FOUR-DIMENSIONAL TOPOLOGY

CIPRIAN MANOLESCU

ABSTRACT. We give a historical perspective on four-dimensional topology. We discuss the
fundamental results of Freedman and Donaldson from the early 1980s, the rise of Seiberg-
Witten theory in the mid 1990s, and more recent tools such as Heegaard Floer theory and
Khovanov homology.

1. INTRODUCTION

Four dimensions are special in topology. Compact manifolds of dimension at most 2
admit a simple classification scheme, and those of dimension 3 can be understood through
geometric methods (Thurston’s geometrization program, proved to hold using the Ricci
flow). In dimensions at least 4, a general classification was shown to be impossible, but
one can restrict attention to manifolds that are simply connected, or have some other fixed
(and relatively simple) fundamental group. In dimensions at least 5, we can study such
manifolds using the h-cobordism theorem and surgery theory. The idea is to decompose the
manifold into handles, and then to cancel the handles as much as possible. The key fact
needed is Whitney’s trick, which involves separating certain two-dimensional disks inside
the manifold; since 2 4+ 2 < 5, this can be done by a small perturbation.

By contrast, in dimension four the Whitney trick fails, and there is no known analogue
of Thurston’s geometrization. This makes it the most challenging dimension to study. It is
also the lowest dimension where the distinction between smooth and topological manifolds
appears. For example, we have the striking fact that, up to diffeomorphism, R” admits a
unique smooth structure for all n # 4, but uncountably many smooth structures when n = 4.
Furthermore, smooth structures on the n-sphere S™ are unique for n = 1,2,3,5,6, and in
higher dimensions their classification can be reduced to a problem in algebraic topology,
involving the stable homotopy groups of spheres. On the other hand, the existence of exotic
smooth structures on S* is a wide open problem, the smooth four-dimensional Poincaré
conjecture.

Nevertheless, much progress has been made in understanding four-manifolds. A famous
early result was Rokhlin’s theorem, which constrained the intersection forms of smooth spin
four-manifolds. Two major breakthroughs came in the early 1980s: the work of Freedman
on topological 4-manifolds, which in particular resolved the topological four-dimensional
Poincaré conjecture, and Donaldson’s diagonalizability theorem, which showed that smooth
four-manifolds are very different from the topological ones. Donaldson’s work introduced
an unexpected tool in smooth 4-dimensional topology: gauge theory, the study of certain
PDEs (coming from physics) that admit a symmetry under the group of automorphisms
of a bundle. Initially, the Yang-Mills equations were used, but in the 1990s they came to
be supplanted by the Seiberg-Witten equations. This led to further progress, such as the
resolution of the Thom conjecture by Kronheimer and Mrowka.
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In the last 20 years, the focus has shifted more towards understanding four-manifolds with
boundary. Four-manifold topology has now become closely connected to three-dimensional
topology and knot theory, through the perspective of topological quantum field theories
such as Floer homology and Khovanov homology.

What follows is a short survey of these historical developments, starting with what was
known before 1981, going through the work of Freedman and Donaldson, the introduction
of Seiberg-Witten theory, and ending with an outline of more recent results. As with any
such survey, we had to make a selection and leave out many important results; what is
included may reflect the biases of the author.

2. BEFORE 1981

2.1. Algebraic geometry. A few simple examples of four-manifolds can be easily pro-
vided: S*, RP*, products of lower dimensional manifolds. Apart from these, a very
rich source of examples is algebraic geometry. Compact complex surfaces include CP?,
CP! x CP!, Abelian varieties (topologically T%), the Hopf surface (topologically S x S%),
smooth hypersurfaces in CP3, etc.

Compact complex surfaces are an old subject. Their systematic study was started by
Noether and Castelnuovo in the nineteenth century, and was continued in the twentieth
century most notably by Enriques [Enrd9] and Kodaira [Kod63]. The upshot was the
Enriques-Kodaira classification, according to which every smooth compact complex surface
is of one of the following 10 types, which are sometimes grouped according to the Kodaira
dimension k:

rational surfaces, such as CP? and Hirzebruch surfaces (with k = —00);

ruled surfaces (also with x = —00), such as CP!-bundles over Riemann surfaces;
class VII surfaces (non-algebraic, and also with kK = —c0), such as the Hopf surface;
Abelian surfaces (k = 0);

K3 surfaces (k = 0);

Enriques surfaces (k = 0), quotients of K3 surfaces by an involution;

Kodaira surfaces (non-algebraic, with x = 0);

hyperelliptic surfaces (k = 0), quotients of a product of two elliptic curves by a
finite group of automorphisms;

e elliptic surfaces (k < 1);

e surfaces of general type (those with k = 2).

Note this classification is up to biholomorphism, whereas in topology we are interested
in the classification up to homotopy equivalence, homeomorphism or diffeomorphism. For
example, there are many K3 surfaces up to biholomorphism, but all of them are diffeomor-
phic. Thus, in topology, we can think of K3 in terms of any algebraic model, for example
as the Fermat quartic

K3:{[ZO:Z1122323]ECP4|Z§—|—zi‘L+Z§+Z§:0}.

We should also mention that the Enriques-Kodaira classification is not a full classification:
while 9 of the 10 classes can be reasonably understood, surfaces of general type (and their
moduli) are usually considered too complicated to fit into a simple list. Nevertheless, many
families of surfaces of general type are well studied, and there are also constraints on their
topology. For example, the Bogomolov-Miyaoka-Yau inequality [Yau78, Miy77] gives a
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constraint on the Chern numbers of surfaces of general type:
3 < 3cs.

