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Chapter 1

Classification of 4-manifolds

1.1 Admin (lecture 1)

Topics in the course will include:
1. topological 4-manifolds: Freedman’s classification (without proof)
2. presentations of smooth 4-manifolds: Kirby diagrams, trisections;
3. spin® structures, the Dirac operator, the Seiberg-Witten equations;

4. applications of gauge theory: exotic smooth structures, Donaldson’s diagonalizability
theorem, the Thom and Milnor conjectures;

5. (time permitting) Khovanov homology and the combinatorial proofs of the Thom
and Milnor conjectures.

There is no official textbook for the course, but the following resources could be useful:

e Robert Gompf and Andras Stipsicz, “4-Manifolds and Kirby Calculus”

Alexandru Scorpan, “The Wild World of 4-manifolds”

John Morgan, “The Seiberg-Witten Equations and Applications to the Topology of
Smooth Four-Manifolds”

e John Moore, “Lectures on the Seiberg-Witten Invariants”
e Simon Donaldson and Peter Kronheimer, “The Geometry of Four-Manifolds”
Results from the following research articles will also be discussed:

e Peter Kronheimer and Tomasz Mrowka, “The Genus of Embedded Surfaces in the
Projective Plane”. Mathematical Research Letters. 1 (1994), 797-808,

3



e Mikhail Khovanov, , “A categorification of the Jones polynomial”, Duke Mathemat-
ical Journal, 101 (2000), 359-426

e David Gay and Robion Kirby, “Trisecting 4-manifolds”, Geom. Topol. 20 (2016),
3097-3132

e Peter Lambert-Cole, “Bridge trisections in CP? and the Thom Conjecture”, arXiv:1807.10131
Some highlights from the course are the following three results:
1. There exist smooth homeomorphic 4-manifolds which are not diffeomorphic.

2. The Thom conjecture, proved by Kronheimer and Mrowka in 1994: if ¥ ¢ CP? is a
smoothly embedded surface, and ¥ represents an algebraic curve of degree d, then
the genus of ¥ is at least (d — 1)(d — 2)/2.

3. The Milnor conjecture, also proven by Kronheimer and Mrowka in the 90s: let T}, ,
denote the torus knot with p twists and ¢ strands. Suppose ¥ C B* is a smoothly
and properly embedded surface, with 0¥ = X N 0B* = T}, 4. Then the genus of ¥ is
at least (p—1)(¢ — 1)/2.

The original proofs of the above three results were analytic in nature. More precisely, the
employed gauge theory - specifically the Yang-Mills and Seiberg-Witten equations.

Newer proofs are referred to as “combinatorial” in the literature, but this is a misnomer.
The newer methods are algebraic and topological, without using analysis. A very important
tool is Khovanov homology.

1.2 The futility of a full classification of 4-manifolds

The most fundamental and desired result is a classification of all 4-manifolds. Unfortu-
nately, this is hopeless by combining the following two theorems:

Theorem 1.2.1 (Adyan-Rubin, 1955). There does not exist an algorithm which determines
whether a given presentation of a group yields the trivial group.

Theorem 1.2.2 (Markov, 60s). Given a finitely presented group G, there exists a smooth
closed 4-manifold X with m(X) = G.

Therefore smooth closed 4-manifolds are at least as complicated as finitely presented
groups. From here, one can show that we cannot classify smooth closed 4-manifolds up to
homotopy, let alone up to diffeomorphism.

Proof of Markov’s theorem. The proof proceeds in a few steps.



Step 1. Given any 4-manifolds X; and Xy, m(X1#X2) = m(X7) * m1(X2). This fol-
lows from Seifert-Van Kampen. Observe that

7T1(Xz‘) = 7T1(Xi — B4) * (83) 7T1(B4) = 7T1(Xi - B4)

T
Therefore

7T1(X1#X2) = 7['1(X1 — B4) *TFl(S3) 7T1(X2 — B4) = 7T1(X1) *x 71’1(X2).

Step 2. Write G = (g1,...,9n|r1,...,7m). Suppose N is the connected sum of n copies of
St x S3. Then by step 1, m(N) =+, Z = (g1, - -, gn)-

Step 3. Consider any relation r;. These are represented by a loop 7; C N. Since any
two loops have dimension 1, and 1+ 1 < 4 = dim N, by the transversality theorem we can
choose the r; to be pairwise disjoint embedded submanifolds.

Step 4. Surgery on loops: fix a loop v C NN representing a relation r. This has a tubular
neighbourhood, homeomorphic to S' x B3. Then

O(N — (St x B3)) =S x§? = 9(B? x §?).

Therefore the idea is to cut out S! x B? and glue in B? x S?;

N = (N — (S x B?)) Ug1 g2 (B? x $?).

Once again we apply Seifert-Van Kampen. Writing N = (N — (S! x B3)) Ug1 g2 (St x B?),
we have
7T1(N) = 7[‘1(N — (Sl X B3)) *(r) <’l“> = 7T1(N — (Sl X Bg))

Therefore we see that

T (N) = m1(N = (8" x BY)) %y 1 = m(N = (8" x BY))/(r)) = m(N)/{r).

Since all of the ~; in step 3 were chosen to be disjoint, the above surgery can be carried
out simultaneously on all of the ~;, giving a closed smooth manifold M with fundamental
group m(N)/{ri,...,rm) = G. O

Question from class. Where does this proof fail in lower dimensions?

Answer. The surgery above required the use of a four manifold with trivial fundamental
group, and boundary S' x S2. In three dimensions, one can show that there do not exist
manifolds with trivial fundamental group and boundary S' x S! (e.g. by comparing the
first Betti number of the manifold to that of the boundary). O



1.3 The intersection form

We’ve observed that there is no hope of classifying all 4-manifolds, so instead we restrict
to those with trivial fundamental group. What are all of the closed simply connected
smooth manifolds of dimension 47 In this course we usually consider classifications up to
diffeomorphism, but sometimes homeomorphism or homotopy are considered. Note that
every simply connected manifold is orientable, so no generality is lost in assuming our
4-manifolds are oriented.

Question from class. Will we ever equip X with a metric?

Answer. For the traditional set-up with Seiberg-Witten equations and other PDE methods,
a metric is necessary. However, in newer methods such as Khovanov homology, a metric is
not required. O

We now study some invariants of an arbitrary oriented simply connected closed smooth
manifold X.

First since X is connected, Hyo(X;Z) = Z. By the universal coefficient theorem for
cohomology, it follows that H°(X) = Z. Since X is oriented, Poincaré duality applies,
from which we conclude that Hy(X) = H*(X) = Z.

Next since 71(X) = 0, by Hurewicz’s theorem we know that H;(X) = 0. By the
universal coefficient theorem we find that H*(X) = 0. By Poincaré duality it follows that
H3(X) = H3(X) =0.

Finally we investigate H2(X). By Poincaré duality, it is isomorphic to its own dual.
But by the universal coefficient theorem,

H*(X) = Hom(Hy(X),Z) @ Ext(H(X),Z) = Hom(Hy(X),Z),

so H%(X) is a free Z-module. Thus Ho(X) = H?(X) = Z", where r = by(X) is the
second Betti number of X. By Hurewicz’s theorem, we also know that mo(X) = Ha(X).
In summary:

Hy=H=H,=H*=7Z, m=H =H'=H3=H>=0, m=H,=H>=17".

Recall that the cohomology is equipped with a cup product, HP(X) x H1(X) — HPT(X).
For an arbitrary oriented simply connected smooth 4-manifold, inspecting the cohomology
groups above, the most interesting cup product should be that of H?.

Definition 1.3.1. The intersection form of X is the symmetric unimodular bilinear form
Q: Hy(X;Z)x Hy(X;Z) = Z

induced from the cup product by Poincaré duality.



Suppose we consider the intersection form with real coefficients instead of integral
coefficients. We find that the intersection form then contains less information. Why is
this? With real coefficients, unimodular bilinear forms are classified by rank and signature.
That is, any two unimodular matrices sharing the same rank and signature are similar over
R. If A is a unimodular matrix of rank r and signature p, then over R

A ~ diag(1,...,1) @ diag(—1,...,—1),

where the first diagonal matrix has size p x p, and the second (r — p) x (r — p).
To see that unimodular matrices are more difficult to classify over Z, we introduce an
invariant:

Definition 1.3.2. Let A : Z" X Z" — Z be a bilinear form. A is even if A(a,a) =0 mod 2
for all a € Z". Evidently parity is a similarity invariant.

Example. Consider the matrices

) ()

These are both rank 2 signature 1 matrices, hence similar over R. However, A is not even
while B is even, so they are not similar over Z.

Why do we call @ the intersection form? This follows from the following theorem:

Theorem 1.3.3. Let X be a smooth 4-manifold. Then any o € Ho(X;Z) is represented
by [X] for some smoothly embedded surface ¥ C X.

Proof. There is an isomorphism between equivalence classes of complex line bundles over
X and H?(X;Z) defined by sending each bundle E to its first chern class ¢;(E). Thus
fix any complex line bundle over X representing «, and consider a generic section of the
bundle. Then the zero-set of the section defines a surface (which can be assumed to be
smoothly embedded by transversality) that represents c.

In general this proof holds in codimension 2. O

With this in mind, the intersection form ) can be thought of as taking two surfaces
which are transverse and counting their signed intersections.

Remark. Recall that mo = Hs in the case of simply connected 4-manifolds, so every class
a € Hy can be represented by the image of f : S — X. But hey, doesn’t this contradict
the Thom conjecture? The key here is that the image of f is an immersed submanifold,
while the Thom conjecture concerns embedded submanifolds. The Thom conjecture is an
special case of the minimum genus problem:

What is min{genus(X) : ¥ embedded surface, [X] = o € Ha}?
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In the next lecture, we prove that the intersection form determines the homotopy type
of a simply connected 4-manifold.

Theorem 1.3.4 (Whitehead). Let X1, X be closed simply connected topological 4-manifolds.
Then X is homotopy equivalent to X if and only if their intersection forms are similar
over 7.

To end the lecture we look at some examples of 4-manifolds and their intersection forms.
Example. o If X =S* then Q = 0 (the empty matrix.)
e If X = CP? (with the complex orientation) then Q = (1).

o If X = CP? (the projective plane with the reverse orientation), then @ = (—1).
o If X =§? x §?, then Q is the anti-diagonal matrix adiag(1,1).

e The connected sum X;# Xy has intersection form Qx, ¢ Qx,.

Inspecting the above examples, we can extract some non-trivial facts.

1. There is no orientation reversing diffeomorphism CP? — CP?, since Qcp2 # QW'

2. Let Q; denote the intersection form of CP?#CP?, and Q- the intersection form of
S?xS2. Then Q1 = (1)@ (—1), so it has the same rank and signature as Qz. It follows
that they are similar over R, so homology with real coefficients cannot distinguish
S? x S§? from CP?#CP2. However, S? x S? and CP?#CP? aren’t even homotopy
equivalent, since their integral intersection forms have different parity.

1.4 Intersection form ~~ homotopy type? (lecture 2)

At the end of the previous lecture, we mentioned a theorem due to Whitehead:

Theorem 1.4.1 (Whitehead). Let X1, X be closed simply connected topological 4-manifolds.
Then X1 is homotopy equivalent to Xo if and only if their intersection forms are similar
over 7.

In other words, closed simply connected 4-manifolds are completely determined up to
homotopy by their intersection forms. We now give a proof sketch.

Proof. Observe that Ho(X) = Ho(X — B*) 2 mo(X — B*), so generators of Hy(X) can be
represented by maps f; : S? — X — B* with i = 1,...,7 = by(X). Thus we can define a
map
,
f:\/$*—»x-B
i=1



which induces isomorphisms on H,. By relative Hurewicz, f induces isomorphisms on m,,
and by Whitehead’s theorem (not this one - the usual one), f is a homotopy equivalence.
It follows that X is homotopic to (\/j_; S?) Uy e*, where h is a map h: S* — \/]_; S%. It
remains to understand the map h.

Claim: m3(\/;_; S*) = {symmetric r x r matrices over Z}. (Thus each h corresponds
to an intersection form @.) The idea behind this correspondence is that each element [h] of
73(S?) can be represented by the “linking number” 1k(L, L) of loops L and L’ defined to
be the preimages of points x, 2’ under the map h. This arises from the Pontryagin-Thom
construction. More generally, for h : S3 — Viog S?, we obtain a matrix Qij = lk(L;, L;) of
linking numbers corresponding to [h]. O

Question from class. Why did we use X — B* instead of just X at the start of the proof?
Answer. We needed to kill H* by excision. O

1.5 Intersection form ~~» homeomorphism type?

It is natural to ask whether or not the intersection form restricts 4-manifolds any further.
How much can we say about the homeomorphism type of a manifold if we know its in-
tersection form? What can we say about its diffeomorphism type? This is answered by a
celebrated theorem by Freedman, which earned him a Field’s medal.

Theorem 1.5.1 (Freedman, 1982). (a) For every unimodular symmetric bilinear form Q,
there exists a topological simply connected closed 4-manifold X with Qx = Q.

(b) If Q is even, X is unique up to homeomorphism.

(c) If Q is odd, there are exactly two homeomorphism types of such an X, and at most
one of them admits a smooth structure.

In particular, the following corollary is immediate by combining (b) and (c):

Corollary 1.5.2. If X is a priori a smooth manifold, then its homeomorphism type is
completely determined by Qx .

The above theorem shows that it may be possible to detect smoothability by using
invariants. This is indeed the case, one such invariant being the Kirby—Siebenmann invari-
ant for simply connected n-manifolds; KSx € H*(X;Z/2). Whenever K Sx is non-zero,
X does not admit a smooth structure. It turns out that the intersection form affects the
Kirby—Siebenmann invariant. Suppose X is a 4-manifold. Whenever Qx is even, KSx
vanishes. Whenever QQx is odd, KSx is either 0 or 1.

Example. By Freedman’s theorem, there exists a topological 4-manifold X with Qx = (1)
which is not smoothable. (This manifold is now denoted *CP?, since it is the one other
simply connected closed 4-manifold with the same intersection form as CP2) One can
show that KSx = 1.



1.6 Homeomorphism type ~» diffeomorphism type?

A question that has not been addressed above is the uniqueness of smooth structures that
may exist on topological manifolds. This section is dedicated to studying diffeomorphism
types of manifolds, given a homeomorphism type.

Definition 1.6.1. A smooth structure on a topological manifold X is a diffeomorphism
equivalence class of smooth manifolds homeomorphic to X. If X is a priori equipped with
a smooth structure, another smooth structure is said to be exotic if it doesn’t contain X.
That is,

homeo diffeo

X =2 X, X % X

Example. e In dimensions at most 3, every topological manifold admits a unique
smooth structure (Moise, 50s).

e For n # 4, R™ admits a unique smooth structure. On the other hand, R?* has
uncountably many. (Donaldson, Gompf, Taubes etc, 80s).

o If X% is closed, it has at most countably many smooth structures. This is because
every smooth structure in 4 dimensions is uniquely determined by a piecewise linear
structure, but a closed manifold admits at most countably many finite simplicial
complexes (and hence countably many piecewise linear structures). Note that a
closed 4-manifold admitting countably many smooth structures has been exhibited;
namely CP?#kCP?, for k > 2 (due to Akhmedov-Park).

e For n # 4, X" admits finitely many smooth structures. A well known example is
exotic spheres:

— n = 4: It is unknown how many smooth structures S* admits.
—n=1,2,3,56: S™ has a unique smooth structure.

— n="T:S7 admits 28 smooth structures (including orientation).

In principle we can count the number of smooth structures on S" for n > 5, in which
case it reduces to understanding homotopy groups.

Remark. An interesting “non-example” is whether or not exotic smooth structures exist
on the following manifolds:

S*, CP?, CP2#CP?, S? x S2.

The idea is that increasing topological complexity (Betti numbers) allows more space for
constructions, making it easier to find exotic structures.

In fact, a remarkable open question is the following:
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Open question. Does every closed smooth 4-manifold admit infinitely many smooth struc-
tures?

That is, we have not yet exhibited a single closed 4-manifold admitting only finitely
many smooth structures. A more familiar open problem is the last remaining open version
of the Poincaré conjecture:

Conjecture. Every homotopy 4-sphere necessarily diffeomorphic to S*. Here after we
denote this conjecture by SPC4 (smooth Poincaré conjecture, dimension 4).

By Freedman’s theorem, every homotopy 4-sphere is homeomorphic to a 4-sphere.
Therefore the above question boils down to figuring out whether or not spheres admit
exotic smooth structures. Two families of potential counter-examples to SPC4 will now be
described.

Example. The first family of potential counter examples are constructed via surgery using
balanced presentations of the trivial group. In other words, presentations P = (g1, ..., gm |
T1,...,Tm) (so the number of generators and relations is equal). Then Xp is the simply
connected manifold obtained from #™(S' x S3) via surgery along loops, as in the con-
struction in lecture 1 (where we proved that every finitely presented group arises as the
fundamental group of a closed 4-manifold.)

