = HS1

˚ (SWF(Y, s)), yHM(Y, s) = cHS1

˚ (SWF(Y, s)),

HM(Y, s) = tHS1

˚ (SWF(Y, s)), ĄHM(Y, s) = H˚(SWF(Y, s)).

Here the right hand sides are Borel homology, coBorel homology, Tate homology, and
ordinary homology respectively. The tilde version of monopole Floer homology appear-
ing in the last isomorphism is defined as

ĄHM(Y, s) = H˚(Cone(yCM(Y, s) U
ÝÑ yCM(Y, s))).

We don’t really define these equivariant homologies seriously. Instead,
we give some remarks. First, they carry an action of HS1

˚ (˚) = Z[U], which
recovers the module structure on the left hand sides. Second, for coBorel
homology we have a the following duality:

cHS1

˚ (SWF(Y, s)) = H´˚

S1 (SWF(´Y, s)),
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where the right is the Borel cohomology. Last, in fact we have

HM(Y, s) = tHS1

˚ (SWF(Y, s)) = Z[U, U´1].

We conclude this subsection by discussing the pros and cons of SWF.

Advantages of SWF over HM

The first advantage of SWF is that we have had a space (or a spectrum),
so we don’t need to do Morse homology again. We can just apply singu-
lar (equivariant) homology to extract algebraic invariants. Furthermore, we
can apply generalized cohomology theories, such as (equivariant) K-theory or
KO-theory, or complex bordism theory, to SWF to obtain other invariants. In
particular, we can get analog of Frøyshov invariant with generalized cohomol-
ogy coefficient.

The second advantage is that it is easier to incorporate symmetries. This
is in two ways.

• When Y carries a finite group action by G, the spectrum SWF(Y, s) in-
herits a G-action, and we can then consider the G ˆ S1-equivariant Floer
homology. One example is the branched double cover Σ(K) along a
knot K, which has a natural Z/2Z-action. Using this construction, we
can produce some invariants for the knot.

• When the spinc structure is actually spin, SWF(Y, s) carries a Pin(2)
symmetry, and we can form the Pin(2)-equivariant monopole Floer ho-
mology. We will discuss this in more detail in the next lecture.

Disadvantage of SWF, and how to overcome

The foremost disadvantage of SWF is that it is defined only for rational
homology spheres originally. For b1(Y) ą 0, rB is a Hilbert bundle over a torus
Tb1 , which makes the finite dimensional approximation hard to produce.

Here are some works in this direction.

• Khandhawit–Lin–Sasahira [?khandhawit2018unfolded] defined a spec-
trum SWF(Y, s) by working with the universal cover of Tb1 , but it only
recovers the monopole Floer homology with twisted coefficients:

HS1

˚ (SWF(Y, s)) = }HM˚(Y, s).

• Sasahira–Stoffregen [?sasahira2021seiberg] defined SWF(Y, s) when
the Hilbert bundle has a spectral section, which is defined as follows. For
the Hilbert bundle W over Tb1 and a point x P Tb1 , we have eigenspace
decomposition

Wx = W+
x ‘ W´

x
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through the Dirac operator DAx , where Ax is the flat connection corre-
sponding to the reducible solution x. A spectral section is a subbundle
V Ă W such that the projection Vx Ñ W´

x is Fredholm, and Vx Ñ W´
x is

compact. They showed that such a section exists if and only if for any
a1, a2, a3 P H1(Y), we have

a1 Y a2 Y a3 = 0.

Hence their definition is valid for all manifolds Y with b1(Y) ď 2, and
connected sum of such manifolds. On the other hand, it doesn’t include
manifolds like S1 ˆ Σg for g ě 1.

• For general Y, we can only expect a “twisted parametrized spectrum”.
This is work in progress by Behrens–Hedenlund–Kraph.

6.7 Pin(2)-equivariant monopole Floer homology and the tri-
angulation conjecture (lecture 20)

Let Y be an integral homology sphere, and s is the unique spinc structure
on Y. In this case, s is actually coming from a spin structure. As we premised
in the last lecture, we describe the Pin(2)-equivariant theory for (Y, s).

Pin(2)-equivariant monopole Floer homology

Definition 6.32. A spin structure on an oriented Riemannian manifold (Y, g)
is a lift of the SO(n) frame bundle to a Spin(n) bundle.