There is also the older Noether inequality [Noe75], which applies more generally to compact
minimal complex surfaces:

5¢2 — ¢y + 36 > 0.

These are indeed topological constraints, because ¢ and cz can be expressed in terms of
the Euler characteristic x and the signature o:

C%:2X+30', Ccy =X

2.2. The impossibility of classification. More examples of four-manifolds can be con-
structed using surgery techniques. For example, given a finite presentation of a group G, we
can produce a smooth closed 4-manifold X with 71(X) = G as follows: We take a connected
sum of S' x S3, one term per generator, and do surgery on loops corresponding to relations
(that is, we replace S! x B? with B2 x §2).

Adyan and Rabin [Ady55| Rab58| showed that there is no algorithm that can be applied
to finite group presentations to determine if they present the trivial group. In 1960, Markov
leveraged this fact (together with the construction above) to prove:

Theorem 2.1 (Markov [Mar58]). There is no algorithm that can tell whether two arbitrary
closed 4-manifolds are diffeomorphic.

In view of Markov’s theorem, a classification scheme for general four-manifolds is not
feasible. It is, however, reasonable to ask for such a scheme for 4-manifolds with fixed
fundamental group, e.g. with m;(X) = 1.

2.3. Topological invariants. Let us now focus on closed, simply connected, oriented 4-
manifolds X. As a first attempt at distinguishing them, we can look at their classical
invariants from algebraic topology. Using Poincaré duality and the universal coefficients
theorem, we find that their homology groups take the form
Hy=H,=7, H =H;=0, Hy=12"
for some b > 0. Furthermore, there is a symmetric, unimodular, bilinear intersection form
Qx 7' x 7’ > 7.
With regard to the classification of four-manifolds up to homotopy equivalence, we have

the following:

Theorem 2.2 (Whitehead [Whi49], Milnor [Mil58]). Let X be a closed, simply connected,
oriented 4-manifold. Then, the intersection form QQx determines the homotopy type of X.

We are left to understand what intersection forms can be realized, and we can ask this
about topological manifolds, or about smooth manifolds.

Let us first review what algebra tells us about the possible forms Qx. Over R, we can
split Qx as m(1) ®n(—1). In our case, we write

b (X)=m, by (X)=n.

The signature of X is o(X) = by (X) — by (X) and the Euler characteristic is y(X) =
24 b3 (X) + by (X).
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Over Z, symmetric, unimodular, bilinear forms can be grouped into indefinite (m,n > 0)
and definite (m = 0 or n = 0). We can also distinguish between even forms, those such that
the pairing of any element with itself is even; and the other forms, which are called odd.

In the indefinite case, there is a complete classification. Odd indefinite forms are isomor-
phic to m(1) & n(—1) for some m,n > 0, and even indefinite forms to p(93) @ ¢Es, for
some p > 0 and ¢ € Z. Here, Eg is the matrix associated to the Fg Dynkin diagram:
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Definite unimodular forms admit no straightforward classification. There are the diagonal
forms n(1) for n € Z, and many examples of non-diagonal forms, even or odd (Es, Fs @ Fg,
Dy, the Leech lattice, etc.)

Another result from algebra tells us that if (Qx is even, then its signature is divisible by
8. The first nontrivial constraint on the intersection forms of four-manifolds is the following
celebrated theorem of Rokhlin, from 1952:

Theorem 2.3 (Rokhlin [Rok52]). If X is a smooth, closed, spin 4-manifold (e.g. simply
connected, with Qx even), then the signature of X is divisible by 16.

This shows that, for example, Fg cannot appear as @ x for X smooth.

Rokhlin’s theorem is connected to many areas of mathematics. The original proof was
based on cobordism theory, and has as corollary the calculation of the third stable homotopy
group of spheres, m5(S%) = Z/24. Rokhlin’s theorem can also be deduced from differen-
tial geometry, as a consequence of the Atiyah-Singer index theorem. For other proofs of
Theorem [2.3] we refer to [Mat86, [FK78, [Kir89)].

Finally, Rokhlin’s theorem has implications for the classification of high-dimensional man-
ifolds. Kirby and Siebenmann [KS77] used it to determine the obstruction for a topological
manifold M of dimension > 5 to admit a piecewise linear structure. This happens if and
only if an invariant ks(M) € H*(M;Z/2), called the Kirby-Siebenmann class, vanishes.

2.4. The generalized Poincaré conjecture. An h-cobordism W between closed n-dimen-
sional manifolds Yj and Y] is a compact (n+1)-dimensional manifold with OW = (—=Yp)UY)
such that the inclusions Yy <— W and Y; < W are homotopy equivalences.

In dimensions n > 5, Smale [Sma62] proved that the h-cobordism theorem holds: Every h-
cobordism between simply connected manifolds is a product Yy x [0, 1], and therefore Yy and
Y7 are diffeomorphic. A consequence is the n-dimensional generalized Poincaré conjecture:
An n-manifold homotopy equivalent to S™ must be homeomorphic to S™.

For non-simply connected manifolds, an analogue of the h-cobordism theorem still holds,
called the s-cobordism theorem. For that, we need to strengthen the hypotheses by asking
for the h-cobordism to have vanishing Whitehead torsion.