We know that 71 (Xp) = 0, while H; = H3 = 0 and Hy = Hy = Z. Therefore to prove
that Xp is a homotopy sphere, it remains to show that Hs = 0. Suppose we know that the
Euler characteristic of Xp is 2. But

2= x(Xp)=1—04by—0+1=2+by,

so this proves that Hy = 0. It turns out that (from the fact that P is balanced) we can

deduce that x(Xp) = 2. (See homework.) It follows from Freedman’s theorem that Xp is

homeomorphic to the 4-sphere, but it’s unknown what the diffeomorphism type of Xp is.
Some examples of balanced presentations of the trivial group are

P=(z,y| "y’ = y?2% 2%" = y*2%), P'=(z,y]|2" =y’ zyz = yay).

It is currently open whether or not Xp is diffeomorphic to the sphere, while Xp/ was
famously shown to be diffeomorphic to the sphere 8 years ago.

Example. The second family of potential counter examples is constructed using Gluck
twists. (Again, see the homework.) The idea is to consider knotted embeddings S? = ¥ —
S%. Let V be a neighbourhood of ¥, diffeomorphic to S? x D?. Now consider the manifold

Gy = (S* = V) U, (S? x D?),

where ¢ : S? x St — S? x St is a Gluck twist: p(x,0) = (rotg(x),0). It is left as an exercise
to prove that Hy(Gyx) = 0, so that G, is homeomorphic to S*.
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1.7 Classification of symmetric Z-bilinear forms

Earlier in the lecture we observed that the intersection form holds all of the information of
4-manifolds up to homotopy, and moreover “almost all” of the information of 4-manifolds
up to homeomorphism. In particular, Freedman showed that every unimodular symmetric
Z-bilinear form arises as the intersection form of a simply connected closed topological
4-manifold. Therefore in the rest of this lecture we attempt to understand such bilinear
form.

The following discussion can be found in Serre, A Course in Arithmetic. In the following
discussion, two bilinear forms are considered equal if they are similar. Let Q : Z" X Z" — 7Z
be a unimodular symmetric bilinear form. Then the rank of @ is rk(Q) = r, and the
signature of @ is 0(Q) = Ny — N_ where Ny is the number of eigenvalues with sign +.
Finally, parity is defined by whether or not Q(a,a) = 0 mod 2 for all a, (with such a @
being called even).

Remark. Recall that, over R, unimodular symmetric bilinear forms are classified by rank
and signature.

Question from class. What about over Q7

Answer. Unimodular symmetric bilinear forms over QQ are classified by rank, sign, discrim-
inant, and Hasse-Witte invariants (corresponding to p-norms.) ]

Theorem 1.7.1. Classification of unimodular symmetric bilinear forms over Z. (Proof
omitted.)

1. @ indefinite, odd: then Q = m(1) ® n(—1), for m,n > 0.

0

2. @ indefinite, even: then QQ = m <1

é) @ nks, where m > 0, and n is an integer.
Here Eg denotes

2 0 -1

0o 2 0 -1

-1 0 2 -1
-1 -1 2 -1

-1 2

—
-1 2

Egs can also be written as 21 — A, where A is the adjacency matriz of the Dynkin
diagram of the exceptional simple Lie group Eg.
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3. @Q definite: complicated (whether or not Q is even or odd). For example, F1g can be
involved.

Thus when Q is indefinite, it is determined uniquely by parity, rank, and signature. How-
ever, when Q is definite, this no longer holds: for example, 9(1) is not similar to Eg ® (1),
but they are both odd, with rank and signature 9.

Which @ appears as QQx for a closed simply connected topological 4-manifold? By
Freedman’s theorem, all of them do. What if X is smooth?
Theorem 1.7.2 (Rokhlin, 1952). If X is smooth and simply connected, with Qx even,
then 16 | o(Qx).

This is non-trivial. From algebraic arguments (using the classification above) we can
only conclude that 8 divides the signature of QQx.

Corollary 1.7.3. There exists an “Eg-manifold”, i.e. a simply connected closed topological
4-manifold X with Qx = Eg, and this is not smoothable.

What about the 4-manifold corresponding to Eg @ Fg? This time 16 divides the sig-
nature, but in fact it is still not smoothable! This is a corollary of the following ground-
breaking result due to Donaldson, which was part of a wave of physical methods flowing
into maths.

Theorem 1.7.4 (Donaldson diagonalizability theorem, 1982). Let X* be a smooth closed
simply connected manifold. Then if Qx is definite, it is diagonalizable (over 7). That is,
Qx = +r(1).

The original proof used the Yang-Mills equations. Newer proofs used Seiberg-Witten
theory, and even more recently Heegard-Floer homology. How about indefinite forms, of
which we have a better classification?

1. For @ indefinite and odd, Q@ x = m(1)®n(—1) isrealised by X = (#m(C]P’z)#(#”@).

2. For @) indefinite and even, we see later that for |m| < (2/3)n, Qx =n ((1) é) ®mkEg
is realised by X being a connected sum of K3 surfaces and copies of S x S?. A special

case is Qx = 3 (2 é) @ 2Eyg, which is realised by the Fermat quartic,

X = {28+ 21 +25+25 =0} CcCP2.
The above restriction that |m| < (2/3)n is quite curious. However, there is a conjecture
that this is not a restriction at all!

Conjecture (11/8-conjecture (Matsumoto)). If X is a simply connected closed smooth
4-manifold, then we necessarily have that |m| < (2/3)n.

Note that by = 2n + 8|m|, and 0 = —8m, so the condition that |m| < (2/3)n is
equivalent to the condition that by > (11/8)|o|. This explains the naming.
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1.8 Summary of homeomorphism types of X* (lecture 3)

Recall the 11/8-conjecture from the previous lecture:

Conjecture (11/8-conjecture (Matsumoto)). If X is a simply connected closed smooth
4-manifold, then we necessarily have by > (11/8)|0]|.

Using Seiberg-Witten theory, a slightly weaker version of the conjecture has been known
for several years:

Theorem 1.8.1 (10/8-theorem (Furuta)). If X is a simply connected closed smooth 4-
manifold, then we necessarily have by > (10/8)|c|.

The 10/8-theorem is equivalent to the statement that |m| < n, where m and n are as
in the classification of Z-bilinear forms from the previous lecture. Most recently, a slight
improvement to the 10/8-theorem was achieved:

Theorem 1.8.2 (Hopkins, Lin, Shi, Xu). If X is a simply connected closed smooth 4-
manifold, with m = 2p > 4, then

2p+2 p=1,2,5,6
n><2p+3 p=3,4,7 mod 8.
2p+4 p=0

Here we can assume m is even by Rokhlin’s theorem. In fact, it was shown that this is the
best bound that can be achieved using Seiberg- Witten theory.

Summarising results so far, we have established the following:

Theorem 1.8.3. Let X* be a simply connected closed smooth 4-manifold. Then the home-
omorphism type of X is determined uniquely by

o(Qx), parity(Qx), x(X).

This follows from Freedman’s theorem, Donaldson’s diagonalisability theorem, and the clas-
sification of symmetric unimodular Z-bilinear forms.

Equivalently, X is determined up to homeomorphism by b;, by , and the parity of Q,
where by = b;“ + b, is the second Betti number of X, and b; is the number of positive
eigenvalues of Q x, while by is the number of negative eigenvalues. Then o = b; —by and
X =2+ bs.
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1.9 Crash course on characteristic classes

Using characteristic classes, it is possible to calculate o(Q x) and x(X) in some cases. First
we define the four characteristic classes.

Definition 1.9.1 (Chern class). Let E — X be a complex vector bundle with rank r.
(X can be any paracompact topological space, but is typically a manifold.) Then for each
k€N, ¢,(E) € H**(X;Z) is uniquely determined by the following four properties:

1. Rank. co(E) =1, cx(E) =0 for k > r.
2. Functoriality. If f:Y — X, then f*ci(F) = cx(f*E).

3. Product. If E,F — X, then ¢(E & F) = ¢(E) — c(F). Here c is the total Chern
class, ¢(E) = co(E) + c1(E) + --- € H*(X;Z). Thus for each k,

k

(E@F) = c(B) — cpi(F).
i=0

4. Normalisation. 1If X = CP" and E = TX, then ¢(E) = (1 + w)"!, where w €
H?(CP") = Z is the Poincaré dual of CP"~! ¢ CP".

Geometrically, the chern class ¢ corresponds to the Poincaré dual of the locus where
r 4+ 1 — k generic sections of F are linearly dependent. The Chern class enjoys a few more
notable properties:

Lemma 1.9.2. Let EF — X be a complex vector bundle as above. Then
1. ¢1(F) = c1(A"E). The line bundle A"E — X is also denoted det £ — X.
2. If Ly, Ly — X are line bundles, then ¢;(L1 ® Lo) = ¢1(L1) + ¢1(L2).
3. For each k, ci(E*) = (—1)*cx(E), where E* is the dual bundle.

Next we define the Stiefel-Whitney classes. These are the real analogue of Chern classes.
Every complex structure induces an orientation so integral homology was used above, but
for Stiefel-Whitney classes we use mod 2 homology.

Definition 1.9.3 (Stiefel-Whitney class). Let E — X be a real vector bundle with rank
r. Then for each k € N, wy(F) € H*¥(X;Z/27) is uniquely determined by the following
four properties:

1. Rank. wo(E) =1, wi(E) =0 for k > r.

2. Punctoriality. If f:Y — X, then f*wy(E) = wi(f*E).
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3. Product. If E,F — X, then w(E & F) = w(E) — w(F). Here w is the total
Stiefel- Whitney class, defined analogously to above.

4. Normalisation. If X = RP" and E = TX, then w(E) = (1 + w)""!, where w €
H?(RP";Z/2Z) is the Poincaré dual of RP"~! ¢ RP".

In addition, we have the following properties.
Lemma 1.9.4. Let E — X be a real vector bundle as above. Then

1. Suppose F is endowed with a complex structure. Then woy11(F) = 0 for each k, and
wor(E) = ¢k (F) mod 2.

2. wi(F) =0 if and only if F is orientable.

3. If wi(E) =0, then wa(E) = 0 if and only if E is spinnable. We now explain what
this means: oriented real vector bundle of rank r are in bijective correspondence with
principal SO(r)-bundles, with a correspondence given by clutching maps. But SO(r)
has a double cover, namely Spin(r) — SO(r). For r > 3, since m1(SO(r)) = Z/2Z,
Spin(r) is in fact the universal cover of SO(r). A spin structure on E is a lift of E to
a Spin(r)-bundle.

The third characteristic class is again defined for real vector bundles, but via a com-
plexification.

Definition 1.9.5 (Pontryagin class). Let F — X be a real vector bundle with rank r.
Then for each k,
pi(E) = (—=1)Feor(E ®r C) € H*(X; 7).

Lemma 1.9.6. The Pontryagin class inherits rank, functoriality, product, and normalisa-
tion properties from the Chern class.

The complex vector bundle E Qg C — X is called the complexification of E. Since this
is self-dual, by a property of the Chern class above, 2¢;x(E ® C) = 0 for each odd k. Thus
we only consider even Chern classes in the definition of the Pontryagin class. The final
characteristic class is in fact the most familiar, as it relates directly to Euler characteristics.

Definition 1.9.7 (Euler class). Let E — X be an oriented real vector bundle of rank r.
Then e(F) € H"(X;Z) is uniquely determined by the following properties:

1. Orientation. If E is E equipped with the opposite orientation, then e(E) = —e(E).
2. Punctoriality. If f : Y — X is orientation preserving, then f*e(E) = e(f*E).
3. Product. If E, F — X are oriented, then e(E & F) = e(E) — e(F).

4. Normalisation. If E possesses a nowhere-vanishing section, then e(E) = 0.

16



Geometrically, the Euler class is the Poincaré dual of the zero set of a generic section
of E. In addition, we have the following properties.

Lemma 1.9.8. Let E — X be a real oriented vector bundle as above. Then
1. wy(E) =e(E) mod 2.

2. If E is endowed with a complex structure, e(E) = ¢, /o(E). In particular, p,/o(E) =
o (E®rC)=¢e(E) —e(E).

3. If X is oriented, then choosing E = T'X gives e(TX)[X] = x(X), where x(X) is the
Euler characteristic.

1.10 Classifying homeomorphism types of X* with charac-
teristic classes

Suppose X* is a simply connected closed smooth 4-manifold. In this section we show that
the homeomorphism type of X is determined completely by the characteristic classes of X.
(Specifically the Stiefel-Whitney, Pontryagin, and Euler class.) We also try to determine
as much as we can about the characteristic classes, given the premise for X.

First we study the Euler class. Since X is orientable as shown in lecture 1, we assume
X is oriented. Then e(X) is determined entirely by the Euler characteristic x(X) and vice
versa.

Next we study the Pontryagin class. Since p;(TX) € H*(X;Z) and po(TX) = 1, the
only non-trivial Pontryagin class is p; (T'X). By the Hirzebruch signature theorem, we know
that Ly (X)[X] = o(X) where L;(X) is the first L-class of X. But L;(X) = %pl(TX), so it
follows that p; (TX)[X] = 30(X). Thus the first Pontryagin class is completely determined
by the signature o(X) and vice versa.

Finally we investigate the Stiefel- Whitney classes. We know that w;(TX) € H(X;Z/27),
and wo(TX) = 0 since X is oriented. How about wy € H*(X;Z/27)?

Lemma 1.10.1. we(T'X) is a characteristic element of X, i.e. (wq,a) = (a, ) mod 2 for
all a € H?(X;7Z).

Proof. Let a € H?(X;Z). From lecture 1, o is represented by an embedded oriented
surface, i.e. « is the Poincaré dual [¥], where ¥ — X is a smooth oriented embedding.
But TX|y = TYX ® NX, and on each of these we have w(TX) = 1+ wo(TX) and w(NX) =
1+ we(NYX) (since all higher wy vanish). Thus by the product axiom

w(TX)|g = (1+w2(TY))(1 + w2 (NX)).
It follows that we(TX) = wo(TE) + wa(NX). In particular, pairing with « gives
(Wa(TX), ) = wa(TE)[B] + wo(NX)[X] = e(TE)[E] + e(NX)[X] mod 2.
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The last equality applies; we know that T and NX are oriented since ¥ and X are
oriented. But (TX)[X] is the Euler characteristic of 3, which vanishes mod 2. On the
other hand, e(NX)[X] = ([X], [s(X)]) where s is a section of NX transverse to the zero
section. But then s(X) is itself a representative of «, so in summary

(wo(TX),a) = e(NX)[X] = (o, ) mod 2.

Corollary 1.10.2. With X as above, Qx is even if and only if TX is spinnable.

Proof. Qx is even if and only if (o,a) = 0 mod 2 for all & € H?(X;Z). But by the
above lemma, w9 (T X) is a characteristic element, so equivalently Qx is even if and only
if (w2(TX),a) =0 mod 2 for all a. Since Q)x is non-degenerate, this holds if and only if
wa(TX) vanishes, i.e. exactly when T'X is spinnable. O

In summary, the data of e(T'X) is equivalent to that of the Euler characteristic of X,
the data of p;(T'X) is equivalent to that of the signature of Qx, and the data of wy(TX)
is equivalent to that of the parity of QQx. Therefore we have the following:

Corollary 1.10.3. Let X be a closed simply connected smooth 4-manifold. Then the
classes e(X),p1(TX), and wo(TX) determine X up to homeomorphism.

1.11 Algebraic surfaces as smooth 4-manifolds

To finish this lecture we explore some examples of smooth 4-manifolds for which we can
compute characteristic classes. Namely, these are algebraic surfaces. Specifically, we con-
sider

Zg = {[ZO e 2’3] ECPS : P(ZZ) :0}7

where P is a homogeneous degree d polynomial, and the system of equations {0P/0z; =
P = 0,1} has no non-zero solutions. Then Zj is a smooth manifold. In fact, the diffeomor-
phism type of Z; depends only on d and not on P. For example, we can always choose
P = zg + -+ zgl. (This is a homework problem.) Concretely, for each d, we have the
following:

1. Z, = CP? c CP3. This is automatic because P is a linear equation.

2. Zy = CP! x CP! = S? x S2. We can choose our polynomial to be zy = uv. Then a
diffeomorphism Zy — CP! x CP! is given by [z : y : u: v] — ([x : u], [y : v]).

3. Z3 = CP?#6CP2. This is a homework problem.

4. Z4 is a K38 surface. These are all diffeomorphic, but algebraically distinct.
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5. Zg for d > 5 are all “surfaces of general type”.

We now compute some characteristic classes associated to the Z; above. First by applying
the Veronese embedding and Lefschetz hyperplane theorem, we conclude that Z; is simply
connected. Write X = Z;, and X = CP> NV C CP™ where V is some hyperplane, and
CP™ is the codomain of the Veronese embedding.