Recall that Spin(n) is the universal cover of SO(n). We are particularly
interested in the case of n = 3, and Spin(3) = SU(2), which embeds into
U(2) = Spinc(3) in a natural way.

Proposition 6.33. Let Y be a 3-manifold. Then spin structures on Y exist and form
an affine space modelled by H1(Y; Z/2Z).

In particular, there is a unique spin structure when Y is an integral homol-
ogy sphere.

If s = (S, ρ) is a spinc structure on Y coming from on spin structure, then
we can make S as a quaternionic line bundle, which gives an action of j on
the configuration space by

j(a, ϕ) = (´a, jϕ).

Exercise 6.34. Verify that Seiberg–Witten equations are invariant under the
action of j.

Let
Pin(2) = S1 Y jS1 Ă C Y jC = H.

We can repeat the whole story of the last subsection in a Pin(2)-equivariant
setting. In particular, we obtain a Pin(2)-equivariant spectrum SWF(Y, s).
This leads to the following:
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Definition 6.35. Let (Y, s) be an integral homology sphere with the unique
spin structure s. The Pin(2)-equivariant monopole Floer homology SWFHPin(2)

˚ (Y)
is defined as

SWFHPin(2)
˚ (Y) = HPin(2)

˚ (SWF(Y, s)).

Here we use coefficient F = Z/2Z. As in the general story of equivariant
homology, SWFHPin(2)

˚ (Y) is a module over H˚
Pin(2)(˚; F).

Proposition 6.36. We have

H˚
Pin(2)(˚; F) = F[q, v]/(q3),

where deg q = 1, deg v = 4.

Proof. We have natural inclusion Pin(2) Ă SU(2), which gives fiber sequence

SU(2)/ Pin(2) Ñ E SU(2)/ Pin(2) Ñ B SU(2) = E SU(2)/ SU(2).

The first term is
(S3/S1)/Z/2Z – RP2,

and the second term is a B Pin(2). Hence the fiber sequence can be rewritten
as

RP2 Ñ B Pin(2) Ñ HP8.

Using the Serre spectral sequence: TBD. There is no room for the differential,
so the spectral sequence collapses at E2 page. Hence

H˚
Pin(2)(˚; F) = H˚(B Pin(2); F) = F[q, v]/(q3)

as graded rings. Further discussion shows it is actually a ring isomorphism.

Remark 6.37. There is an alternative definition of Pin(2)-equivariant monopole
Floer homology in a Kronheimer–Mrowka style, due to Lin [?lin2018morse].
It produces a group HS˚(Y, s) for all spin 3-manifold (Y, s).

The triangulation conjecture

A topological space is said to be triangulable if is homeomorphic to the
geometric realization of a simplicial complex.

Question 6.38 (Kneser). Is every topological manifold triangulable?

It took people about 90 years to get the answer! Here are some related
results. For a more comprehensive survey, see [?manolescu2016lectures].

• It’s true for smooth manifolds.

• It’s true for dimension d ď 3. This is trivial when d = 0, 1, due to Radó
when d = 2, and due to Moise when d = 3.
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• It’s false for some manifolds of d = 4. The first example is Freedman’s
E8-manifold, which is non-triangulable by Casson’s work.

• It’s false for some manifolds of d ě 5. Galewski–Stern and Matumoto
reduced this question to a problem in 3 + 1 dimensions, and Manolescu
[?manolescu2016pin] resolved the latter problem using Pin(2)-equivariant
monopole Floer homology.

The remaining part of this subsection is devoted to explain the situation
when d ě 5.

Obstruction for triangulability

To study the triangulation, we introduce the notion of link for simplices.

Definition 6.39. Let K be a simplicial complex. For a simplex σ P K, the star
of σ is the closure of the union of simplices that intersect σ. The link lk(σ) is
the union of simplices in the star of σ that don’t contain σ.

For example, TBD.

Let M be a topological manifold of dimension n ě 5. Assume that M
admits a triangulation K. We expect that lk(σ) is a sphere for each simplex
σPK. This only happens in the case that the triangulation is “nice”. In practice,
one can show that lk(σ) is an integral homology sphere, but may not be the
standard Sn´l´1.