In dimension 4, the usual proofs of the h-cobordism and s-cobordism theorems break
down, due to the failure of the Whitney trick. We still have the following weaker result,
from 1964:
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Theorem 2.4 (Wall [Wal64]). Two simply connected, smooth, closed, oriented 4-manifolds
with isomorphic intersection forms are h-cobordant, and become diffeomorphic after taking
connected sums with k(S? x S?), for some k > 0.

On the other hand, Cappell and Shaneson [CS76] produced examples of fake RP*’s:
manifolds that are homotopy equivalent, and in fact smoothly s-cobordant, to RP*, but are
not diffeomorphic to RP*. (They were later shown to be homeomorphic to RP.) Thus, the
s-cobordism theorem fails in dimension 4.

With regard to the generalized Poincaré Conjecture in dimension 4, its topological version
was proved by Freedman. (See Section below.) The smooth version is still open:

Question 2.5. If X* is homotopy equivalent to S*, then is it diffeomorphic to S*?

Among experts, opinions are split on whether we should expect the answer to be yes or
no. Over time, many potential counterexamples have been proposed (manifolds that are
homotopy equivalent to S, but not known to be diffeomorphic to it). Here are three famous
families:

o Andrews-Curtis examples [AC65]: constructed from presentations of the trivial
group;
o Gluck twists [GIu62]: take out a neighborhood embedded sphere (2-knot) S? — S4,
and glue it back using the map f: S' x 5% — S x 82, f(e?,z) = (¥, rotg(x));
e Cappell-Shaneson spheres [CS76): two-fold covers of fake RP*’s.
Some of these were later shown to be standard S*’s; see for example [Akb10], [GomI0].

2.5. Kirby calculus. In 1978, Kirby [Kir78] developed a “calculus for links in S3”, which
consists of moves that relate any two presentations of a 3-manifold in terms of surgery
on links. His calculus was later extended to representations of 4-manifolds. We visualize
4-manifolds in terms of links in R? as follows. By Morse theory, a smooth 4-manifold
(possibly with boundary) can be decomposed into handles. A Kirby diagram for the 4-
manifold shows the attaching spheres of the 1-handles and 2-handles. For example, here
are pictures representing S? x S2 (left) and a D?-bundle over T2 of Euler number n (right):

0 0 e n
S S
S

Furthermore, two Kirby diagrams represent the same 4-manifold if and only if they are
related by a sequence of certain moves (handle cancellations and handleslides). We refer to
the book [GS99] for an extensive treatment of the subject.

3. FREEDMAN’S AND DONALDSON’S RESULTS, AND CONSEQUENCES (1981-1994)

3.1. Freedman’s results. An important advance in our understanding of four-manifolds
was made by Friedman in 1981, when he proved the topological h-cobordism theorem in
dimension 4:

Theorem 3.1 (Freedman [EFre82]). If W is a topological h-cobordism between closed topolog-
ical 4-manifolds M and N, and 71(M) = 1, then we have a homeomorphism W = M x [0, 1].
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The proof uses the technique of Casson handles [Cas86] to cancel intersection points of
Whitney disks. A key ingredient is the result that Casson handles are homeomorphic to
standard 2-handles (S? x D?). We refer to the books [FQ90] and [BKPR21] for details of
the proof.

A corollary of Theorem is the 4D topological Poincaré Conjecture:

Theorem 3.2 (Freeedman [Fre82]). If a topological 4-manifold M is homotopy equivalent
to S, then it is homeomorphic to S*.

More generally, Theorem gives the classification of simply connected, closed, topolog-
ical 4-manifolds.

Theorem 3.3 (Freedman [Fre82]). (a) For every unimodular symmetric bilinear form Q
there exists a simply connected, closed, topological 4-manifold X such that Qx = Q.

(b) If Q is even, the manifold X is unique up to homeomorphism.

(c) If Q is odd, there are exactly two homeomorphism types of manifolds with the given
Q, and at most one is smoothable.

For example, there exists a closed, simply connected topological manifold Mg, with
intersection form Eg. By Rokhlin’s theorem, the manifold Mg, cannot admit a smooth
structure. Further, there exists a fake CP?, denoted *CP2?, which is homotopy equivalent
but not homeomorphic to CP2. (It is distinguished from the usual CP? by the Kirby-
Siebenmann invariant.)

As a consequence of Theorem [3.3], simply connected, smooth 4-manifolds are determined
up to homeomorphism by their intersection forms.

Freedman’s work was further extended by Quinn [Qui82|], who showed (among other
results) that all noncompact, connected topological 4-manifolds are smoothable; and that
topological 5-manifolds admit handle decompositions.

One can also ask about the classification of topological 4-manifolds with fixed fundamen-
tal group m X ) = G. Freedman’s results are based on the existence of suitable Whitney
disks, which exist for a class of groups G called good. Good groups include finite groups,
and finitely generated abelian groups. See for example [FQ90, Theorem 10.7A] for a classi-
fication result in the case G = Z.

3.2. Gauge theory. In particle physics, the differential equations that underlie the stan-
dard model (electromagnetic + weak + strong interactions) admit gauge symmetry, i.e.
they are invariant under an infinite-dimensional gauge group consisting of automorphisms
of a vector bundle; e.g. C°(X,G) for a trivial G-bundle over X, where G is a Lie group.