Let H — CP? be the hyperplane line bundle, i.e. the dual bundle of the tautological
bundle. We study characteristic classes of this bundle to better understand X. We begin
with Chern classes. First define

h =ci(H) = PD(CP?) € H*(CP?) = Z.

Here PD(CP?) denotes the Poincaré dual of [CP?]. Now consider X C CP3. Its normal
bundle is given by H®¢|y, so

a(NX) = e1(H®)|x = dn,
where = h|x € H?(X;Z). It follows that
(TCP?|x) = c(TX)e(NX) = (1 + 1 (TX) 4+ co(TX))(1 + dn).

On the other hand,
c(TCP?|x) = (1 +n)* =1+ 4n + 67

by the normalisation axiom. Solving the system of equations gives
ca(TX) = (4—dm, c(TX)=(d*>—4d+6)n°.

Next we can use the Chern classes to determine the Euler characteristic. Specifically, we
have

X(X) = e(TX)[X] = co(TX)[X] = (d* — 4d + 6) (1°[X]).
But 7?[X] = d, because h[X] = d in CP3. This gives

X(X) = d® — 4d* + 6d,

which also determines all Betti numbers of X (since we already knew all Betti numbers
other than by).

Next we determine the signature of Qx. Recall that o(Qx) = ip1(TX)[X]. But the
Pontryagin class is defined using the Chern classes which we have already understood!

Specifically,

2
p1I(TX) = -(TX ®C) = —2(TX ®T*X) = Y ¢;(TX) — ca_i(T*X).
=0
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Since ¢;(TX) = (—1)i¢;(T*X), this gives p1(TX) = 2(TX) — 2co(TX). (Note that this
calculation holds for all complex algebraic surfaces!) In particular, we now find that the
signature is given by
d(4 — d?)

3 .
Finally, we determine the Stiefel-Whitney classes. Since we = ¢; mod 2, we find that @
is even if and only if d is even. In summary, we have the following results:

o(X) =

Proposition 1.11.1. Let Z; be as above. Let Q denote its intersection form. Then the
parity of @ is the parity of d, and

d(4 — d?)

X(Zg) = d* — 4d* + 6d, o(Q) = 3
One can verify that Z; agrees with the 11/8-conjecture.

Example. We now fix d = 4. Then X = Z4 is a K3 surface. Since ¢;(TX) = (4 —d)n,
c1(TX) vanishes. Thus X is a Calabi- Yau manifold. We further find that by = 43 — 43 +
24 —2 =22 and 0(Qx) = —16. Finally, d is even, so Qx is even. Since Qx is even and
indefinite, by the classification of symmetric unimodular bilinear forms,

Qx =n <(1) (1]) ® m(—Esg).

Solving for n and m using o and bs, we find that n = 3 and m = 2.

In the above two pages, we determined the homeomorphism type of the complex alge-
braic surfaces Z4. Of course, similar calculations can be carried out on alternative algebraic
surfaces:

Example. Let H — CP? be the hyperplane line bundle, and s a generic section of H®%P.
Denote its zero set by B, C CP?. We can define a new bundle by

R, ={¢:€6* =5} — CP2

This is a two to one cover away from B, so R, is a double cover of CP? branched over By.
Using similar methods to above, we have

m(Ry) =1, by =p*—3p+3, by =3p>—3p+1, R,spin < podd.
Fixing p, this gives
1. Ry =$S? x §?,
2. Ry = CP2#7CP?,
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3. Rj3 is a K3 surface,
4. R, for p > 4 is a surface of general type.
We finish the lecture with a caveat into the classification of algebraic surfaces.

Theorem 1.11.2 (Enriques-Kodaira classification of (smooth projective) algebraic sur-
faces). Let K denote the canonical bundle of X, and p, the dimension of HO(K®") for
each n > 1. Then define the Kodaira dimension s by

smallest k such that 2—2 is bounded (k =0,1,2 in dimension 4)
R =
—oo if all p, vanish.
Smooth projective algebraic surfaces are classified as follows:
1. If k = —o0, then X is a rational or ruled surface. For exzample, CP? CP! x CP!.

2. If k = 0, then X is a K3 surface, diffeomorphic to T*, hyperelliptic, or an En-
riques surface. (Note that all K3 (and T*) surfaces are diffeomorphic, but they are
algebraically distinct.)

3. If k =1, then X 1is elliptic.

4. If k =2, then X is a surface of general type. These are essentially unclassifiable.
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Chapter 2

Representations of 4-manifolds

2.1 Morse functions and handle decompositions (lecture 4)

Definition 2.1.1. Let X be a smooth manifold and f : X — R a smooth function. f is
a Morse function if its critical points are all non-degenerate. That is, locally at a critical
point p € Crit(f) we can model X to have coordinates

f(m""’x"):_x%_"'_932+93%+1+"'+$?L+c.
Then k is called the index of p.

The critical points on a Morse function are necessarily discrete. Therefore if X is
compact, a Morse function has finitely many critical points. By perturbing them, the
critical values can all be assumed to be distinct.

Example. The height function on a torus as shown in figure [2.1]is a Morse function.

1

|

TS

Figure 2.1: A torus with its height function next to it.
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Morse functions contain topological information about a manifold in the following way:

Proposition 2.1.2. Suppose p is a critical point of index k. Then passing from the
sublevel set X<, . to X<, the diffeomorphism type of the sublevel set changes by the
attachment of a k-handle.

The remainder of this section is dedicated to unpacking what this means.

Definition 2.1.3. Let Y be an n-manifold with boundary. Let ¢ : S¥71 — 9Y be an
embedding, with trivial normal bundle. Fix a framing NS*~! =2 S¥=1 x R*“*. Then a k-
handle is D¥ x D"* glued to Y along a tubular neighbourhood of ¢(S*~1). That is, Y is
obtained by gluing a k-handle to Y if Y/ = Y Ugk-1, pn—r (D¥ x D"~¥), where S¥=1 x D=+
is a neighbourhood of ¢(S*¥~1) in 9Y. (See figure )

Example. In the case of the height function on a torus, as we pass the sub-level set at
height 1/4, the topology changes by the addition of a 1-handle.

Relevant terminology is introduced in figure

cocore belt sphere
0 x Dk 0 x Sn—k-1

k-handle
DF x pn—Fk

oY attaching sphere
Sk %0
framing

Y Skfl % ank

Figure 2.2: Handle attachment terminology

Remark. It is interesting to observe that the boundary of Y’ as above is obtained from
a straight forward surgery along the attaching sphere: simply remove the neighbourhood
SE=1 x D" F of the attaching sphere, and glue in D* x S»¢~1,
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Proposition 2.1.4. A result from Morse theory is that every X™ admits a handle decom-
position. Without loss of generality, suppose f is a Morse function on X such that the
critical points are arranged with increasing index. Then

X=Xo| Xy | | Xn,

where each X; is a union of i-handles, and the vertical line represents that X; and X,
glue together along boundary components.

Example. The torus 72 admits a Morse function with indices 0,1,1,2. Thus 7% admits
a handle decomposition consisting of a 0-handle, two 1-handles, and a 2-handle.

Remark. The homology type of a manifold can be read off its handle decomposition!
The cores of k-handles are k-cells, so Cj,(X) is generated by k-handles (h%),ca, with the
boundary map given by
OnE = (h, by bk
B

Here the angle-brackets denote the incidence number, also called the algebraic intersection
number. Tt is the signed count of intersections between attaching spheres of A% and belt
spheres of hg_l.

2.2 Handle moves

Theorem 2.2.1 (Cerf). Every two monotone handle decompositions of X are related by
a finite sequence of handle slides and creation/cancellation of handle pairs.

By a monotone handle decomposition, we mean the manifold is decomposed into ordered
levels as in the previous proposition. We now describe the moves.

Definition 2.2.2. We first describe a handle slide between handles hX and h%, with attach-
ing spheres S’;_l and ngl. Since the normal bundles of attaching spheres are trivial (and in
particular we have chosen a framing), there is a push-off ngll of the attaching sphere ngl.

We then update the attaching sphere of h% to be a connected sum Sg_ll = S’;_l#Sg_ll.
See figure

Definition 2.2.3. Next we describe creation/cancellation of handle-pairs. Suppose h* and
hF=1 are handles on Y such that the attaching sphere of h* and the belt sphere of h*~1
intersect at exactly one point. (That is, they have a geometric intersection number of 1.)
Then Y is diffeomorphic to Y U h* U h¥~1. For an example, see figure
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7, sn

Figure 2.3: A handle slide; an operation on attaching spheres.

belt sphere of h! and attaching sphere of h?
have geometric intersection number 1

Figure 2.4: A handle pair creation; attaching a 1-handle and 2-handle without changing
the diffeomorphism type.

Proof. A sketch of the proof of Cerf’s theorem is as follows. Any two monotone handle
decompositions are induced from Morse functions fy and f;. Relate the Morse functions
by a family f;. In general f; is not Morse at each t, with two types of singularities
occuring. The first is that critical points can cancel out (visualise a cubic graph being
straightened so that the local minimum and maximum cancel out). The second is that the
gradient field of f; could have trajectories between two critical points of the same index.
These two singularities correspond exactly to creation/cancellation, and handle sliding,
respectively. O

2.3 H-cobordism theorem

Definition 2.3.1. A cobordism is a compact manifold with boundary W whose boundary
decomposes as OW = VLUV7, where Vjy and V; are themselves embedded smooth manifolds.
A cobordism W between Vy and V; is said to be an h-cobordism if 1g,t; are homotopy
equivalences. The h stands for homotopy.

Theorem 2.3.2 (h-cobordism theorem). Let n be at least 5, and W a compact n + 1-
dimensional simply connected smooth h-cobordism between simply connected smooth n-
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manifolds Vo and Vi. Then W is diffeomorphic to Vi x [0, 1].

Proof. We now give a proof sketch of the h-cobordism theorem. We choose a Morse function
f W — [0,1] such that f~1(0) = Vg, and f~(1) = V;. We assume without loss of
generality that critical points are arranged in increasing order of index, so that W = W}, |
-+ | Wh41, where each vertical line represents a sum of cobordisms. Each W; consists of
i-handles. The proof outline is simple:

1. Eliminate 0-handles and n + 1-handles, so that W =Wy | --- | W),.

2. Eliminate 1-handles and n-handles by trading them for 3-handles and n — 2 handles,
so that W =Wy |-+ | W,_1.

3. Show that k-handles and k + 1-handles (for 2 < k < n — 1) have incidence number 1.

4. Upgrade this result; show that belt spheres of k-handles and attaching spheres of
k + 1-handles (for 2 < k < n — 1) can be perturbed to have geometric intersection
number 1. Apply handle cancellation to conclude that W is a trivial cobordism.

1. Note that the attaching sphere of a 0-handle is empty. Since our handle decom-
position is monotone, any O-handle is necessarily connected with other components via
1-handles. But the attaching sphere of a 1-handle consists of two points a LI b, so to con-
nected a 0-handle to another component, it is necessarily the case that a connects to the
belt sphere of the 0-handle, and b connects to another component. Then by handle can-
cellation, the O-handle and 1-handle cancel. This applies to n + 1-handles, since these are
dual to O-handles by replacing f with the Morse function — f.

2. A similar procedure is used to replace 1-handles with 3-handles. Again by replacing
f with —f, we trade n-handles with n — 2-handles.

3. Since W is an h-cobordism rather than just a cobordism, we can conclude that
Ho(W; V) is trivial. Recall that Co(W; Vp) is generated by handles and is freely generated
over 7Z. Since the homologies vanish, up to isomorphism, the boundary maps decompose
into a direct sum of identity maps Z — Z. Thus the incidence numbers are (h%, hlé_l) =1.

4. We now know that the algebraic intersection numbers of belt spheres of A*~! and
attaching spheres of hy are 1. These have dimensions n — k+ 1 and k — 1. More generally,
suppose P¥~1 and Q" **! are submanifolds of W, such that P N Q is contained in a level
set Z" = f~1(x). Suppose their algebraic intersection number is 1. We use the Whitney
trick to cancel intersection pairs so that their geometric intersection number is 1.

Suppose a,b € PN Q are distinct, with opposite sign. We can find a path from a to b
in @, and a path from a to b in P. Suppose these two paths bound and embedded disk.
Then by the Whitney trick we can isotope P along the disk to cancel the intersections a
and b. Therefore the goal is to find and embedded disk.

First we require that the loop is homotopically trivial so that it bounds at least an
immersed disk, so we want 71 (Z) = 0. This comes from simple connectedness assumptions
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in the h-cobordism theorem premises. To ensure that the disk can be embedded, we use
transversality results. We a generic perturbation of the disk to have trivial intersection
with the disk, which happens when 2 + 2 < n. Thus we also require n > 5 (as given as
a premise in the h-cobordism theorem). Therefore we can make P and @ have geometric
intersection number 1 as required. By applying handle cancellation, this completes the
proof. O

Corollary 2.3.3 (Smooth Poincaré conjecture, n > 6). For n > 6, a smooth n-manifold
homotopic to the n-sphere is homeomorphic to the n-sphere.

90
N G R

. O
> )
- > —> Sn
-~
W
S*=1 % [0,1]

st
o () )

Figure 2.5: Proof of the Poincaré conjecture (in dimensions at least 6).

Proof. The proof follows figure

Suppose M is a smooth n-manifold (n > 6) with the homotopy type of an n-sphere.
Any two distinct points are contained in disjoint disks Dg and D7. By cutting along the
boundary of the disks, we obtain a decomposition of M as shown in figure Precisely,
we write M = Dy UW U D}, where W = M \ int(Dg U DY).

Observe that W is a cobordism between spheres Sg_l and Sqf_l. Using the homology
excision theorem and Whitehead’s theorem, we can show that ¢ : Sg_l — W is a homotopy
equivalence. (The same result holds for Sqf_l). Therefore by the h-cobordism theorem, W is
diffeomorphic (and in particular homeomorphic) to S*~! x [0, 1], with the homeomorphism
denoted by f in the figure.

f restricts to homeomorphisms on the boundary, e.g. gg : Sg_l — S™ ! as shown in the
figure. But any homeomorphism of a sphere induces a homeomorphism of disks Dy — D"
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by the Alexander trick. (One can simply take the radial extension of the homeomorphism.)
Therefore we have homeomorphisms go, g1 : Dfj, D7 — D" which agree with f on overlaps.
The map M — D" U (S" ! x [0,1]) U D" = S™ defined piecewise by go, f, and g is therefore
a homeomorphism. O

Remark. The topological Poincaré conjecture is true in all dimensions. However, the h-
cobordism theorem is false in dimension 4. The issue is that we cannot find embedded
disks (only immersed) and the Whitney trick cannot be applied.

Proposition 2.3.4 (Freedman). The topological h-cobordism theorem is true in dimension
4.

Freedman’s approach for proving the topological h-cobordism theorem is to remove
transverse double-points in immersed Whitney disks by adding “infinite towers of handles”
called Casson handles. The topological h-cobordism theorem implies the 5-dimensional
topological Poincaré conjecture. However, it also implies the 4-dimensional topological
Poincaré conjecture when combined with the following result:

Theorem 2.3.5 (Wall). Let M, N be smooth closed simply connected J-manifolds. Suppose
they have equivalent intersection forms. Then they are h-cobordant.

The proof strategy is to use the fact that the intersection forms are the same to construct
a cobordism, and then use surgery to upgrade to an h-cobordism.

Corollary 2.3.6. Topological Poincaré conjecture in dimension 4.

Proof. Suppose M is a 4-dimensional homotopy sphere. By Wall’s theorem, there is an h-
cobordism W between M and a 4-sphere. By Freedman’s topological h-cobordism theorem,
S* x [0,1] = W = M x [0,1]. Therefore M is homeomorphic to S*. O

Earlier it was remarked that the smooth h-cobordism theorem fails in dimension 4.
However, the following result is an alternative which does hold, also due to Wall:

Theorem 2.3.7 (Wall). Let M, N be smooth closed simply connected 4-manifolds. Suppose
they have equivalent intersection forms. Then M and N are stably diffeomorphic. In other
words, there exists k > 0 such that

M#kE(S? x S?) =2 N#k(S? x §?).

2.4 Handle decompositions of 3 and 4 manifolds (lecture 5)
Example. We first consider the case of 3-manifolds. Suppose

X3=Xo| X1 | X2 | X3

28



where each X; is a union of 3-dimensional i-handles. (Without loss of generality we have
arranged the handles monotonically, and without loss of generality Xy and X3 are both
single 3-balls.) We can denote

Hy=Xo| X1, H,=Xs|Xs,

and ¥, := 0H,. Then
X =HyUs, Hé

is called the Heegaard splitting of X. What do H, and H ; look like? H, is a boundary
connected sum of 1-handles; 19(S' x D?). A boundary connected sum AfB is obtained by
identifying a small disks in OA to one in dB. Thus 0(AyB) = 0A#0B.