Example 6.40. The Poincaré sphere P admits a triangulation since it is smooth,
which induces a triangulation on the suspension ΣP, and a triangulation on
the double suspension Σ2P. The double suspension theorem asserts that Σ2P is
homeomorphic to S5. However, the link of the cone point is ΣP, which is not
even a manifold. See Figure TBD.

One can show that
ÿ

σPKn´4

[lk(σ)] ¨ σ]

is a closed chain valued in Θ3
Z. Let

c(K) =

[
ÿ

σPKn´4

[lk(σ)] ¨ σ

]
P Hn´4(M; Θ3

Z) – H4(M; Θ3
Z).

Remark 6.41. The significance of c(K) comes from the fact that the n-dimensional
homology cobordism group θn

Z is trivial for n ­= 3. Hence the obstruction is
about the non-triviality of Θ3

Z.

To proceed, recall that the Rokhlin homomorphism

µ : Θ3
Z Ñ Z/2Z
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is defined by

µ(Y) =
σ(W)

8
(mod 2),

where W4 is a spin filling of Y, and σ(W) is the signature of W. It is well-
defined because of the Rokhlin theorem.

Example 6.42. We have µ(S3) = 0, µ(P) = 1.

We have a short exact sequence

0 Ñ ker µ Ñ Θ3
Z

µ
ÝÑ Z/2Z Ñ 0. (6.43)

It induces a long exact sequence

¨ ¨ ¨ Ñ H4(M; Θ3
Z)

µ
ÝÑ H4(M; Z/2Z)

δ
ÝÑ H5(M; ker µ) Ñ ¨ ¨ ¨ .

The class c(K) lives in the leftmost term of the long exact sequence.

Theorem 6.44. We have

µ(c(K)) = ∆(M) P H4(M; Z/2Z).

Here ∆(M) is the Kirby–Siebenmann class of M, which obstructs the existence of PL
structure on M.

Hence δ(∆(M)) = δ(µ(c(K))) = 0 when such triangulation K exists.
Galewski–Stern and Matumoto showed that the converse is also true. That
is, for manifold M with dimension n ě 5, M is triangulable if and only if
δ(∆(M)) = 0. This can always happen when the short exact sequence 6.43

splits, i.e. there exists homomorphism

η : Z/2Z Ñ Θ3
Z

such that µη = 1. By Galewski–Stern and Matumoto, the converse is also true.
More precisely:

Theorem 6.45. The following statements are equivalent.

1. The short exact sequence 6.43 doesn’t split.

2. For every n ě 5, there exists a manifold Mn with δ(∆(M)) ­= 0, i.e. M is not
triangulable.

In conclusion, to find non-triangulable manifold, we only need to show
that 6.43 doesn’t split. Equivalently, there doesn’t exists integral homology
sphere Y such that µ(Y) = 1, and 2[Y] = 0 in Θ3

Z.
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The lift of µ

The idea of showing the assertion above is to lift µ to Z. More precisely, it
suffices to find a map

β : Θ3
Z Ñ Z

such that β (mod 2) = µ, and β(´Y) = ´β(Y). In fact, given such a β, if
there were an integral homology Y such that µ(Y) = 1, and 2[Y] = 0 in Θ3

Z,
we should have [Y] = ´[Y] in Θ3

Z, and hence,

β(´Y) = ´β(Y) ùñ µ(Y) = β(Y) mod 2 = 0,

which is a contradiction.

There are some previous works inspiring the construction of β. The first
one is the Casson invariant λ(Y), which is a lift of µ to Z by counting repre-
sentations of the fundamental group. However, it doesn’t descend to a map
from Θ3

Z. For example, Σ(2, 3, 13) is homology cobordant to S3, but they have
different Casson invariant.

The second is the Frøyshov invariant h, which we have defined previously.
It is a Z-valued homomorphism from Θ3

Z, but it doesn’t recover µ when mod-
ulo 2. For example, we have h(Σ(2, 3, 7)) = 0 while µ(Σ(2, 3, 7)) = 1.

Recall that Frøyshov invariant is defined as the lowest degree of the U-
tower. While it is irrelevant to the Rokhlin invariant, the degree of the re-
ducible θ in the chain complex does relate to it. Recall that we denote deg θ
by n(Y, g) P 2Z. It relates to µ(Y): we have

n(Y, g) = ´ gr(x0, W, θ) +
c1(s)

2 ´ σ(W)

4
´ ι(W).