The simplest example of equations with a gauge symmetry are Maxwell’s equations for
electromagnetism, which are invariant under U(1) gauge. Electroweak interactions are
modeled by the Yang-Mills equations, which have SU(2) gauge symmetry:

(1) d4Fy = 0.

Here A is a connection in an SU(2)-bundle E over a four-manifold X*. In physics, the
manifolds come equipped with Lorentzian metrics, but one can also consider the same
equations over Riemannian manifolds.

When c2(E)[X] > 0, the minimal energy solutions to are the ASD (anti-self-dual)
solutions, satisfying

«Fy = —Fy.
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In the 1970’s, mathematicians started paying attention to these. In 1978, Atiyah, Drinfeld,
Hitchin and Manin [AHDMT7S8] described the instantons (solutions to ASD) on S*. Uh-
lenbeck [UhLI82] proved a compactness theorem for ASD connections, and Taubes [Tau82]
proved an existence / gluing theorem. Using their work, Donaldson [Don83] studied the
moduli space of ASD connections on a definite 4-manifold and surprised the mathematical
world by giving a topological application of gauge theory, his diagonalizability theorem:

Theorem 3.4 (Donaldson [Don83]). If the intersection form Qx of a smooth, simply con-
nected, closed 4-manifold X is definite, then Qx = n(1) for some n € Z.

This means that not only Eg cannot appear as Qx for such X smooth (which followed
from Rokhlin’s theorem); neither does Eg @& Eg. Hence, Mp,# Mg, is not smoothable.

3.3. Applications of Yang-Mills theory. After Freedman’s and Donaldson’s beakthroughs,
it was almost immediately realized that the imply the existence of an exotic R*. One way
to construct it is to take X = CP?#9CP?, with Qx = (1) @ 9(—1) = (—Eg) @ (—1) & (1).
The generator « of the last (1) cannot be represented by a smoothly embedded sphere (by
a consequence of Donaldson’s theorem), but can be represented by a topological one (by a
consequence of Freedman’s work). A neighborhood U of this sphere 3 can be embedded in
CP?, with [X]? = 1. Then, the complement CP?\ ¥ is homeomorphic but not diffeomorphic
to R%.

Building on these ideas, Gompf [Gom85] proved that R* has infinitely many smooth
structures, and Taubes [Tau87] proved that it has uncountably many.

In a different direction, Donaldson [Don90] turned his attention to the moduli space of
ASD connections on four-manifolds X with b5 (X) > 1. For b5 (X) > 3 odd, “counting”
solutions (with some constraints) yields homogeneous polynomial functions

(X)) : H}(X;R) = R

of degree d = 4k — (3b™ + 1), where k € Z is the instanton number. There is a generalization
of this to by (X) = 1, which involves “wall crossing.”
The Donaldson polynomials are invariants of smooth four-manifolds that are sensitive to
the smooth structure. Among their properties we mention:
e We have ¢ = 0 when X = X;# X, with b5 (X;) > 0,i = 1,2
e For complex projective surfaces, the invariants can be understood in terms of counts
of stable vector bundles, and often do not vanish;
e There is a blow-up formula relating the invariants of X and X#CP?;
e Assuming a certain condition (simple type), the polynomials g, satisfy some recur-
rence relations; see [KM94b].

Starting from here, Yang-Mills theory yielded a number of striking new applications:
e The smooth h-cobordism theorem fails in dimension 4; see [Don87]: for example,

CP?#9CP? and the Dolgachev surface are homotopy equivalent (hence, h-cobordant
and homeomorphic) but not diffeomorphic;

e Many other complex surfaces (K3, CP2#nCP? for n > 8, many surfaces of general
type) admit exotic smooth structures; in some cases, infinitely many of them; see
[EMSS], [OVdVRY], [Kot89], etc.;

e Gompf and Mrowka |[GM93] showed that irreducible simply connected 4-manifolds
need not be complex;
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e Existence of corks, i.e. compact contractible 4-manifolds W with boundary, with
involutions on 0W that extend to self-homeomorphisms but not self-diffeomorphisms
inside. The first such example was found by Akbulut in [Akb9I]. It was later
shown that the failure of the h-cobordism theorem is always due to such corks; see
[CFHS96], [Mat96].

3.4. Embedded surfaces. Apart from four-manifolds per se, topologists are also inter-
ested in studying surfaces smoothly embedded in them. A typical problem is to deter-
mine the minimal genus of an embedded surface that represents a given homology class
h € Ho(X;Z).

By studying the ASD equations on 4-manifolds X with singularity along a surface > C X,
Kronheimer and Mrowka [KM93| proved genus bounds for surfaces in a given homology
class, provided the Donaldson invariants of X are non-zero. Here are two applications:

Theorem 3.5 (Kronheimer-Mrowka [KM93]). Smooth complex curves in the K3 surface
are genus minimizing in their homology class.

Corollary 3.6 (Local Thom Conjecture; cf. Kronheimer-Mrowka [KM93]). Algebraic
curves in C? are locally genus minimizing.

There is a variant of the genus minimization problem for surfaces with boundary. Given
a knot K C S3, we ask about its slice genus:

gs(K) = min{genus(X) | ¥ oriented, ¥ ¢ B* 0¥ =¥ N S% = K}

Knots with g5(K) = 0 are called slice. As of now, there is no known algorithm to determine
the slice genus of a knot, or even an algorithm that would tell us if it is slice.