By reversing the Morse function (f ~— —f) we see that Hj can also be realised as
1#(S' x D?) for some k. In fact, since Hg and H, have the same boundary, and k is the
genus of the boundary of H, 5’,, we must have that k£ = g. Therefore H ; is topologically the
same as H!

Example. Next we consider 4-manifolds. This time we write
X' =Xo| X1 | Xo | X3 | X4,

and again we assume Xy = X4 = B* What does X | X; look like? As in the 3-manifold
case, we have

Xo | X1 = %St x D?).

Similarly we know that X3 | X4 is of the same form.

What about 2-handles? The attaching sphere of a 2-handle is a copy of S'. These
attaching spheres can be knotted. Precisely, the boundary of X | X1 is #*(S' x §?) (which
is a three manifold and hence knots and links are non-trivial), and the attaching spheres
of all the 2-handles of X are given by a link L C #*(S! x §?).

For each component S of L, we require a framing which describes the way a neighbour-
hood S x D? embeds into #* (S xS?). (E.g. annulus vs mobius strip.) This is characterised
by the self-linking number (k(S, S) € Z. (Note that the correspondence between self linking
number and framing depends on H;(S?) = 0.)

In summary, all 2-handles are determined by the data of a link L, where each component
is decorated with an integer.

2.5 Kirby diagrams

By the above discussion, we can represent all 2-handles by a link with each component
decorated by an integer representing the self-linking number. On the other hand, every
1-handle is determined by its attaching sphere S°. In a Kirby diagram we represent the
figure on the left (figure by the diagram on the right: The two green spheres represent
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Figure 2.6: 1-handles in a Kirby diagram.

the framings of the attaching sphere of a 1-handle. The blue curves are attaching spheres
of 2-handles. The black curve is a path that one can use to idenity the two green spheres.

This gives a systematic way of representing a 1-handle by a link component, in the same
way that 2-handles are described by link components. To distinguish them, 1-handles are
always denoted by a dot. In summary, Xy | X1 | Xs is specified by a link, where some
components are decorated with dots and the rest by integers.

Note that restricting to only dotted components must give an unlink. Now we aim to
understand the higher handles. We know that 9(Xo | X1 | X2) is of the form #¢(S' x S?)
for some ¢, and the union of 3 and 4 handles is of the form f*(S' x D?). But then the
attaching of higher handles is automatic by the following theorem!

Theorem 2.5.1 (Laudenbach, Poenaru). Every self-diffeomorphism of #¢(S' xS?) eatends
to a self-diffeomorphism of h*(S' x D3).

This means that any two ways of gluing 3 handles to Xy | X; | X2 extends to a
diffeomorphism of the entire 4-manifold, so up to diffeomorphism there is a unique way
of gluing the higher handles. Therefore no information is lost (when representing a 4-
manifold) by simply specifying the 1 and 2 handles, and writing “union 3 handles”.

Theorem 2.5.2. A Kirby diagram is a link diagram where each component is decorated
with integers or a dot, and these correspond to 2 handles and 1 handles respectively. The
dotted components must form an unlink. Every Kirby diagram corresponds to a 4-manifold
(possibly with boundary), and specifies the 4-manifold up to diffeomorphism.

Above we mentioned that we also have Kirby diagrams for manifolds with boundary.
What does this look like? If X4 has boundary Y3, we can give a handle decomposition
Xo | X1 | X2 | X3 (with no 4 handle). We require 9(Xy | X1 | Xo) = Y#(#(S" x §?)).

Definition 2.5.3. Let D; and D> be Kirby diagrams. We write D1 ~ Dy if the cor-
responding 4-manifolds are diffeomorphic. We write D1 ~g Dy if the boundaries of the
corresponding 4-manifolds are diffeomorphic.
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Example. Consider X4 = S*. This has a handle decomposition consisting of one 0 handle
and one 4 handle. Therefore it corresponds to the empty diagram.

Another handle decomposition is given by a 0 handle, 1 handle, 2 handle, and 4 handle.
The corresponding diagram is then a Hopf link, with one component decorated with an
integer, and one with a dot.

Further we can dualise the decomposition, so that the sphere breaks into a 0 handle, 2
handle, 3 handle, and 4 handle. Then the corresponding Kirby diagram necessarily consists
of a single unknot (union 3-handles). This is decorated with the integer 0.

Example. What is the 4 manifold corresponding to the diagram with an unknot labelled
with a non-zero integer n? This is a D?-bundle over S?, with Euler number n. It’s boundary
is the Lens space L(n,1). Note that 9(L(0,1)) = St x §2.

Example. What about the diagram with a single dotted unknot? The corresponding
handle is S' x D3, so it is boundary diffeomorphic to D? x S?, which is the 2-handle
represented by the unknot with integer 0.

Example. What about the 4-manifold represented by a single unknot, with label 1?7 The
boundary is L(1,1) = S®. The corresponding manifold is in fact CP?. (One can find a
Morse function on CP? with three critical points of index 0,2, and 4.) Similarly the unknot

labelled with —1 corresponds to the manifold CP2.

Example. How about the four manifold represented by a Hopf link, both components
labelled with 0?7 This is diffeomorphic to S? x S2. This is because the height function on
S? has two critical points of index 0 and 2 respectively, so the height function on S? x S?
has four critical points, of index 0,2,2, and 4.

Example. If Dy and Dy are Kirby diagrams for M; and Ms, their disjoint union is a
diagram for Mi# My (if the M; are closed). If the M; has boundary, the Kirby diagram
corresponds to the boundary connected sum.

Example. As a last example let’s look at something crazy. What does a K3 surface look
like? By Harer, Kas, and Kirby, a diagram for K3 is given in figure (sourced from
Mandelbaum: Four dimensional topology: an introduction).

We also observe that the homology of a 4-manifold can be read off the Kirby dia-
gram: we know that C%(X) is generated by k-handles, and the boundary map Jy computes
incidence numbers between k£ handles and k£ — 1 handles.

For example, if a diagram consists only of 2-handles, then Q;; = (k(L;, L;), where L;
and L; are components of the Kirby diagram. In particular, for the Hopf link with each
component decorated with 0, we have @ = adiag(1,1).

Definition 2.5.4. A Morse function f : M — R is called perfect if the number of crit-
ical points is the sum of Betti numbers. Equivalently, all Morse inequalities are in fact
equalities.
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Figure 2.7: K3 surface Kirby diagram.

Open question. Suppose X* is simply connected, closed, and smooth. Does it admit
a perfect Morse function? Equivalently, does it admit a handle decomposition consisting
only of 2-handles (and one 0 handle, and one 4 handle)?

Remark. All unimodular bilinear forms arise as the intersection of some closed simply
connected topological 4-manifold, not necessarily smooth. (If these were smooth, it would
answer the above question.)

However, any such @) does arise as the intersection form of a smooth 4-manifold with
boundary! It suffices to consider the 4 manifold corresponding to any Kirby diagram given
by the link L with linking numbers Q;; = lk(L;, Lj).

Example. Recall that Eg corresponds to a non-smoothable simply connected closed topo-
logical 4-manifold in the Freedman sense. What is the smooth 4-manifold with boundary
obtained from the link diagram?

The corresponding link diagram looks a bit like the Audi logo, with an unknot for
every edge in the Dynkin diagram of Eg. The boundary of the corresponding 4-manifold
is the Poincaré homology sphere. One can show that the boundary of the 4-manifold
corresponding to the trefoil knot (labelled with integer 1) also has boundary the Poincaré
homology sphere.

Definition 2.5.5. A surgery diagram for a 3-manifold Y2 is a Kirby diagram for a four
manifold X with X =Y, consisting only of 2-handles.
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Theorem 2.5.6 (Lickorish-Wallace). Every closed oriented 3-manifold admits a surgery
diagram.

2.6 Surgery diagrams (lecture 6)

Recall from the previous lecture the notion of surgery diagrams, and the Lickorish-Wallace
theorem:

Definition 2.6.1. A surgery diagram for a 3-manifold Y3 is a Kirby diagram for a four
manifold X with 0X =Y, consisting only of 2-handles.

Theorem 2.6.2 (Lickorish-Wallace). Every closed oriented 3-manifold admits a surgery
diagram.

Proof. By a theorem of Rokhlin, we know that every Y2 arises as 9X* for some compact
smooth manifold X. Draw a Kirby diagram for X. Since D? x S! is boundary isomorphic
to S? x D?, we replace all 1-handles with 0-framed 2-handles to obtain a new four manifold
which still has boundary Y3. By “flipping the diagram upside down”, any 3-handles
correspond to 1-handles. By following the same procedure, we can eliminate all 3-handles.
All that remains are 2-handles, as required. O

Example. Some examples of surgery diagrams are as follows:
e The empty diagram corresponds to S5.
e The 0-framed 2-handle is S' x S2.
e An n-framed 2-handle is the lens space —L(n, 1).

e The 1-framed trefoil corresponds to the Poincaré sphere. The 0-framed Borromean
rings corresponds to the torus 7.

Remark. We can read off homology from the surgery diagram! We have a Kirby diagram
for X,0X =Y, consisting of 2-handles. Thus H;(X) = H3(X) = 0. On the other hand,
Hy(X) is generated by 2-handles. This gives

HQ(Y) — HQ(X) — HQ(X, Y) — HI(Y) — HI(X) = 0,

where the map Hy(X) — Ho(X,Y) is Q : Z" — Z". Then H1(Y') = coker @, and Ha(Y) =
H(Y) is the free part of H1(Y).
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2.7 Kirby calculus

Recall Cerf’s theorem. This applies to Kirby diagrams, to give the so called Kirby calculus.

Theorem 2.7.1 (Cerf’s theorem). Any two handle decompositions are related by a sequence
of handle slides, handle cancellations.creations, and isotopies.

A corollary is that Kirby diagrams are related by Kirby moves:

Theorem 2.7.2. Any two Kirby diagrams for X* are related by a sequence of the following
mouves:

e Isotopies of handles, i.e. Reidemeister moves of the Kirby diagram.
e Handle slides (which manifest differently for 1-handles and 2-handles).

e Handle creation and cancellation (which also manifests differently for 1-handle/2-
handle pairs and 2-handle/3-handle pairs).

o A consequence of dotted notation is that there is one more move independent of Cerf’s
theorem corresponding to sliding a 2-handle over a 1-handle.

We now describe each of the above moves. Handle slides of 1-handles are exactly as
shown in[2.8] Handle slides of 2-handles are as shown in[2.9] but require some subtlety. The

Figure 2.8: Kirby move: 1-handle handle slide.

idea is that the framing of the handle doing the sliding changes to a new integer. Suppose
the knots K7, Ko representing the handles hq, ho have framings ni, no respectively. Suppose
the handle h; slides over hs. Then the new framing for hy is given by

framing h] = lk(K1, K1) = ny + ng £+ 21k(K;, K3).

The sign 4+ depends on whether or not the slide is orientation preserving. Note that the
integer k in the figure is not necessarily equal to ns, since the “flat diagram” is not the zero
framing, but rather the framing given by the writhe of the diagram. Next we describe han-
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hl h2 hll

Figure 2.9: Kirby move: 2-handle handle slide.

dle creation and cancellation. Cancellation of 2-handles and 3-handles is diagrammatically
simple, since 3-handles are not drawn in Kirby diagrams. Unknotted 2-handles labelled
with a 0 can be removed from the diagram. On the other hand, cancellation of 1-handles
and 2-handles is expressed in figure K denotes a knot, and n is the framing. Finally

ﬁ Il =y
' K

Figure 2.10: Kirby move: 1/2-handle creation/cancellation.

the last type of Kirby move is “sliding a 2-handle over a 1-handle”. By deconstructing
what the dotted notation means, it is clear that the following holds (figure )

Example. We now compute some examples. In figure [2.12] we attempt to understand the
diagram on the left by a 2-handle handle slide. Suppose both components are given an
anticlockwise orientation. Then the slide reverses the orientation, so the new framing of
the sphere on the left is given by 2 4+ 0 — 21k(K, K3) = 0. Therefore our diagram on the
right has the framings given. By Reidemeister moves, this is a Hopf link with framings 0
and 0, i.e. S? x S2.

Example. Next suppose we have a Hopf link, but with framings 0 and 1. (Figure [2.13])
Then a handle slide as above gives a similar diagram, but with and extra “loop”. By
Reidemeister moves, this produces two disjoint unknots! The new framings are 1 and -1.

Therefore the corresponding manifold is CP?#CP2.
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Figure 2.11: Sliding 2-handles over 1-handles.
@ (@)
Figure 2.12: Kirby calculus example

In general we find that a Hopf link with framings 0 and p represents CP?#CP? if p is
odd, and S? x S? is p is even.
What about the case of Hopf links with framings p, ¢7 This gives the intersection form

_(p 1
@_(1 p),

which has determinant pg — 1. This is usually not £1! In other words, it doesn’t give a
valid intersection form for a manifold without boundary. (Or with contrapositive phrasing,
in general we obtain a 4-manifold with boundary.)

A similar theorem holds for surgery diagrams.

Theorem 2.7.3. Two surgery diagrams represent the same 3-manifold if and only if they
are related by Reidemeister moves, handle-slides, or blow-ups and blow-downs.

Here a blow-up or blow-down refers to the fact that £1-framed unknots are boundary
homeomorphic to the empty diagram. Therefore for surgery diagrams, it is completely
valid to just drop them.

Example. Consider the Hopf-link with framing 0 and 1. Then by handle-sliding, we obtain
an unlink with framing -1 and 1. By blow-downs, this corresponds to the empty diagram.
Therefore the corresponding 3-manifold is S3.

Note that blow-ups and blow-downs can be generalised, as shown in figure
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Figure 2.13: Kirby calculus example 2

+1 41

Figure 2.14: Blow-ups and blow-downs for surgery diagrams

2.8 Heegaard diagrams

Another method for representing 4-manifolds is the notion of a trisection. To define this, we

first consider its analogue for 3-manifolds, namely Heegaard splittings. Recall from earlier

lectures that a handle decomposition of a 3-manifold gives rise to a Heegard splitting.
Suppose Y is a 3-manifold. Then we can write

Y=Yy |V |Ys]|Ys.
SN—— >

H, H,

Here H, and H, g’] are diffeomorphic handlebodies, the first consists of 1-handles, and the
second of 2-handles. Moreover, the two pieces have a common boundary, namely the unique
surface X,.

This gives rise to the notion of a Heegaard diagram: this is a copy of X, with a collection
of 2g curves

ala"'vag7517"'7/89

on X,. The o, ..., a4 are attaching spheres for the 1-handles (viewed as 2-handles), and the
B1, ..., By are attaching spheres for the 2-handles. The «; should be linearly independent
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in H1(X), as should g;. Then
g g
Y =%,u|JDZ ulJD} UBiUB}.
i=1 i=1
Again by an application of Cerf’s theorem, we obtain the following theorem:

Theorem 2.8.1. Two Heegaard diagrams represent the same 3-manifold if and only if they
differ by

e a sequence of handle-slides (o over «, 8 over [3),
e isotopies (Reidemeister moves),

o stabilisation/unstabilisation (creation/cancellation of 1-handle/2-handle pairs). In
other words,

(Euala ce. 7agaﬂl7 cee 769) ~ (E#T27a17 cee 7ag+17617 ce . 769-%1)

where ogy1 and Bgy1 intersect at a single point. (e.g. if they are a meridian and
longitude of T?.)

Remark. Stabilisation/unstabilisation shows that the genus of a Heegaard diagram is not
fixed. Therefore a given Heegaard diagram is often called a genus g diagram (of Y).

Example. e T2 with a a meridian and 3 a longitude represents S3.

e T2 with o and 3 both meridians represents S' x S2.

2.9 'Trisections (lecture 7)

Definition 2.9.1. Let X be a closed smooth connected 4-manifold. Then for 0 < k < g,
a (g, k)-trisection of X is a decomposition X = X; U X5 U X3 such that

e For each i, there is a diffeomorphism ¢; : X; — §%(S! x B3).
e The boundary of each X; is #*(S' x S?). Each of these has a Heegaard splitting

0X; = #5(S' x §?) =Y, Uy, ViF .

e Given any 7, p;(X; N X;41) = Yk_g, and ¢;(X; N X;-1) = Y,:'g.

Definition 2.9.2. A trisection diagram is a set of three curves «;, 3;,7; on Y,, with
i € {1,...,g}, such that any two subcollections is a Heegaard diagram for #*(S! x S?)
(and represents the splitting #(S' x §?) = Y, Us, Y,:rg).
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Figure 2.15: Anatomy of a trisection. Each coloured boundary 9.X; has a Heegaard de-
composition kag Us, Yljg.

The basic anatomy of a trisection is shown in figure [2.15]

Remark. One can show that x(X) =2+ g — 3k, i.e. k is determined by g! On the other
hand, g is fixed modulo 3 for any given X. Therefore we speak of “genus g trisections” of
X.

Example. Suppose a trisection has ¢ = 0 and k£ = 0. Filling out the figure above,
we find that ¥, = S2, and each boundary component is S? (with Heegaard decomposition
B? Uge B3.) Then each X; is a copy of B and X = S*.