Here W is a spin cobordism from Y to S3, and x0 is the reducible on S3, lying
in degree 0. We have

gr(x0, W, θ) = ind DA0 + ind(d+ + d˚) = ind DA0 ´ ι(W),

and c1(s)
2 = 0 since s is spin. Therefore

n(Y, g) = ´ ind DA0 ´
σ(W)

4
” 2µ(Y) (mod 4).

Here we use the fact that ind DA0 P 4Z since it’s a connection on a quater-
nionic line bundle. However, n(Y, g) depends on g.

We need to exploit the Pin(2)-equivariant structure. The complex that cal-
culates SWFHPin(2)

˚ (Y) is as follows. TBD Taking differential kills some ele-
ments from the reducible, but there are still three infinite v-towers, lying in de-
gree 2µ (mod 4), 2µ + 1 (mod 4), and 2µ + 2 (mod 4) respectively. Assume
that these towers have lowest degree 2α, 2β + 1, 2γ + 2 respectively. Then

α, β, γ ”
n(Y, g)

2
” µ(Y) (mod 2).
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Hence each of them gives a lift of µ. We can show that they descend to maps

α, β, γ : Θ3
Z Ñ Z

following the same approach for h. They are not homomorphisms since
H˚

Pin(2)(˚; F) is not a PID. Nonetheless, they do satisfy a duality theorem,
coming from a version of Spanier–Whitehead duality for equivariant spectra.

Theorem 6.46. We have α(´Y) = ´γ(Y), and β(´Y) = ´β(Y).

Therefore our β works! This confirms the existence of non-triangulable
manifold in every dimension n ě 5!

Question from the class Is there an explicit construction for such manifolds?

A: Yes! It uses mysterious techniques, such as attaching infinitely handles.
Some people do understand this.

6.8 Heegaard Floer homology

In the end of the class, we introduce the “symplectic monopole homology”,
or more commonly known as Heegaard Floer homology, due to Ozsváth and
Szabó [?ozsvath2004holomorphic,?ozsvath2004holomorphic1].

The origin of Heegaard Floer homology is to find a symplectic analog
of monopole Floer homology in the framework of Atiyah–Floer conjecture.
Starting from a Heegaard splitting U0 YΣ U1 of a 3-manifold Y, we insert a
long neck Σ ˆ [´T, T] in the middle. As T Ñ 8, the Seiberg–Witten equations
approximate to the Cauchy–Riemann equation for strips

u : R ˆ [0, 1] Ñ Symk(Σ).

Here Symk(Σ) is the symmetric product of Σ:

Symk(Σ) = Σk/Sk.

It is the moduli space of R-invariant solutions to the Seiberg–Witten equations
on Σ ˆ R, or vortices on Σ.

Definition 6.47. Let Σ be a closed surface, and L is a holomorphic line bundle
over Σ. The vortex equations are the following:

#

B̄Aϕ = 0,

‹FA = ´i(1 ´ |ϕ|2).

Here A is an Hermitian connection on L, and ϕ is a section of L.

Jaffe and Taubes [?jaffee1980vortices] showed that solutions to the vor-
tex equations correspond to points on the symmetric product Symk(Σ), where
k is an integer only depends on L, by (A, ϕ) ÞÑ Z(ϕ), the zero set of ϕ.
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Definition 6.48. The plus version of Heegaard Floer homology is defined as

HF+(Y, s) = HF(L0, L1).

Here L0, L1 are Lagrangians constructed from U0 and U1, g is the genus of Σ,
and the right side is the Lagrangian Floer homology in Symg(Σ).

The discussion above on vortex equations is just the motivation of Hee-
gaard Floer homology: Oszváth and Szabó didn’t really prove an analog of
Atiyah–Floer conjecture. However, we do have a huge theorem relating Hee-
gaard Floer homology and Monopole Floer homology:

Theorem 6.49 (“HF=HM”, [?kutluhan2020hf1,?kutluhan2020hf2,?kutluhan2020hf3,
?kutluhan2021hf4,?kutluhan2021hf5]). We have

HF+(Y, s) – }HM(Y, s).

Similar isomorphisms hold for other flavours on both sides.

This completes our course! We have explored many flavours of Floer ho-
mology, but we don’t have time to talk about contact homology, embedded
contact homology, and symplectic Khovanov homology.
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