Nevertheless, for some families of knots, Yang-Mills theory was successfully used to com-
pute the slice genus. For example, the torus knot

Tp7q:S3ﬂ{(x,y) e C? | 2P — y? =€}

bounds an algebraic curve, which must be genus minimizing by the local Thom conjecture.
From here, Kronheimer and Mrowka obtained a proof of a conjecture of Milnor:

Corollary 3.7 (Kronheimer-Mrowka [KM93]). The slice genus of the torus knot T), , is
(p=1)(g-1)/2.

4. SEIBERG-WITTEN THEORY (1994-2000)

4.1. The Seiberg-Witten equations. In 1994, Seiberg and Witten introduced a new set
of gauge-invariant equations over four-manifolds:

F{=0(®), Da®=0

where A is a Spin® connection (in a Spin® bundle S over X), ® is a spinor, o is a certain
quadratic form, and D 4 is the Dirac operator.

Compared to Yang-Mills, the Seiberg-Witten equations have some advantages: the group
is abelian (being locally modeled on U(1) instead of SU(2)) and the moduli space of solutions
(monopoles) is compact. By counting solutions (with certain constraints) we get the Seiberg-
Witten invariants of 4-manifolds X:

SWx : Spin“(X) - Z
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where Spin®(X) is the set of Spin® structures on X. The invariants are usually defined
for b3 (X) > 3 odd. When b3 (X) = 1, we have two different functions SW related by a
“wall-crossing formula.”

Witten [Wit94] conjectured that the Seiberg-Witten invariants are a repackaging of the
Donaldson invariants, by a specific formula. Witten’s conjecture was proved by Feehan and
Leness [FL18] in many cases, and a completely general proof is now in sight.

Many results obtained with Yang-Mills theory (e.g. Donaldson’s diagonalizability theo-
rem) can be re-proved with Seiberg-Witten theory, and some can be improved. A famous
early application was the Thom Conjecture:

Theorem 4.1 (Kronheimer-Mrowka [KM94a]). Smooth algebraic curves in CP* are genus
minimizing in their homology class. Therefore,

min{g(X) | ¥ ¢ CP? [X] = d[CP']} = (d — 1)(d — 2)/2.

4.2. Symplectic four-manifolds. In a series of foundational papers, Taubes [Tau94,

Tau95] studied the Seiberg-Witten equations on symplectic manifolds, proving for example

that they are nonvanishing for the canonical class K, and later showing that the Seiberg-

Witten invariants equal the Gromov-Witten invariants (counts of pseudo-holomorphic curves).
This led to several applications to symplectic geometry:

e Taubes [Tau95] showed that CP? has a unique symplectic structure, up to scaling
and symplectomorphism;

e Lalonde and McDuff [LM96] classified ruled symplectic manifolds (S2-bundles over
compact surfaces);

e Szabé [Sza98] showed the existence of simply connected irreducible 4-manifolds that
are not symplectic;

e Ozsvath and Szab6 |OS00] proved the Symplectic Thom Conjecture: symplectic
surfaces in symplectic manifolds are genus minimizing in their homology class.

4.3. Fintushel-Stern knot surgery. In 1996, Fintushel and Stern [F'S98|] introduced the
following surgery operation on 4-manifolds. Let X be a simply connected smooth 4-manifold
with b; > 1. Let T C X be a c-embedded torus (e.g. a fiber of the elliptic fibration in
the K3 surface), such that m1(X —T') = 1. Write the Seiberg-Witten invariants as a formal
power series
SWX = Z SWX(S)ecl(S).
s€Spin®(X)
Let K C S3 be a knot. Let
Xx = (X \ nbhd(T)) Ups (St x (83 \ nbhd(K))
This is homeomorphic to X, and we have
SWx, = SWyx - Ag (2T

where A is the Alexander polynomial of K. For example, if X is the K3 surface, then
SWx = 1and SWx, is given by the Alexander polynomial. As we vary the knot K, this can
be any symmetric Laurent polynomial p(t) € Z[t,t '] with p(1) = 1. This gives many exotic
smooth structures on the K3 surface: if two knots have different Alexander polynomials,
then the corresponding four-manifolds X are homeomorphic but not diffeomorphic. To
what extent the knot K is determined by the diffeomorphism type of X remains an open
problem.
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4.4. Furuta’s 10/8-Theorem. For a 4-manifold with a spin structure (e.g. 7 (X) =1
and Qx even), the Seiberg-Witten equations admit a symmetry under the group

Pin(2) = S'ujS' c CejC =H.

Furuta [Fur0I] introduced the finite dimensional approximation to the Seiberg-Witten
map: an equivariant map between Pin(2)-representation spheres, with certain properties.
Its existence implies:

Theorem 4.2 (Furuta [Fur01]). Let X be a smooth, spin, closed 4-manifold. If the inter-
section form Qx is not definite, then by(X) > Qo (X)| + 2.

The inequality by(X) > & |o(X)| is Matsumoto’s 11/8-conjecture [Mat82]. The conjec-
ture is still open, but Furuta’s theorem represents significant progress in its direction. If
proved, the 11/8-conjecture would complete the classification of smooth simply connected
4-manifolds up to homeomorphism, by an application of Theorem

5. THE LAST TWENTY YEARS (2000-2020)

In the last twenty years, several new research directions have emerged in four-dimensional
topology. We sketch them here, along with some open problems and topics of current
interest.