Example. Suppose a trisection has ¢ = 1 and k = 1. The corresponding trisection diagram
consists of a torus, with «, 3,7 all meridians. This gives X = S x S3.

Example. Consider CP?. This is a toric variety, with moment map f : CP? — R2 given

by 2 2
AU A ) i 1
f([z0 1 21 1 22]) <Z|ZZ’2’Z|Z,Z’2>

The image of f is the triangle defined by sides [0,1] x 0 and 0 x [0, 1]. Given any p in the
interior of the triangle, the preimage of p under f gives a torus. Consider the three regions
of the triangle given by three orthogonal rays from p to the boundary of the triangle. Label
each region Q1, Q2, Q3. Then each X; = f~1(Q;) defines a trisection of CP2. f~1(Q; N Q;)
is a solid torus.

This gives rise to a trisection with g =1 and £ = 0. The trisection diagram is a torus
with three curves on it, namely (0,1),(1,0),(1,1) according to the canonical bijection
between isotopy classes of simple closed curves on a torus and primitive elements of Z2.
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Theorem 2.9.3 (Gay-Kirby). Every closed smooth connected oriented 4-manifold admits
a trisection.

Proof. We give a proof sketch. Choose a “2-valued Morse function” f : X — B2, The
local models are

e generic points: f is a submersion (¢, z,y, z) — (t, )
o folds: (t,x,y,2) — (t,+x> £ 9%+ 2?)
e cusps: (t,x,y,2) — (t, 2> — to £y + 22).

We now consider a family of functions f; : X — R. Cusps occur when f; experiences the
birth or death of a singularity, and folds are curves of critical points. The image of X*
in B? is called a Cerf graphic, and by massaging the Cerf graphic in analogous ways to
handle-moves, the Cerf graphic can be arranged to form a trisection. O

Theorem 2.9.4 (Gay-Kirby). Any two trisections of X* are related by a sequence of
o diffeomorphisms,
e «, 3, or v-handle slides,

o stabilizations, i.e. connected sums with a diagram representing S*. This diagram
looks like a fidget spinner with extra loops, as shown in[2.16]

‘?

Figure 2.16: Trisection diagram for S*. Each colour represents o, 3;, or ;.
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Chapter 3

Construction of Seiberg-Witten
gauge theory

Some of the goals of this section are to prove the following results:
1. Prove Donaldson’s diagonalisability theorem.
2. Show the existence of exotic smooth structures in dimension 4.
3. Prove the Thom conjecture (which concerns the genus of surfaces X € CP?).
4. Prove the Milnor conjecture (which concerns the genus of surfaces ¥ C 1), ).

To do this, we use the tools of Seiberg-Witten gauge theory. To state the Sieberg-Witten
equations, we must first introduce the relevant definitions.

3.1 Clifford modules

Consider the Laplacian A = — °(9/0x;)?. This is an operator C*°(R", C") — C*°(R",C").
The Laplacian is self-adjoint; (Ap, ) = (¢, A). When does the Laplacian admit a square
root? We want

D =Y A;0/0x;, (Dp,y) = (p,D¥), D*=A.

Expanding what this means, we require A2 = —1, A = —A;, and A;4; + A;A; = 0
whenever i # j.

Definition 3.1.1. A Clifford algebra is a real algebra generated by elements A; satisfying
A? = —1 and 4;A; + A;A; = 0 whenever i # j.
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Definition 3.1.2. Let H denote an n-dimensional real inner product space. A Clifford
module of H is a Hermitian complex vector space V' equipped with a Clifford multiplication,
i.e. amap v :H — End(V) such that

1. If |le]| = 1, then 7(e)? = —1.
2. If e; L ey, then y(e1)y(e2) + y(e2)v(er) = 0.
3. 1(e)* = —(e).
Thus a Clifford module is a skew-Hermitian representation of a Clifford algebra.

Theorem 3.1.3. If n = 2k, then there exists a unique finite dimensional irreducible Clif-
ford module (S,~) up to isomorphism, with dimc S = 2F.

If n = 2k+1, then there are exactly two finitely dimensional irreducible Clifford modules
up to isomorphism; (S,7) and (S, —v). These have dim¢ S = 2F.

Example. Suppose H has basis e1, ez, e3. Let S = C2?, and «(e;) = B;, where the B; are

Pauli matrices:
i 0 0 1 0 -1
B=(y )m=(3 o) 20 )

Then (S,7) and (S, —) are the two Clifford modules of H, up to isomorphism.
Example. Suppose H has basis e, €2, e3,e4. Let S =C* =St @ S~! and

v(e:) = (ng —é%) ;

where the B; are as above, and By = I. Then (5, ) is the unique irreducible module of H
up to isomorphism.

Definition 3.1.4. A spin® structure on an n-dimensional oriented Riemannian manifold
X is a Hermitian bundle S — X with bundle map p : TX — End(S) such that for all x,
(Sz, pz : To X — End(S,)) is isomorphic to an irreducible Clifford module for T, X.

Example. If n = 3, a spin® structure is a Hermitian bundle S — X of rank 2, with a map
p:TX — End(S) such that there exists an orthonormal basis e; at each = for T, X, and a
Hermitian basis for S, with p(e;) = B;.

In fact, this can be thought of as U(2)-bundle together with a compatibility condition
with TX.

Example. If n = 4, a spin® structure corresponds to two Hermitian bundles ST and S~
of rank 2, with a map p : TX — Hom(S™, E7), such that there is an orthonormal basis e;
and Hermitian basis for ST, S~ with p(e;) = B;.

Question from class. Is the category of Clifford algebras semisimple? What happens to
the earlier theorems if we drop irreducibility?

Answer. Yes, every Clifford algebra is a direct sum of irreducible Clifford algebras. O
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3.2 Spin‘ structure definitions (lecture 8)

Recall from the previous lecture that a spin® structure on an oriented Riemannian 4-
manifold X is a pair of rank 2 Hermitian bundles S*, S~ — X with bundle map p : TX —
End(S) such that for all =, (Sy,p, : T, X — End(S;)) is isomorphic to an irreducible
Clifford module for T, X.

More explicitly, we can refine p to a map v : TX — Hom(S*,S™) C End(S). Then a
spin® structure is a map - such that for each x, there exists an orthonormal basis e; for
TX and a unitary basis for S* such that

e = o)

where each B; is a Pauli matrix (with By = I.)
S =S8T® S — X is called the spinor bundle.

Remark. Since the determinant of each B; is 1, the determinant line bundles of ST and
S~ are isomorphic. (To establish this isomorphism, it suffices to verify that p(e) = 1
whenever |le]| = 1.)

Definition 3.2.1. The class of (S,7) is defined to be
c1(det ST) = ¢1(ST) = e1(S7) € HX(X; Z).
Note that ¢1(S) = 2¢1(ST).

Remark. Fix some € X. Then Aut(S;,7,) = S'. To see this, observe that any
automorphism commuting with 7, corresponds to a pair AT and A~ of automorphisms
on ST and S™, such that B;AT™ = A~ B; for each i. Since B, = I, this implies that
A= At = A= € U(2). On the other hand, AB;A~! = B; implies that A is central, so
Ae Z(U(2)) =S\

Another way to think about spin® structures is via principal bundles. Recall that
Spin(n) — SO(n) is a 2:1 covering map. Then the statement that X" is a Riemannian
manifold is equivalent to saying that the frame bundle of its tangent bundle is a principal
SO(n)-bundle. A spin structure is then a lift of this structure to a Spin(n)-bundle.

With this perspective, we can define

Spin®(n) = Spin(n) xz,97 U(1) = {(g, ) € Spin(n) x U(1)}/ ~

where ~ is the equivalence relation (g,e?) = (rg,e). Here 7g denotes the unique
element so that {g, 7¢} is the fibre above a point in Spin(n) — SO(n). With this definition
of Spin®(n), a spin® structure is equivalently a lift of the frame bundle of T'X to a Spin®(n)-
bundle.
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Example. Suppose n = 3. Then Spin(3) = SU(2) = S(H), where S(H) denotes the unit
quaternions. There’s a 2:1 covering map

S(H) — SO(3), h+ (x> hah™h).

Then Spin®(3) = SU(2) xz/97 U(1) = U(2). To see this equality, for each A € U(2),
consider the map
A ((det A)Y2A)((det A)V/2T).

The first component on the left belongs to SU(2), and the second to U(1). The failure
of this map being well defined is that (det 4)!/2 is only well defined up to sign, but this
exactly accounted for in the fibre product with respect to Z/2Z. Therefore this map gives
an isomorphism, so Spin®(3) = U(2) as required. In summary we have the following result:

A spin® structure on X3 is a U(2)-bundle S — X with compatibility conditions given
by p: TX — End(S).
Example. Suppose n = 4. Then Spin(4) = SU(2) x SU(2) — SO(4). The covering map is
given by

(h1,he) = (z +— hazhy '),

where we have again identified SU(2) with S(H). With this interpretation,
Spin(4) = (SU(2) x SU(2)) X222 U(1)
C (SU(2) x 0 X797 U(1)) x (0 x SU(2) x7/07 U(1)) = U(2) x U(2).
More explicitly, the subset is
Spin(n) = {(4,B) € U(2) x U(2) : det A=det B} C U(2) x U(2).

In summary, a four dimensional spin® structure is given by U(2)-bundles ST, S~ — X
satisfying additional compatibility conditions via v : TX — End(S™ & S7).

3.3 Spin‘ structure existence and classification

Suppose X is a smooth simply connected oriented closed 4-manifold. Recall that X admits
a spin structure if and only if wo(TX) = 0, or equivalently if and only if Qx is even.
Existence of spin® structures is less constrained:

Proposition 3.3.1. Any smooth simply connected oriented closed 4-manifold X admits a
spin® structure. The space of spin® structures is an affine space, modelled on H?(X;Z). In
other words, given any s, s1 € Spin®(X), so — s1 is well defined in H?(X;Z). In particular,
there are non-canonical isomorphisms Spin®(X) = H2(X;Z).

Remark. If s € Spin®(X), and h € H%(X;Z) is given by h = ¢;(F) for a complex line
bundle E, then s + h € Spin®(X) is (ST ® E,S7' ® E, p®id).
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Proof. We give a proof for the case where 71 (X ) = 1. Suppose {U, }aca is an atlas for X,
such that each U, gives a trivialisation TX |y, = R* x U,, and S, := S|y, is the standard
Clifford module.

Choosing any «, 8, we have trivialisations from each chart, with S, corresponding to
Uy, and Sz corresponding to Ug. Thus on the intersection U,g, the transition map gives
an isomorphism S, — Sg. Succinctly, we have a map

Pag : Uag — Aut(S,7) =S'.

Given any three charts with non-empty intersection, we can compose the above maps to
obtain

P70 © 98y © Pap : Uapy = S'.

Our goal is to glue the maps over U, to form a spin® structure on X. For this we require
the transition maps to satisfy the cocycle condition, in this case ¢ q 0y 0Yas = 1. When
is this true?

The obstruction to the above identity is given by Cech 2-cocycles [¢] € H?(X,C>®S!)
of the Sheaf cohomology, where

Cc>esY(U) = C>=(U,S")

for each U. We now show that this particular cohomology group vanishes. Consider the
long exact sequence
0—Z— C®R =2 0>S! — 0.

The corresponding sequence of cohomology is given by
H*(X;C™R) — H*(X,C>*S") — H3(X;7).

The cohomology group on the left vanishes because C*°R has partitions of unity, and
the cohomology group on the right vanishes by Poincaré duality (since we assumed that
71 (X) = 0, so in particular Hy(X;Z) = H3(X;Z) vanishes). It follows that the cohomology
group in the middle must also vanish, as required. This shows that our obstruction vanishes,
completing the proof of existence in the case m(X) = 0.

For the general case, it turns out that even if 71(X) doesn’t vanish (so that H3(X;Z)
is non-trivial), we can still look at the image of H?(X,C°°S!) under the induced map to
conclude that the cohomology group is trivial. O

Question from class. Doesn’t this imply spin structures exist?

Answer. No, recall that spin structures exist if and only if Qx is even. The reason we
don’t have a contradiction here is because there is no map Spin® — Spin (because of the
“modulo 27). We only have a natural map Spin® — SO, which is perfectly fine since the
latter is a Riemannian structure. ]
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Proposition 3.3.2. Classification: suppose (S,~) and (S,7') are two spin® structures.
On U,, we obtain isomorphisms v : (S,7)|v, — (5,7)|v., and on an intersection Uy,g,
we have 1, o 1/1;1 : Upp — Aut(S,7) = St This gives a 1-cocyle in H'(X;C*°S!). But
this cohomology group is in fact isomorphic to H?(X;Z), from the exact sequence

0=H'(X;C*R) - H'(X;C>*S") - H*(X;Z) — H*(X;C*R) = 0.

Therefore spin® structures exist, and are non-canonically isomorphic to H?(X;Z) (they are
affine over H?(X;7Z)).

Remark. The above result depends on dimension 4: there exist 6-dimensional manifolds
admitting no spin® structures.

Recall that we defined the class of a spin® structure (.5,7) to be the first Chern class
c1(8F) = ¢ (det ST). For h € H%(X;7Z), we noted that s + h € Spin°(X) was given by the
bundle ST ® E, where E is a complex line bundle with ¢1(E) = h. Therefore if ¢ denotes
the class of s, then the class of s + h is given by

c1(ST®E) = c1(det ST @ E?) = ¢1(ST) + 2¢1(E) = ¢+ 2h.

If H?(X;Z) has no 2-torsion, (e.g. 71(X) = 0), then s € Spin®(X) is determined by its
class, c1(s) = ¢1(ST). In other words, the map ¢; : Spin®(X) — H%(X;Z) is an injection.

What is the image of ¢; : Spin®(X) — H?(X;Z)? One can show that these are exactly
the characteristic elements of X;

ime; = {k € H*(X;Z) : k mod 2 = wo(TX)} = char(X).

Note that £ mod 2 = wy(TX) means that (k,a) = (a,a) modulo 2.

For example, if X is spin, then wo(7TX) vanishes. Therefore Spin®(X) is isomorphic
to the characteristic elements of X, which are 2H?(X;Z) C H*(X;Z). If X = CP?, then
H?(X;Z) =7 and Qx = (1). The characteristic elements of CP? are 27 + 1 C Z.

3.4 Hodge theory

Let V' denote an inner product space over R, equipped with an orientation. That is, a
choice of volume form vol € A™V. The Hodge star is the map

*: AMV = AR

such that a A %8 = (a, B)vol. Explicitly, if I = {i1,...,ix} C {1,...,n}, then vy =
ei, N\ -+ A e, gives a basis for ARV, and »v; = +v7, where T is the complement of I in

{1,...,n}.
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Example. When k£ = 2, and the dimension of V' is 4, then
4
dim A%V = <2> =6,
with
*x: ANV 5 AV 2 =1, AV=ATVaAV

where A*V are the & eigenspaces of . What are the bases for the eigenspaces? For ATV,
we have basis

eprNex+e3Neq, e1/Ne3—eaNeg, e1/Neqg+exes.
For AV, we have a basis
erNey—ez3/Neyg, epNeg+exNeq, e1/N\eqg—exes.
Suppose X is an oriented Riemannian 4-manifold. Then
NT*X = ATT*X © A" T*X.

The first factor on the right consists of self-dual 2-forms, and the second factor, anti-self-
dual 2-forms.

Definition 3.4.1. H?(X;R) denotes the harmonic 2-forms,
HA(X:R) = {w € Q*(X) : dw = d*w = 0}.
Here d* = — x dx. The action of x on harmonic 2-forms gives a decomposition
HA(X;R)=H " N

of + eigenspaces. The self-dual forms give a cohomology theory with H = H*.

3.5 Hodge meets spin® (lecture 9)

Recall that the Hodge star is a map
*: QF (M) — QU k(M),

where M is a closed oriented n-manifold. On the other hand, the exterior derivative is a
map

d: Q8 (M) — QFFL(M),

which gives rise to the de Rham complex, with cohomology H*(M;R) = kerd/imd. We
also define the dual of the exterior derivative by

d* = £ xdx : QM) — QF ().
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Theorem 3.5.1. The Hodge decomposition theorem states that
QF(M) = imd @ HF (M) @ im d*,
where H¥(M) = {w € QF(M) : Aw = 0} are the Harmonic 2-forms, and A = dd* + d*d.
Now suppose X is a 4-manifold, so x : Q2(X) — Q2(X) is an involution (¥ = 1). Then
0%(X) = Q2 (X) @ Q2 (X),
where Q% (X) are the + eigenspaces of . We can further define projection operators
I+ : Q2(X) — Q2 (X) by
==
==
so that II™ + I~ = 1. We can further define a complex (analogously to the de Rham
complex),

H:I:

QX)) % 0l(x) L 02(X), df =D od.