5.1. More applications of finite dimensional approximation. Furuta’s finite dimen-
sional approximation technique yielded a refinement of the Seiberg-Witten invariants, the
Bauer-Furuta invariants from [BF04]. While the Seiberg-Witten invariants are numbers,
the Bauer-Furuta invariants are elements in an S'-equivariant stable homotopy group of
spheres. (For spin manifolds, we can also get elements in a Pin(2)-equivariant stable ho-
motopy group of spheres.) One can think of the Bauer-Furuta invariants as capturing the
Seiberg-Witten moduli space as a framed manifold, via the Pontryagin-Thom construction.

The Bauer-Furuta invariants contain more information than the Seiberg-Witten invari-
ants. For example, they can be nontrivial for some manifolds with b; even, such as K3# K3,
and have been used to show the existence of exotic smooth structures on #" K3 for n < 4;
see [Bau04].

In a different direction, the 10/8 inequality (Theorem [4.2)) was improved (by a constant
term) by several authors, culminating in the 10/8 4+ 4 theorem of Hopkins, Lin, Shi and
Xu [HLSX18]. In that paper, the authors characterized exactly which stable Pin(2)-maps
between representation spheres with the required properties exist.

5.2. Cut-and-paste techniques: Floer homology. The last twenty years have seen a
surge in research activity aimed at understanding 4-manifolds with boundary. While for
closed 4-manifolds the Donaldson and Seiberg-Witten invariants take numerical values, for
manifolds X with boundary their analogues take values in a group associated to 0.X, called
Floer homology. This allows computing the closed 4-manifold invariants by cut-and-paste
techniques, using gluing formulas of the type

X=XoUy X = (I)(X) = <@(X0),‘1>(X1)>

Here, 0Xy = —0X; =Y, the symbol ® denotes a 4-manifold invariant, and (-, -) is a natural
pairing between the Floer homologies of Y and —Y.
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The first version of Floer homology was instanton homology, constructed by Floer [Flo88]
using the Yang-Mills equations. It is defined for integer homology 3-spheres (that is, 3-
manifolds Y with H.(Y) = H.(S%)), and gives a gluing formula for Donaldson invariants,
for 4-manifolds cut along an integer homology 3-sphere.

Since then, many other Floer homologies for 3-manifolds were developed:

e More versions of instanton homology, cf. [AB96], [Fre02], [KM10], [Mil19];
Monopole (a.k.a. Seiberg-Witten) Floer homology, cf. [KMO0T7], [MWO01], [Man03],
[Erg10];

Heegaard Floer homology, cf. [OS04bl;

Symplectic instanton homology, cf. [WW20], [MW12], [Hor16];

Embedded contact homology [Hutl4], which is associated to a 3-manifold equipped
with a contact structure.

Monopole Floer homology, Heegaard Floer homology and embedded contact homology
are now known to be isomorphic, by the work of Taubes [Taul(], Kutluhan-Lee-Taubes
IKLT20] and Colin-Ghiggini-Honda [CGH12]. Instanton homology and symplectic instanton
homology are conjectured to be isomorphic to each other, while the relation between these
and the other three theories is less clear.

Most of the Floer homologies above have analogues associated to knots in 3-manifolds.
These are of interest both in the study of knots per se, and as a stepping stone towards
understanding the 3-manifold invariants, via surgery formulas. (Every 3-manifold is known
to be obtained by surgery on a link in $3.) Indeed, Floer homology has many 3-dimensional
applications, particularly to questions related to surgery. For example, in 2003, Kronheimer
and Mrowka [KMO04] used instanton Floer homology to prove Property P for knots (that
surgeries on knots cannot produce counterexamples to the Poincaré conjecture). In the
same year, Kronheimer, Mrowka, Ozsvath and Szabé used monopole Floer homology to
show that the unknot is characterized by any of its surgeries [KMOSQT].

5.3. Heegaard Floer theory. Heegaard Floer homology is a 3-manifold invariant con-
structed by Ozsvath and Szab6 |OS04b] using symplectic geometry (counts of pseudo-
holomorphic curves in symmetric products of Riemann surfaces). Its knot theory counter-
part is called knot Floer homology, and was independently constructed by Ozsvath-Szabd
and Rasmussen [OS04al, Ras03].

Heegaard Floer theory has become popular among researchers because it is more com-
putationally tractable than the invariants from gauge theory. Indeed, there are:

e concrete formulas for the Heegaard Floer homology of many families of 3-manifolds,
such as Seifert fibrations, negative definite plumbings, or surgeries on alternating
and torus knots; see for example [OS03c, (0S03b, [0S05];

e combinatorial descriptions of knot Floer homology, that make it algorithmically
computable for any knot; see [MOSQ9], [OS09], [BL12[;

e general combinatorial descriptions of the Heegaard Floer homology of 3-manifolds,
and of the related 4-manifold invariants (conjecturally equal to the SW invariants);
see [SW10], [MOT09];

e versions of Heegaard Floer homology for 3-manifolds with boundary (bordered Floer
homology) which give effective algorithms for computation; see [LOTI18, [LOT14,
0S19].
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Furthermore, Heegaard Floer homology has numerous applications to questions about
knots and 3-manifolds, and to contact geometry. Since this is a survey on four-manifolds,
however, let us mention a few of its four-dimensional applications:

e Constraints on the intersection forms of smooth 4-manifolds with boundary a specific
3-manifold; see [OS03al;

e New calculations of the invariants of closed 4-manifolds, e.g. for knot concordance
surgery (a variant of Fintushel-Stern knot surgery) see [JZ18];

e A proof of the existence of compact 4-manifolds X homotopy equivalent to S?, such
that the homotopy equivalence cannot be realized by a piecewise linear embedding
S% — X; see [LL19)].