Then the second cohomology Hﬁ of the above complex is exactly the + eigenspace of %
acting on H?(X).

How does the Hodge star interact with spin® structures? Suppose X is a 4-manifold
with spin® structure (S,~). More explicitly, v : TX — Hom(S, S), with

e =(p o)

so the y(e;) anticommute. X is Riemannian, so we have a (musical) isomorphism 7'X =
T*X. Combining these two observations, v extends to maps

A*TX @ C — End(S), (e A Ae) = y(ell) - y(e).

Lemma 3.5.2. A2 C A?TX acts trivially on S~, and v : A2 — su(S™) is an isomorphism.
Note that
su(ST) = {A € End(ST): A* = —A,tr(4) = 0}.

Proof. Check in local bases. For example, e; A es + e3 A egq acts trivially on S~ since
Bi(~Bj) + By(—B}) = 0. 0

Corollary 3.5.3. Fiz w € Q% (X). This gives a section v(w) € I'(su(S)).
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3.6 Connections and curvature

Definition 3.6.1. An “FE-valued k-form” is an element of
OF(X;E) =T(A*'T"X @ E),

where E — X is a vector bundle. In particular, Q°(X; E) = T'(E).

Definition 3.6.2. Let X be a smooth manifold, and F — X a vector bundle. A connection

V4 on FE is an operator
Va: QX E) — QYX;E)

satisfying the Leibniz rule, i.e.
Va(fs)=df @ s+ fVas
for all smooth f: X — R and s € I'(E).

Remark. If V4 and Vg are connections, then
(Va = Vg)(fs) = f(Va—Vpg)(s).

Therefore the difference of connections is not a connection, but rather it belongs to I'(Hom(E, T* X ®
E)) = QY(X;End(E)). Hence the set { connections on E} is an affine space over Q! (X; End(E)).

Definition 3.6.3. Now let E be a Hermitian complex vector bundle. A connection V 4
on F is unitary if
d(s,t) = (Vas,t) + (s, Vat)

for all s,t € T'(E).

Remark. If V4 and Vg are unitary connections, then their difference V.= V4 — Vp
satisfies
(Vs,t) + (s, Vt) =0,

so V € QY X;u(E)) where u(E) is the unitary Lie algebra, and can be viewed as a subset
of End(E). Hence the set { unitary connections on E} is an affine space over Q' (X;u(E)).

Definition 3.6.4. Let X* be a manifold with spin® structure (S,~). A spin® connection
V4 on S is a unitary connection such that

Va(y(v)s) =v(v)Vas +v(Vicv)s

for all v € I'(T'X),s € I'(S). On the left side, y(v)s is Clifford multiplication, and Vi is
the Levi-Civita connection.
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Remark. If V4, Vg are spin® connections, then V = V 4 — Vg satisfies

Therefore the set { spin® connections on S} is an affine space over Q' (X; End(S,v)Nu(S))
On one hand, End(S,) consists of diagonal matrices zI, and on the other, u(S) forces
z* = —z. Therefore we can make the identification

QY(X;End(S,~) Nu(S)) = QY (X;iR).
Hence { spin‘ connections on S} is an affine space over Q!(X;iR).
Definition 3.6.5. The curvature of a connection V 4 is simply given by 4 =V 40V 4.

The idea is that V4 induces a connection on higher exterior powers, so the above is
really a composition of maps

I'(E) - T(T*"X ® E) = T(A°T*X ® E).
Then for any f: X — R and s € I'(F), we have
FaA(fs) =Valdf @ s+ fVas) =d*f @ s+ df @ Vas —df @ Vs + fFas = fFas.
This shows that F4 € Q?(X;End(E)).

Remark. The curvature measures the failure of exactness of the “FE-valued de Rham
complex”.

The curvature satisfies the following properties:

e Let V4 have curvature F4. Then there is a canonical connection V 4 on det(F),
with curvature Far = tr(Fjy).

o ci(E) = {%FA] € im(H?(X;Z) — H*(X;R)).
Suppose X is a spin® 4-manifold, with V4 a spin® connection, F4 € Q?(X;4R). In this
case, Fy = $Fa-. Further define Ff = II* o Fy € Q% (X;iR) = I'(su(ST)).
For any ® € I'(S), we obtain an element (i®®*)q € ['(su(ST)). The idea is that
h=i®d* € I'(S ® §*) =I'(End(S5)) is map
h:— i®(P, 1),

so that h* = —h. To ensure that h lies in T'(su(S™)), we take the trace free part,
1
ho=h— i(trh)l.
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With this in mind, we define
o(®) = v 1(@D*)g € QL(X;iR).

In fact, we’ve now developed enough terminology and machinery to state one of the Seiberg-
Witten equations:
F{ =0(®).

Definition 3.6.6. Let X* be a 4-manifold with spin® structure (S,~) and spin® connection
V a. The Dirac operator is defined by the composition

I(S) Y4 T(T*X ® S) & T(TX ® S) 5 T(S).

This is denoted by D4 (or sometimes By or ﬁA). In fact, we can write

0 Dj _
Dy = <D+ 0A> ., Di:T(ST) —=T(S).
A

Example. Suppose X denotes Euclidean 4-space, with St = S~ = C? the trivial bundle.
A spin€ structure is given by
0 —B!
e) = (Bi oz> =4

Then a spin® connection is given by the the exterior derivative by identifying C? to with
R*. Therefore the Dirac operator is given by
0s
ox’

V .
3»—A>ds>’bi>z:eZ
i

0
L ( zz: A; @> s.
Therefore P
Da = Z Aim.
But this is exactly a square root of the Laplacian! Recall that the A; satisfies A? = —1,
and AZ'AJ' + Ain =0 for ¢ # j.

Example. Suppose (X4, g,(S5,7),V4) are arbitrary. Then D4 isn’t necessarily a square
root of the Laplacian - it will also have some curvature terms. Explicitly, this is given by
the Weitzenbock formula:

] 1
D3® = V4 V49 + 12+ 5v(Fa)e.

In the above, s denotes the scalar curvature of (X, g). The first term on the right is the
Laplacian for Spinors; V%V 4. The second term is a curvature term from g, and the third
term is the curvature from V 4.

o1



Question from class. Does the above formulation hold in pseudo-Riemannian settings?
Answer. Yes, the formulas above come from universal polynomial equations. ]
Question from class. Do connections always exist?

Answer. Yes, you can locally trivialise the relevant bundles and locally define the trivial
connection. Then by using partitions of unity, the local structures can be glued together.
O

3.7 Seiberg-Witten equations

Definition 3.7.1. Let X be a spin® 4-manifold, with spin® connection V4. Then the
Seiberg- Witten equations are

Di® =0, Fi=o(P)

where @ is a positive spinor, i.e. ® € I'(St), where S = ST® S~ - X and v : TX —
End(S) gives the spin® structure. Recall that o is a “squaring map”, o(®) = 71 ((®®*)o).

What are some properties of the Seiberg-Witten equations? A very important property
is Gauge invariance. Let G = I'(Aut(S,v)) = C*(X,S!). This is called the Gauge group.
For any u € G, u-® € I'(ST), and we can define u- V4 to be

uw-Va=V4—u tdu.

This comes from the Leibniz rule, by computing u(V 4(u~1®)). Note that du € Q(X;iR),
so if u = el with f: X — iR, then v 'du = df.

Proposition 3.7.2. The Seiberg-Witten equations are gauge invariant. That is, for any
u € G, if V4 and & satisfy the Seiberg-Witten equations, so do v -V 4 and u - ®.

This is a non-trivial result in the sense that G is very large! It is an infinite dimensional
group.
Definition 3.7.3. Let V4, be a fixed spin® connection. We say that A is in Coulomb
gauge with respect to Ag if d*(A — Ap) = 0.

Everything can be put in Coulomb gauge by applying some v € G. In particular,
solutions to the Seiberg-Witten equations modulo G are equivalent to solutions to Seiberg-
Witten in the Coulomb gauge modulo H'(X;Z) x S!.
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3.8 Seiberg-Witten moduli space (lecture 10)

We consider X a closed smooth oriented Riemannian 4-manifold with metric g, and spin®
structure s = (S,~) € Spin°(X), S = ST @ S~. For simplicity, for the remainder of this
lecture we assume X is simply connected (71 (X) = 0).

Recall the Seiberg-Witten equations:

Di® =0, Fi=v""((2)o),

for A a spin® connection, and ® € ['(S*). The Gauge group is G = T'(Aut(S,v)) =
C>(X,Sh). Then the Seiberg Witten moduli space is

Mgw = {(A, ®) satisfying SW}/G = {(A, ®) satisfying SW in Coulomb gauge}/S*.

Recall that a spin® connection A is in Coulomb gauge with respect to Ay if d*(A — Ag) = 0.
Our goal is to count solutions to the Seiberg-Witten equations. To make sure this is well
defined, we begin by proving that Mgy is compact.

Theorem 3.8.1. Mgy is compact.

Proof. Suppose (A, ®) is a solution to SW. By Weitzenbdock,

D%® = V4V + Zcp + %V(FA)cb.
On the other hand,
d(D, D) = (V4P, D) + (P, V4P) = 2Re(V 4D, D).
It follows that
%A|<I>\2 = %d*d(@,@ = d*(Re(V D, ®)) < (VA VAP, D).
But now by applying the Weitzenbock formula, we have

S 1

v*AVA(I)a (I)> = <D124(I>7 (I)> 4<(I)7 (I)> - §<’Y(FA)(I)7 (I)>'

Since (4, ®) solves SW, D%® = 0, so the first term on the right vanishes. Moreover,

YD) =v(yH(2D%)o).

Since Q2 acts trivially on S, y(F4)® = (®®*)o®. In summary we have
s 1
(ViVa®, @) = _1‘(1)'2 - 5{(@0)o, ®).
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In a unitary basis at some x € X we can write ® = (¢,0), where ¢ = |®|. Then

. (ItP o oo 1 2 o
P = < 0 o) O that (®®*)g = a0 —pp)
But then ((®9%)®, @) = %‘(I)|4. Overall, this gives
1 2 * S 2 1 4
SOl < (V3Va®, @) < — |0 — J[@["

Since X is compact, we can choose € X which maximises |®|. Then 0 < A|®|?, so either
® =0 or |®|> < —s. In particular, if s > 0, then ® = 0. These pointwise bounds on ® give
LP bounds on ®. This induces bounds on Fi =y~ 1((@®*)o).

Write A = Ag + ia, where a € Q'(X;R). Then F = FZO +id%a. By the Coulomb
condition, we have —id*(A — Ap) = d*a = 0. Now considering the homology of

a0 4ot 4 of
we have H(X;R) = {a : d"a = d*a = 0}. Tt follows that
dt +d* Q' = Qf @ (Q0/R)

is a linear elliptic injective Fredholm operator. This provides an elliptic estimate. Namely, a
bound on (d*+d*)a induces a bound on a in some Sobolev norm. By elliptic bootstrapping,
this gives C'™° bounds on a and ®, which then gives compactness. O

3.9 Counting solutions to SW

Solutions to the Seiberg-Witten equations are classified in the following two ways:

Reducible, ® =0  fixed points of S! action.
Irreducible, ® # 0 S! action is free: € : (A, ®) — (A, e®).

We first investigate reducible solutions. These satisfy the following properties:
®=0, Da®=0,F{=0,F; +d"a=0,

where a = A — Ag. Therefore we have an injective map d™ + d* on the collection of a
satisfying d*a = 0 and dTa = —FXO. We conclude that there is either one solution or no
solutions satisfying these properties.

Proposition 3.9.1. The Seiberg-Witten equations have 0 or 1 reducible solutions.
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Our next goal is to count irreducible solutions. Define
SW : Connections & T'(S*) — Q2 (X;iR) & T(S™) & (2°(X)/R)

by
(Va, ®) = (Fif =771 ((®D%)o), D@, d*(A — Ap)).

— 1
We claim that Mgy = SW (0)/S!. (Again we are assuming for simplicity that our four
manifold is simply connected.) For this to be true, we require that 0 is a regular value, so
that the preimage is really a submanifold. Therefore we compute the derivative:

dS\VT/(A’(I,) = (dJr + (D, .. .>,Dj0 + -, dY).
This is a linear elliptic Fredholm operator! Therefore the index defined by
ind(dgﬁ/) = dim ker dSW — dim coker dSW € Z.

This is invariant under deformations. By the famous Aityah-Singer index theorem, we can
actually compute this:

_als)?—o(X)

ind(dSW) i

— by (X) 4 b1 (X).

(In our case, b1(X) = 0.) Here o(X) is the signature of the intersection form on X. Since
the index is invariant under deformations, we consider perturbed Seiberg-Witten equations:

SW(A,®) = (n,0,0), neQ;(X;iR).

Then §\I/I//_1(n,0,0) is still compact, and we define Mgy = m_l(n,0,0)/Sl. By the

— 1
transversality theorem, for generic n, SW (n,0,0) is a smooth manifold of dimension the
index of dSW. In summary we have established the following:

Proposition 3.9.2. For generic 7, mil(n,0,0) is a smooth manifold of dimension
ind(dSW).

To conclude that the quotient m_l(n, 0,0)/S' is a smooth manifold, we want the S*
action to be free. But in general the action isn’t quite free, since reducible solutions to
the Seiberg-Witten equations might exist. We now determine some conditions to eliminate
any reducible solutions. Recall that a reducible solution satisfies

SW(A,®) = (n,0,0), ®=0, F{=F} +da=n da=0.

Inspecting the sequence
a0 ot 92
+
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we find that reducible solutions exist if and only if n — FXO lies in the image of d*. This is
a codimension b% (X) condition, so to guarantee that there are no reducible solutions for
generic 7, it suffices to assume that bi (X)>0.

Finally recall that the signature and Euler characteristic of a 4-manifold is given by

o(X)=by —by, X(X)=2—2b+0b] +0;.

Proposition 3.9.3. If b2 (X) > 0, then for generic 7,

— 1
Mswn = Msw(X,s,g,m) = SW (0)/S"
is a smooth compact manifold of dimension

c1(s)? — o(X)

(5)* — (30(X) + 2x(X))
1 :

4

d=

b b —1="2

In particular, when d = 0, Mgw,, is a finite collection of points.

3.10 The Seiberg-Witten invariant

In summary we have shown that “counting solutions” is well defined, given a perturbation
and b2 (X) > 0.

Definition 3.10.1. The Seiberg- Witten invariant SWx (s, g,n) of X is the signed count of
points in Mgy, for some fixed choice of orientations. More precisely, we fix a “homology
orientation”, i.e. we orient H(X) & H'(X) & H3(X).

Remark. The above definition implicitly assumes that d = 0. However, the definition can
be extended to any even d > 0. But in all known cases, it turns out that SWx = 0 for
positive d.

Remark. A 4-manifold X is of simple type if SWx(s) =0 for all s with d > 0. Witten’s
conjecture is that all 4-manifolds are of simple type. This is known to be true for symplectic
4-manifolds (e.g. all complex projective surfaces).

Theorem 3.10.2. If b (X) > 2, then SWx(s, g,n) is independent of generic n and g.

Proof. Consider (go,n0), (91,m1) in metrics x Q2. We interpolate by a family (g;,7;). Then
M = UtE[O,l] Msw,(geme) 18 @ smooth manifold of dimension d +1 = 1. We can avoid
reducibles in a one-parameter family: to do this, we require b; > 2, since existence of
reducibles are a codimension bj condition as mentioned earlier. Now M is a 1-manifold
with boundary —Mgw,(g.m0) L Msw,(g1,m:)- But the signed count of boundary points of
any l-manifold is always zero! O
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Hereafter we write SWx(s), for s € Spin®(X), given the assumption b5 > 2 and d = 0.

Remark. When b; = 1, there is a wall of perturbations in which reducibles exist. This
wall partitions the space metrics x Qi into two chambers. We denote the chambers by =+,
and the Seiberg-Witten invariant takes two values SWi(s) and SWy (s), which differ by
+1.

Recall that Spin(X) is an affine space over H%(X;Z). When 71(X) = 1, we have an
injective map

c1: Spin(X) — H*(X;7Z).
The image consists of characteristic elements:
Spin®(X) = {k € H*(X;Z) : (k,a) = (a,a) mod 2 for all a} = Char(X).

With this identification established, we can give the final juicy definition of the Seiberg-
Witten invariant:

Definition 3.10.3. The Seiberg- Witten invariant of a four manifold X is the map
SWx : Char(X) — Z
defined by SWx (k) = SWx(s) for a Spin® structure s satisfying ci(s) = k.

We explore the properties of the Seiberg-Witten invariant in the following lecture, and
look at some applications.
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Chapter 4

Applications of Seiberg-Witten
theory

4.1 Basic properties of SW (lecture 11)

Recall that the Seiberg- Witten invariant was defined as a map
SWx : Char(X) — Z.

We will see that SWx (k) often vanishes.

Definition 4.1.1. A characteristic element k& € Char(X) is called a basic class if SWx (k) #
0.

Eight basic properties of the Seiberg-Witten invariant are as follows:

1. SWx (k) = 0 for all but finitely many k. In other words, there are only finitely many
basic classes.

2. If X admits a metric of positive scalar curvature, then SWx vanishes identically.

3. The Seiberg-Witten invariant satisfies a notion of symmetry:
SWi(—k) = (—1)b =01 (X)+1 gy (k).

(In our case we only established the existence of the Seiberg-Witten invariant for sim-
ply connected 4-manifolds so that b;(X) = 0. However, the Seiberg-Witten invariants
exist more generally, in which case the above formula is the correct generalisation.)

4. Another important vanishing property of the Seiberg-Witten invariant is the follow-
ing: suppose X = X1#Xo, where by (X;) > 1 for both i € {1,2}. Then SWx
identically vanishes.
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. A related property is called the blow up formula. Suppose X is of simple type, with
basic classes ki, ..., ks. Then

X' = X4CP?
has basic classes {k; = F :i=1,...,s}, where E € H*>(CP?;Z). (This is called the

exceptional class, and represents CP' in (C]P’Q.) Moreover,

SW:(k; £ E) = £SWx (k).

. So far we have only shown that SW vanishes in various cases, but have yet to exhibit
that SW is ever non-trivial. This is remedied here.

Suppose X is a complex projective surface. Then +c;(T'X) are characteristic ele-
ments, and

SWiy (£e1(TX)) = £1.

. The following is a generalisation of the previous property, due to Taubes: let X be
symplectic, and J a compatible almost-complex structure. Then

SWX(:ECl(TX, J)) = +1.

. Adjunction inequality.

(a) Let X C X be an embedded oriented closed surface, with self intersection number
[¥]? at least 0, and [X] # 0. Then for any basic class k on X,

29(2) —2 2 [Z] + |k - [3]]

(where k - [¥] is again the intersection number).

(b) If X is of simple type, and g(X) # 0, the above result also holds in the case
where [X]? < 0.

4.2 Basic applications of SW

Using these properties, one huge result we can prove is the existence of exotic structures
on four manifolds.

Example. Define the following 4-manifolds:

X; = K3#CP?, X, = (#3CP?)#(#2°CP?).

Then X; and X5 are connected sums of simply connected manifolds, and hence simply
connected. Hence by Freedman’s theorem, if X; and X5 have equivalent intersection forms,
they are homeomorphic. Explicitly, we have

x =2-E03(] ()a D, Qu=3002(-1,
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One way of seeing these are equivalent is to use the classification of unimodular bilinear

(1) [1)> @ (—1) is indefinite and odd.

Therefore it is equivalent to m(1) @ n(—1) for unique m,n. By inspection, we see that

forms. Specifically, we see that Qx, = 2(—Eg) ® 3 <

m4+n=2x8+3x2+1=23, m-n=2x (-8 +0—1=—17.

Therefore m = 3 and n = 20, so Qx, is equivalent to Qx,. It follows that X; and X, are
homeomorphic.

To see that they are not diffeomorphic, we show that they have different Seiberg-
Witten invariants. Since a K3 surface is a complex projective variety, by property 6,
SWis(c1(TK3)) = £1. But we also know that K3 surfaces are Calabi-Yau, so in particular
c1(TK3) = 0. (One way to see this is to recall that Z; C CP3 can be defined as the zero
set of a homogeneous degree d polynomial in 4 variables, and then ¢;(T'Z;) = (4 — d)h for
some h. In particular, K3 = Z4, giving us the desired result. This calculation was given
in the section on characteristic classes earlier in the notes.)

Therefore SWiks3(0) = +1. Next by property 5 (the blow up formula), the exceptional
class E € H?(CP?; Z) satisfies

SWx, (E) = £1.

On the other hand, we can write
Xy = (#°CP*)#(CP*#(#°°CP?).

This expresses X9 as a connected sum of two 4-manifolds each with b; > 1. Therefore by
property 4, SWx, identically vanishes. In particular, SWx, # SWx,, so X; and X, are
non-diffeomorphic smooth manifolds.

Finally we note that the vanishing result can also be proven geometrically, using prop-
erty 2. By a theorem of Schoen and Yau, if M;, Ms are manifolds of dimension n at least
3, and M; and Mj each admit metrics with positive scalar curvature, then so does the con-
nected sum. Therefore by noting that the Fubini-Study metric on CP?, CP? has positive
curvature, we conclude that X9 admits a metric of positive scalar curvature as required.
Thus SWx, = 0.

Example. Next consider X; = Zs C CP?. This is a “surface of general type”, obtained
as the zero set of a quintic homogeneous polynomial in four variables. We also consider

Xo = (#QCPQ)#(#M@). Both X7 and X5 can be shown to be simply connected, with
Qx, =91) ®44(—1) = Qx,.

Therefore by Freedman’s theorem, they are homeomorphic. By property 6, X; has non-
trivial Seiberg-Witten invariant, but X, has everywhere vanishing Seiberg-Witten invariant
by property 2 or 4. Therefore X7 and X5 are not diffeomorphic.

60



Other applications are the following theorems:

Theorem 4.2.1. Let X be a symplectic simply connected closed 4-manifold. Then there
is mo decomposition X = X1#Xs, such that by (X;) > 0 for both i € {1,2}.

Proof. Suppose X has a decomposition X = X;#Xs, such that bJ (X;) > 0 for both
i € {1,2}. Then SWx vanishes identically by property 4. However, If X is symplectic,
property 7 ensures that SWx does not vanish everywhere. Therefore X cannot have a
decomposition as above. ]

Theorem 4.2.2. There exist simply connected almost-complex 4-manifolds that are not
symplectic.

Proof. Recall that an almost complex structure on X is a complex structure J € End(7TX), J>
—1 on T'X. That is, (T'X,J) is a complex bundle over X.

By algebraic topology, if X is a simply connected 4-manifold, it admits an almost
complex structure if and only if b (X) is odd. But now we can take X = #3CP? and
this is almost complex since b; = 3. However, it cannot be symplectic by the previous
theorem, since

X = (CP)#(#°CP?),

and then both factors have positive b;. Therefore by the previous theorem, X cannot be
symplectic. O

Question from class. So far all of the SW invariants seem to be 0 or 1, do we ever get
large numbers?

Answer. Yes, we can get 200, or 300, or, well, any integer you want! ]

4.3 Proofs of the basic properties

Property 1, finiteness. There are only finitely many basic classes. This follows from com-
pactness of the moduli space. ]

Property 2, curvature. SW wvanishes identically on any 4-manifold admitting a metric with
positive scalar curvature. This follows from the Weitzenbock formula. O

Property 3, symmetry. SWx(—k) = (—1)b2+(X)_b2(X)+lSWX(—k). Let (S,v : TX —
End(S5)) be a spin® structure. This has a conjugate structure, (S*,7*), where S* = §
via the Hermitian metric. Then ¢1(S*) = —¢1(ST). Finally the result follows from the

one-to-one correspondence

{Solutions of SW for (S,v)} «+» {Solutions of SW for (S*,~v*)}.
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Property 4, connected sum. If X = X1#Xo, with b3 (X;) > 1, then SWx = 0. For our
proof outline, we assume X is of simple type. X1# X5 can be decomposed as X; and X
glued together with a cylinder S® x [~T,T] between them. The process of neck stretching
sends T to co. Then studying the limit, we can show that

Msw (X) =2 Msw (X1) x Msw(Xa),

where J/\/lvsw(X ) consists of (A, ®) satisfying the Seiberg-Witten equations, and d*(Ay —
A) =0 for some Ay. Thus Mgy = //\/lVSW/Sl.

But now taking their products, the additional factor of S' manifests in that Mgy (X)
is an S'-bundle over Mgy (X1) x Mg (X2). Here the fibre of S' corresponds to a gluing
parameter. Less formally, we have

{Solutions to SW on X} <> {solutions on X, solutions on Xs, gluing parameter}.

But now if d(X, s) denotes the “expected dimension of Mgy”, namely

c1(s)? —

y T b by — 1,

then we must have
0= d(X, S) = Cl(Xl, 81) + d(XQ, 82) + 1.

Therefore one of d(X;, s;) must be negative, so there are no irreducible solutions for such
and (X;,s;). Hence SWx = 0. O

Property 5, blow-up formula. If X' = X#@, and X is of simple type, the basic classes
ﬂ(’ are ezactly k = E where k is a basic class of X, and E is the exceptional class of
CP2. Since by (CP?) = 0, reducible solutions exist generically. Therefore we obtain exactly
one reducible solution on (W, +F), even though d(@, +F) = —1. Pairing this with
irreducibles on (X s) gives irreducibles on (X#CP?,s + F). O

Property 6, non-triviality. SWx is non-trivial on complex projective surfaces. The idea is
to interpret solutions to SW on complex surfaces as divisors. Then s = ¢;(T'X) corresponds
to the empty curve, from which we conclude that SWx (fc1(TX)) = £1. O

Property 7, non-triviality 2. If X is symplectic and J is a compatible almost complex struc-
ture, then SWx(+c1(TX,J)) = £1. This is a huge result proven by Taubes using hard
analysis. The result is called “SW = GW”, in which it was shown that the Gromov-
Witten invariants and Seiberg-Witten invariants are equal (when they are both defined).
While SW counts solutions to the SW equations, GW counts the number of J-holomorphic
curves. O
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Property 8, adjunction inequality, part (a). Let ¥ C X be embedded oriented closed, with
non-negative self-intersection number. Then 2g(X) —2 > [X]? + |k - [X]| for any basic class
k.

The first step in this proof is to reduce the inequality to a slightly easier one. By
property 3 (symmetry), we can replace k with —k, so that it suffices to prove k- [X]+[%]2 <
2¢g(X) — 2 without the absolute value.

The second step in this proof (which is all we can prove in the remainder of this
lecture) is to reduce to the case where [X]? = 0. We do this via the blow up formula:
suppose X=X #CP?. Then this contains Y= Y#CP! as an embedded oriented closed
surface of the same genus as Y. Moreover, k is basic in X if and only if £k — F is basic in
X. Computing intersection numbers, we have

E]° = =P + [CP'P = [£)* - 1.
This gives a way of reducing intersection numbers. Next to verify that the reduction is

valid, we need to ensure that the adjunction formula holds for ¥ if it holds for 3. This is
indeed the case:

2g(%) >[5 + (k — E) - [E]
= 29(2) 2> [S -1+ k- [E] — E[CPY] = [£]%k - [E].

Therefore we can inductively blow up until the self intersection number is zero. We now
proceed with the main proof.

Claim: If [¥]? = 0, then k - [¥] < 2¢(X) — 2. Since [¥]? = 0, it has a neighbourhood
diffeomorphic to ¥ x D? C X. Recalling the result from the previous lecture concerning
metric independence (for generic metrics), whenever SWx (k) # 0, it must be the case that
Msw (X, s,g) # 0 for all metrics g. This is because being non-zero is an open condition.
Therefore there exists a solution (A, ®) to the Seiberg-Witten equations on X for any
metric g, with no perturbation.

Which metric will we choose? We again do some neck-stretching: we can write X as

(D? x 2)U([0,R] x ' x £) U (X — (D? x 2)).

For each R, will consider g on X to restrict to the product metric on the cylinder [0, R] x
S! x £. On the first two factors the metric is canonical, and on ¥ we choose g to be the
constant curvature metric with volume equal to 1. (Typically X is hyperbolic, but may
also be a torus or a sphere.) We will study how (A, ®) behaves as R goes to infinity. This
proof is continued in the following lecture. O

4.4 Proof of the adjunction inequality for SW (lecture 12)

In the previous lecture, we started a proof of the adjunction inequality, which is one of
the properties of the Seiberg-Witten invariant. Here we complete the proof. First let us
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restate the result.

Proposition 4.4.1. Let X be a smooth 4-manifold with b; > 2. Let ¥ C X be a smoothly
embedded oriented connected surface. Assume [X]? > 0, with [2] # 0. Then for any basic

class k,
29(%) =2 > [P + [k - [Z]].

Moreover, if X is of simple type, and g(X) # 0, this result holds for all X.

The second part of the theorem is due to Ozsvath and Szabd, and we do not give a
proof. For the first part, we continue the proof from where we left in the previous lecture.

Proof. In the previous lecture, we showed that we can reduce the problem to showing that
29(%) =22 k- [3]

in the case where []2 = 0. In this setting, we will consider metrics on X and study some
bounds on solutions to the SW equations.

Lemma 4.4.2. Let (A, @) be a solution to the Seiberg-Witten equations on X. Then if s
denotes the scalar curvature of X,

2V2||Ff || < |Is]
where || - || is the L? norm on X.

Proof. We use some bounds established in earlier lectures using the Weitzenbtck formula.
In particular, we established that

1
(ViVa®,@) = —[@” - Z|o]"

Integrating each term of X, we have

[1vaor g [lort =1 [l

Applying the Cauchy-Schwarz inequality to the right hand side gives

o))

Combining this with the above equation, we have
1 1 1 1/2 1/2
= et < P2+ - q>4<</ 2) (/¢4> .
3 [1el < [1vaop g fler<i([s @
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If ® vanishes identically the desired inequality holds trivially. Otherwise we divide through
by ([ |®]?)'/2/4 to obtain

ol = ( f1a17)" < (/)" < sl

Since F{ =y 1((®@®*)o), writing ® = (¢,0), we can compute (as in an earlier lecture) that

|®| = t, while
. 1/t2 0

But now [(®®*)y| = %tQ. Next we note that v changes this norm by a factor of square-

root-2, so |[F{| = [y~ 1(®®*)g| = ﬁtQ = |®|%. These pointwise equalities give an L?
equality,

SIFFIE =8 [ 1FFF = [ foft = Jlaf.
Taking the root of each side and equating with the previous inequality gives
2V2||FS || < s
as desired. O

Our goal is to establish the adjunction inequality by combining this result with the
Gauss-Bonnet theorem. Before we do this we need one more lemma:

Lemma 4.4.3. Let a € Q%(X*) be closed. Then [a]? = [|a™||? — [|a~||* (where the norms
are again in L?).

Proof. This is a direct calculation:

[a]2:/on/\a
:/(a++a)/\(a++a)

:/a+Aa++ 04_/\04_4-2/04_/\04+

:/a+A*a+—/o¢_A*a_—2/a+/\*a_

= [a® ) = fla”? + 2{a™,a7) = [la"|* — [~ %
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We now apply the two previous lemmas to bound || F4||. From Chern-Weil theory, we
can write

1
A

a(sh) = [

Therefore by the most recent lemma,
0=[FYI* = [IF4II* — 4n?er(SF)*.

On the other hand, we also have ||Fa?> = |[Fi||> + ||F||*>. Adding the two expressions
gives

1Fall* = 2| F{||* — 4m2c1(ST)?
L2
< ZHSH + constant.

We now restrict ourselves to a certain family of metrics to control the scalar curvature
term. We write

X=D*x2)U(0,R]xExSHU (X —D?*xx).

where the “cylinder” is embedded between the two pieces on the ends. We choose metrics
gr which restrict to the product metric on the cylinder, and are the constant-curvature
metric with volume 1 on 3. We will later consider the limit as R goes to infinity, which is
called neck stretching. We write X = C U (X — C).

Since gg is fixed on the non-cylinder parts of X, we have

/52:/ 32—|—/52zconstant+R/322.
X-C C ¥

By the Gauss-Bonnet theorem, since we chose our metric to be the volume-one constant
curvature metric on X, we have

//i:27r(29—2) = sy =2k =4n(29 — 2).
%

Combining this with the previous inequality, we obtain an almost-topological bound on
[|F4ll, namely
IF4l* < R(2m(2g — 2))2C0nstant

From Chern-Weil theory, the left side is in fact a bound for & - [¥]. That is, for any R,

Ren(e(sh). (20 = B [ Fa) < [ | < / \FAP = 1EalP
Therefore for any R, we have
R(27{(c1(S1),[2])? < R(2n(2g — 2))*constant
where the constant is independent of R. It follows that
k- [X] = (er(ST), [X]) < 29 —2

as required. ]
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4.5 Resolving the Thom conjecture using SW

The Thom conjecture is a lower bound on the genus of a smoothly embedded projective
surface representing an algebraic curve. To establish these bounds, we pair the adjunction
inequality with the adjunction formula (which we now state).

Theorem 4.5.1. Let X* be equipped with an almost complex structure J. Suppose ¥ C X
is J-holomorphic, with J*(T¥) =T%. Then

29(%) =2 =[] — ea(TX, J) - [5].
Proof. We decompose the tangent bundle as
TX|y =TX® NX.

Then
c1(TX) - [2] = c1(TD) - [Z] + 1 (ND) - [B] = x(2) + [Z]*.

O]

For example, this formula applies to complex curves in complex projective surfaces, or
J-holomorphic curves in symplectic 4-manifolds.