5.4. Homology cobordism. An easy exercise in algebraic topology shows that if X is a
compact four-manifold with boundary and H,(X) = H,(B*), then the boundary 0X is a
homology 3-sphere. Conversely, every homology 3-sphere bounds a topological 4-manifold
X with H,(X) = H.(B*), by a result of Freedman [Fre82]. (In fact, X can be taken to be
contractible.) In the world of smooth manifolds, however, the question of which homology
3-spheres bound homology 4-balls is a difficult one. Observe that a homology 3-sphere Y
has this property if and only if it represents the zero class in the following abelian group:

03 = {Y? oriented, H,(Y) = H,(S%)} / ~

where the equivalence relation is given by Yy ~ Y} <= there exists compact, oriented,
smooth four-manifold W with OW = (=Yy) UY; and H,(W,Y;;Z) =0 :

Yo Y3

The group @% is called the homology cobordism group, and is an important object of study
at the interface of 3- and 4-dimensional topology. It also has applications to the theory of
triangulations of manifolds in dimensions > 5.

One can show that ©3 # 0 by considering the Rokhlin homomorphism

w03 - 7/2, wY)=0c(W)/8 (mod?2)

where W is any compact, smooth, spin 4-manifold with boundary Y. Theorem shows
that this is a well-defined map.

For example, we have 1(S%) = 0, but p(Poincaré sphere) = 1 and hence ©3 # 0.

Using Yang-Mills theory, in the 1990s it was proved that ©3 has a Z* subgroup [Fur90],
[ES85]. Later, Frgyshov [Frg02] constructed an epimorphism

h:03 17,

showing that @% has at least a Z summand. Similar epimorphisms can be defined using
Seiberg-Witten or Heegaard Floer theory.

In 2013, the author used a Pin(2)-equivariant version of Seiberg-Witten Floer homology
to show that the exact sequence

0 —> ker(p) — 03 5 72/2 —0
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does not split [ManI6]. Combined with the work of Galewski-Stern [GS80] and Matu-
moto [Mat78] from the 1970’s, this showed the existence of non-triangulable manifolds in
dimensions > 5.

Similar ideas gave rise to an involutive version of Heegaard Floer homology [HM17], which
was recently used to prove that ©3 admits a Z*° summand [DHSTIS]. Understanding the
structure of ©3 remains an active area of research.

5.5. Khovanov homology. For links K C S%, Khovanov [KhoO0] defined a bigraded ho-
mology theory

Kh(K) =P Khi;(K)
b,J

whose Euler characteristic is the Jones polynomial. The construction is purely combinato-
rial, and is inspired by ideas from representation theory (categorification).

However, Khovanov homology is formally similar to Floer homologies for knots; e.g. it is
functorial under knot cobordisms in S x [0, 1]. In fact, Khovanov homology was later given
a symplectic interpretation in terms of Lagrangian Floer homology; see [SS06] and [AS19].
Furthermore, in 2011, Witten [Wit12] proposed an interpretation of Khovanov homology in
terms of gauge theory, based on the Kapustin-Witten and Haydys-Witten equations with
certain boundary conditions.

Given these similarities, an important problem is to extend Khovanov homology to knots
in arbitrary 3-manifolds, and to see if this leads to interesting new 4-manifold invariants.
In 2019, Morrison, Walker and Wedrich [MWW19] proposed a candidate theory, which
generalizes Khovanov homology to links in the boundaries of 4-manifolds.

In fact, four-dimensional applications of Khovanov homology, particularly related to knots
in §3, already exist. In 2004, using a deformation of Khovanov homology, Ramussen ex-
tracted a numerical knot invariant denoted s, which gives a lower bound for the slice genus

|s(K)| < 2g4(K).

He then used s to give a combinatorial proof of Milnor’s Conjecture, that gs(7p4) = (p —
1)(g — 1)/2; see [Rasl(]. One can also use s to show the existence of topologically slice
knots that are not smoothly slice, which gives a new proof (without gauge theory) of the
existence of exotic smooth structures on R*,

Thus, to some extent, Khovanov homology is a replacement for gauge theory. Neverthe-
less, there are still many results proved with gauge theory (such as Donaldson’s diagonaliz-
ability theorem, Theorem which do not yet have Khovanov-theoretic proofs.

There are also new applications of Khovanov homology, for which no gauge theoretic
proofs are known. For example, Piccirillo [Pic19] showed that the slice genus of a knot
can differ from a related invariant called the shake genus. In [Pic20], she showed that the
Conway knot C is not slice; this was a knot for which all previously known obstructions to
sliceness vanished; in particular, the Rasmussen invariant is s(C') = 0. Piccirillo constructed
a partner knot C’ such that C is slice <= (' is slice, and she showed that C’ is not slice
by calculating that s(C”) # 0.

There is even some hope that Khovanov homology may help disprove the smooth Poincaré
Conjecture in dimension 4 (SPC4); i.e. give a negative answer to Question This is based
on a strategy proposed in 2009 by Freedman, Gompf, Morrison, and Walker [FGMW10]:
Find a knot K C S3 such that s(K) # 0 (hence gs(K) # 0, i.e. K does not bound a smooth
disk in B*) but such that K bounds a smooth disk in some homotopy ball Z. This would
imply that Z 2 B%, and hence Z U B* would be a nontrivial homotopy 4-sphere.
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It is worth noting that gauge theoretic invariants cannot distinguish between sliceness
in B* and in a homotopy 4-ball. It is unclear whether s can do so. In [MMSWT9], it was
proved that that if K bounds a smooth disk in a homotopy 4-ball obtained from B* by a
Gluck twist, then s(K) = 0. (The proof involved showing properties of s with respect to

surfaces in CP? and CP2.) Thus, the strategy in [FGMWI(] fails for Gluck twists.

Still, there are other examples of homotopy 4-balls where the strategy could conceivably
work. In [MP21], the author and Piccirillo produced homotopy 4-spheres from pairs of
knots with the same O-surgery. By computer experimentation, they found 5 examples of
topologically slice knots such that, if any of them were slice, then SPC4 would be false.

5.6. New constructions of four-manifolds. Recall from Section [2.1] that many interest-
ing examples of 4-manifolds come from algebraic geometry. The study of complex surfaces
has continued to develop. Particularly striking was the progress in constructing fake projec-
tive planes, complex surfaces that have the same homology as CP? but are not biholomorphic
to it. Note that, by a result of Yau [Yau78], such surfaces cannot be homeomorphic to CP?.
Rather, they are algebraic surfaces of general type with nontrivial fundamental group. The
first example of a fake projective plane was given by Mumford in 1979 [Mum79], but a full
understanding came only in the 2000’s, thanks to the work of Prasad and Young [PY07],
Keum [Keu0§] and Cartwright and Steger [CS10]. The conclusion is that there are exactly
100 fake projective planes up to biholomorphism.

Every complex projective surface is Kéhler and hence symplectic. On the other hand,
symplectic geometry is a more general source of constructions of 4-manifolds than complex
geometry. In 1995, Gompf |[Gom95| introduced the fiber sum operation on symplectic
manifolds, and used it to show the existence of simply connected symplectic 4-manifolds
that are not complex. He also showed that there exist symplectic 4-manifolds with arbitrary
(finitely presented) fundamental group. A combination of the work of Gompf [Gom95] and
Donaldson [Don99] provided a topological characterization of symplectic 4-manifolds, in
terms of Lefschetz pencils. Since then, much research has been done on the geography
problem for simply connected symplectic 4-manifolds: deciding which triples (x,o,t) can
be realized by such manifolds, where y is the Euler characteristic, o the signature, and ¢
the parity of the intersection form.

In the non-simply connected case, it is worth mentioning the result of Friedl and Vidussi
[FV1I], who completely characterized which four-manifolds of the form M x S! are sym-
plectic: those such that the 3-manifold M fibers over the circle.

With regard to smooth four-manifolds per se, there was a flurry of activity around 2003-
2007 aimed at finding exotic smooth structures on simply connected 4-manifolds with small
bs. Following work of J. Park, Akhmedov, D. Park, Fintushel, Stern, Stipsicz and Szabé, it
was established that CP?#nCP? admits infinitely many exotic smooth structures, provided
that n > 2; see [AP10]. The existence of exotic smooth structures on simpler four-manifolds

such as S*, CP?, CP?#CP?, S' x S3, T* or 5% x S? is still unknown. Also open is the case
of the definite manifolds #"CP?, for any n.

5.7. Diffeomorphism groups. Another active area of research concerns the diffeomor-
phism groups of 4-manifolds, and their relation to homeomorphism groups. Gauge the-
ory has proved useful here. Ruberman [Rub98| used Seiberg-Witten theory to give the
first examples of simply connected four-manifolds X such that the map mo(Diff (X)) —
mo(Homeo(X)) is not injective. When X is the K3 surface, Baraglia and Konno [BK19]
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showed that the map 71 (Diff (X)) — w1 (Homeo(X)) is not surjective, and Baraglia [Bar21D)]
showed the nontriviality of 7 (Diff (X)). More generally, Baraglia [Bar21al] showed that the
map Diff (X) — Homeo(X) is not a weak homotopy equivalence for any closed, smooth,
simply connected indefinite 4-manifold with signature of absolute value greater than 8.

In 2018, by completely different methods (based on Kontsevich’s characteristic classes
for disk bundles), Watanabe [Watl18] disproved the 4D Smale Conjecture: He showed that
Diff (S*) is not homotopy equivalent to O(5).

5.8. The lightbulb theorem. The classical three-dimensional lightbulb theorem says that
if a knot K C S! x S? intersects {1} x S? transversely and exactly once, then K is isotopic
to S x yo for some yy € S?. This has an elementary proof. Much more difficult is the
four-dimensional version of this result, which was established in 2017 by Gabai:

Theorem 5.1 (Gabai [Gab20]). If a two-sphere R C S? x S? satisfies [R] = [zo x S?] and
R intersects S% x yg transversely at a single point, then R = xy x S2.

Note that invariants from gauge theory, Heegaard Floer homology, and Khovanov ho-
mology typically lead to “negative” results (e.g. two manifolds are not diffeomorphic, or
a surface of a given genus and homology class does not exist). Theorem is a result of
a different kind; we could call it “positive.” Its proof has given researchers renewed hope
that topological methods can lead to progress in smooth four-dimensional topology.
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