Theorem 4.5.2 (Symplectic Thom conjecture, Osvath-Szabd 1998). Let (X,w) be a sym-
plectic 4-manifold, and ¥ C X a symplectic surface with volume form wl|y. Then ¥ is
genus minimising in its homology class.

By genus minimising, we mean any other embedded surface representing the same
homology class (not necessarily symplectic) has genus at least that of X.

Proof. We note that [w]? = [wAw] > 0, 50 b3 (X) > 1. We give a proof assuming b3 (X) > 2,
and describe how to prove the general case later.

If ¥ = S2?, the result holds trivially. Therefore we assume ¥ has positive genus, and
b;(X ) > 2. Since X is symplectic, it is of simple type. By a result of Taubes, since X
is symplectic, k = —c1(T'X) is a basic class. Choose J compatible with w such that 3 is
J-holomorphic.

Let S C X be any other surface with [S] = [£]. Then

29(S) 22 [SPP+k-[S] = [E +k-[5] =2(2) - 2,

where the first equality uses the adjunction inequality, and the second uses the adjunction
formula. It follows that g(S) > ¢(X), so ¥ is genus minimising.

If b (X) = 1 (which is the remaining case), then SW takes values which change by +1
passing between each of the two chambers. By carefully working through the details, the
same proof holds. O
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Theorem 4.5.3 (Thom conjecture, Kronheimer-Mrowka 1994). Let S € CP? be a smoothly
embedded surface, representing the homology class [C] of a degree d complex projective curve

C. Then 41— 2
o(5) > L2y

Proof. First by the symplectic Thom conjecture, g(S) > ¢g(C). It remains to show that
(d—1)(d—2)

5 = ¢g(C). This follows from the adjunction formula:

2g(C) =2 = [C]*+ k- [C] = d* - 3d.
Therefore g(C) = (d — 1)(d — 2)/2. O

Corollary 4.5.4 (Local Thom conjecture). Let ¥ C C? be an affine algebraic smooth
curve. Then ¥ is locally genus minimising.

By locally genus minimising, we mean that if B ¢ C? is a ball, 0B h 3, and S C B is
a surface such that 05 = SNOB =X NAJB, then

9(S|B) = 9(X[B)-

Proof. This follows from the Thom conjecture. Compactify ¥ to obtain X. Perturb to
ensure smoothness. Similarly perturb S so that SNOB = ¥NAB. By the Thom conjecture,

g9(SU(E - B)) = g(%).

It follows that g(S|g) > g(X|5) = g(X|B) as required. O

4.6 Resolving the Milnor conjecture using SW

The Milnor conjecture concerns the value of the slice genus of torus knots. Notions of knot
genus are generally hard to compute since they consider minimums over large families of
objects. Nevertheless, the slice genus of a torus knot can be computed using the local
Thom conjecture.

Definition 4.6.1. Let K C S? be a knot. The slice genus of K is
gs(K) = min{g(S): S ¢ B* 8S = SNdB = K}.

Definition 4.6.2. A slice knot is a knot with slice genus 0. In other words, any knot that
bounds a smoothly embedded disk in the four-ball.

Corollary 4.6.3. If K arises as a transverse intersection 0BNS, with S an affine algebraic
curve, then gs(K) = g(S|B).
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Proof. This is immediate from the local Thom conjecture. O

Corollary 4.6.4 (Milnor conjecture, Kronheimer-Mrowka 1993). Let T}, , denote the p,q-
torus knot. Then
(p—1)(g—1)

9o(Thq) = L0,

Proof. By the previous corollary, it remains to show that the torus knot 7, arises as
the intersection of an affine algebraic curve ¥ and 0B*, where the genus of ¥ N B is
(p—1)(¢—1)/2.

Let p,q > 1, with ged(p,q) = 1. Then wrapping p strands on a torus longitudinally,
with ¢ twists around the meridian, we obtain the torus knot 7}, ,. Consider the surface

¥ = {2 —y? =0} c C%

Then it can be shown that T, = ¥ N 0B(v/2) as follows: first observe that 0B (\/§) =
{|z|?> + |y|?> = 2} contains the torus T2 = {|z| = 1} x {|y| x 1}. Then the parametrisation
z = €' y = P realises the knot, for 6 € [0, 27].

Unfortunately, our ¥ is not quite smooth! We therefore deform to ¥, = {zP — y? —}.
This is now smooth, and X, N 0B(v/2) is isotopic to X N IB(V/2).

Next we determine the genus of ¥. N B(v/2). Consider the projection map (z,y) €
e+ x € C. This is a ¢ : 1 covering map, branched over the points with 27 = ¢. To
compute the genus of 3., we can therefore use the Riemann-Hurwitz formula:

1—29(3. NB) = x(X. N B) = qx(D*) —p(g—1) = p+q— pq.
Therefore
(p—1D(g—1)
2
as required. ]

Q(Ea N B) =

In the next lecture, we will see how this generalises to quasi-positive knots.

4.7 Knots bounding affine algebraic curves (lecture 13)

We continue studying some of the implications of Seiberg-Witten theory on knots. One of
the “goals” of knot theory is to determine unknotting numbers - this is the most intuitive
invariant measuring the complexity of a knot, but is in general difficult to determine.

Definition 4.7.1. Let K be a knot. The unknotting number of K, denoted u(K), is
the minimum number of crossing changes required to turn K into the unknot, where the
minimum is taken over all diagrams.
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Example. For the unknot, the unknotting number is clearly 0. On the other hand, any
knot that isn’t the unknot has unknotting number at least 1.

Since the trefoil 3; is distinct from the unknot, u(3;) > 1. On the other hand, uncrossing
any of the crossings in the standard diagram of the trefoil gives the unknot, so u(31) < 1.
Therefore u(31) = 1.

One of the uses of the slice genus is that it gives a lower bound for the unknotting
number.

Proposition 4.7.2. Let K be a knot. Then
9s(K) < u(K).

Proof. This comes from Morse theory. The idea is that every crossing change corresponds
to the addition or removal of the genus of an oriented surface bound by the knot. Passing
an index 1 critical point of a Morse function on a slice surface corresponds to changing
un-crossings as in figure Changing a crossing can be achieved by two such moves, so
each crossing change adds or removes genus. It follows that at least gs(K) crossing changes
are required to obtain a genus-0 surface, so gs(K) < u(K). O

S
N\

Figure 4.1: Change in level sets for index 1 critical points

Corollary 4.7.3. The unknotting number of the torus knot T, , is (p — 1)(¢ — 1)/2.

Proof. Since we’ve already established the slice genus, it remains to show that a diagram
of the torus knot can be unknotted with (p — 1)(¢ — 1)/2 changes - indeed, the standard
diagram can be unknotted with this many changes. O

In the proof of the Milnor conjecture, the property of torus knots being employed was
that they arise as K = S N dB*, where S C C? is an affine algebraic curve transverse to
0B*. To see how the proof might extend to other knots, it is natural to ask which knots
arise as such intersections. This is answered by studying braid groups.

Definition 4.7.4. The configuration space is defined to be the collection of points
Conf,(R™) = {z C R" : |7| = n}.

(Thus a “point” in Conf, (R™) is really a collection of n distinct points in R™.)
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Definition 4.7.5. An n-braid is a closed loop in Conf,(R?) which starts and ends at

{(1,0),...,(n,0)}.

Example. A braid can be visualised in R? x [0, 1]. An example is given on the left side of
figure In fact, by inspecting this figure, we see that it can instead be represented as

/\\7 7/ o
/\/\\ LX =l X
ATy //

Figure 4.2: Example of a 4-braid and its braid diagram.

J———

a diagram in the plane comprised of arcs with “crossing data” (in much the same way as
a link diagram). For this particular example, it translates to the diagram in the middle of
figure Therefore we see that the braid group is generated by the elements o; as shown
on the right.

Definition 4.7.6. The braid group on n braids is the collection of equivalence classes of
braids in Conf, (R?), where two braids are equivalent if they can be homotoped from one
to the other. Therefore

B,, = m(Conf,(R?)).

By figure we see that
Bn == <0'17 ey 0p—1 | 0;05 = 04505 for |Z —j‘ > 2, 0;0i4+104 = Ui+10i0i+1>-

Definition 4.7.7. A braid is positive if it can be expressed as a product of ;s and no
inverses. A braid is quasi-positive if it is of the form

m
H wkalkwk

where wy, is any word in the braid group.

Definition 4.7.8. Given any braid, its closure is the link formed by gluing the start points
of each braid to the corresponding end points.

Theorem 4.7.9. Every link is the closure of a braid.
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Definition 4.7.10. A knot (or link) is called braid positive if it is the closure of a positive

braid. Similarly a knot (or link) is quasi-positive if it is the closure of a quasi-positive
braid.

Remark. We don’t call braid positive links “positive”, since they refer to oriented links
with only positive crossings - a different notion.

Theorem 4.7.11 (Rudolph, Boileau-Orevkov). A knot K C S3 arises as K = SN 0B,
with S C C? an affine algebraic curve transverse to OB, if and only if K is quasi-positive.
Moreover, in this instance, K bounds a complex curve of genus

m-—-n+1

g(SNB) = 5

provided that K = b, for b a quasi-positive n-braid of the form

m
b= H wkoikwk_l.
k=1
Corollary 4.7.12. The slice genus of a quasi-positive knot K is gs(K) = (m —n+1)/2,
with m and n as above.

Remark. The m and n above are not unique, but m — n is always fixed for any quasi-
positive knot K.

Remark. For braid positive knots, it can be shown that u(K) = gs(K). However, for
quasi-positive knots, this is not generally true. A counter example is given by the knot 8.

4.8 Donaldson diagonalisability theorem

We now give a proof of Donaldson’s diagonalisability theorem, which was instrumental in
classifying homeomorphism classes of 4-manifolds in terms of intersection forms. Recall
the following theorem from chapter 1 of the notes:

Theorem 4.8.1. Let X be a simply connected closed smooth 4-manifold. Then the home-
omorphism class of X is determined uniquely by

U(QX)a pamty(QX)a X(X)

The ingredients of this theorem are the classification of symmetric unimodular Z-
bilinear forms, Freedman’s theorem, and Donaldson’s diagonalisability theorem.

Theorem 4.8.2 (Donaldson diagonalisability). Let X be a simply connected closed smooth
4-manifold. Then if Qx is definite, it is diagonal.
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The original proof, in 1982, used Yang-Mills theory. Here we use Seiberg-Witten theory
to give a proof outline.

Proof. Suppose Qx is negative definite. (Otherwise we can reverse the orientation of X.)
Then b; = 0, so we cannot avoid reducibles among the solutions to the Seiberg-Witten
equations. Choose a metric and spin®structure, and let ¢1(S*) = k be a characteristic
element of H2(X). Then we write

Mgy = {(A, ®) solutions to SW,d*(A — Ag) =0}, Mgw = MSW/SI.
By transversality, for a generic perturbation 7, Mvswm is a smooth manifold of dimension

-0 k? 4 by
1 —b2 +b1— 1 .

d+1=

The second equality comes from the fact that @ x is negative definite, so by(X) = b5 (X) =
—o0(X). The d is the expected dimension of Mgy .

Now we count the number of reducible solutions, by studying (A, ®) such that ® = 0,
FX =, FXO +dt(A— Ag) =n. To solve for dta =n— FJF07 we inspect the sequence

0 2
Q' - Q' - 07,

In this case H' = H_% = 0, so the equation dta = n — FXO has a unique solution modulo
gauge (d* = 0). This means there is a unique reducible solution x.

Now we study the geometry of Mgy . away from the reducible solution, it’s a smooth
manifold of dimension d = 2m — 1. At the reducible solution, the local model is a cone on
CP™ ! (since the reducible is a fixed point of the S' action). Thus consider the smooth
manifold M%y,, = Mgw — {z}. The S' gives a line bundle L — M}, where

L[(A’q))] = {(A, ZCI)) 1z e C}

Then L|cp is the tautological bundle. But this almost gives a contradiction! Write ¢;(L) =
u € H?(M%y,). Then u restricted to CP™ ! is a generator of H2(CP™1). Therefore u™ !
[CP™!] = 1. But this is nonsense, because CP""~! bounds a cycle in M¥y, (namely the
complement of a neighbourhood of the reducible solution z). This means that [CP™ ] =
0 € H?(M%y,), which is a contradiction! (Almost!)

This contradiction holds assuming m is positive. But m could be non-positive. In this
case, My, is empty, so Mgy = {z}.

In summary it follows that m is necessarily negative, so that

2
m:k ;b2§0.
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This rearranges to the requirement that k2 < —by. We now reduce to algebra: we have a,
symmetric unimodular Z-bilinear form

Q:Z"x7Z" -7, k*>+r< forall ke Char.

But now the proof reduces to a theorem of Elkies:

Theorem 4.8.3 (Elkies). If Q is a symmetric unimodular bilinear form with the above
property, then Q is diagonal.

It follows that any simply connected closed smooth 4-manifold with a definite intersec-
tion form has a diagonalisable intersection form. O

4.9 Infinitude of smooth structures on K3.

We use Fintushel-Stern knot surgery to prove that the homeomorphism class of K3 surfaces
admit infinitely many smooth structures.

Definition 4.9.1. Fintushel-Stern knot surgery is the following procedure:

e Fix a four manifold X, and a knot K. Suppose there is an embedding of a torus
T? < X with “elliptic fibre”, that is to say [T?]?> = 0 and [T?] # 0.

e Let N(T?) denote a regular neighbourhood of 72, which can be written as N(7?) =
T? x D* C X. Then ON(T?) =T? x St = T3.

e Our knot K also determines a knot complement, which is S* — N(K), for a regular
neighbourhood N(K) = K x D? of K. But then S! x (S* — N(K)) has boundary
St x 9(S3 — N(K)) =St x ON(K) = T3.

e Since N(T?) and S! x (S*— N(K)) have the same boundaries, we define the Fintushel-
Stern knot surgery to be

Xg = (X = N(T?) Ups (S' x (S* — N(K))).
There is a choice in the gluing: we send a meridian of K to *0D?.

Theorem 4.9.2. If X is obtained from a simply connected smooth manifold X by Fintushel-
Stern knot surgery, then Xg is homeomorphic to X.

Proof. Suppose X is simply connected. By Mayer-Vietoris and Seifert Van-Kampen, one
can show that for any K, m(Xg) = m1(X) = 1, and Qx, = Qx. Therefore by Freedman’s
theorem, X is homeomorphic to Xx. O
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Definition 4.9.3. Let X be a 4-manifold. The Seiberg- Witten series of X is the formal
power series
SWx =Y SWx(k)e"
keChar(X)

where SWx is the Seiberg-Witten invariant of X.
Example. Let X be a K3 surface. Then ¢;(X) =0, so SWx(0) = 1. In fact, SWx = 1.

Theorem 4.9.4 (Fintushel-Stern). Let Xk be the smooth manifold obtained by Fintushel-
Stern surgery along the knot K and torus T'. Then

SWx, = SWxAg(t), t=eAT

In the above theorem, A (t) denotes the Alexander polynomial with the “symmetric
normalisation” A(t) = A(t7!). Recall that the Alexander polynomial is characterised by
skein relations:

e Ap(t)=1.
o A, (t)—Ap_(t) = (tY2 —t7V2) AL (1)

Here Ly, L_, and Ly correspond to the same link with a single crossing modified: L, has
the positive oriented crossing, L_ the negative crossing, and Lg the un-crossing.

Example. The Alexander polynomial of the trefoil knot is t — 1 — ¢t~'. The Alexander
polynomial of Borromean rings is (¢ — 1)*, multiplied by some +t* so that it becomes
“symmetric” in the sense mentioned above.

Since the trefoil knot has Alexander polynomial ¢t —1 — ¢!, if X is obtained from K3
via Fintushel-Stern surgery along K = 3, then

SWx, = R e

Le.
1 if s = +2[T
SWx,(s) =< -1 ifs=0
0 otherwise.

Proposition 4.9.5. The Alexander polynomial satisfies the following properties:
o Ai(t) = Ag(—t)
e Ag(l)=1

e All polynomials satisfying the above arise as Ak (t) for some K.
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Corollary 4.9.6. If K1, Ky are knots with distinct Alexander polynomials, then Xy, and
Xk, are homeomorphic but not diffeomorphic.

Corollary 4.9.7. By the previous theorem, for a knot K, if X is obtained by Fintushel-
Stern knot surgery from K3 along K, then

SWx, = Ak (t).

By the previous proposition there are infinitely many distinct Alexander polynomials, so
there are infinitely many smoothly distinct X . But these are all homeomorphic to K3, so
the homeomorphism class of K3 admits infinitely many smooth structures.

Open question. Do there exist knots K, K9 such that Ag, (t) = Ak, (t), but Xg, is not
diffeomorphic to Xg,?

One easy way to obtain distinct knots with the same Alexander polynomial is to reflect
the knot. (e.g. the trefoil knot is chiral; i.e. not equivalent to its reflection.) However, in
this case the following results are known:

Proposition 4.9.8. Let K, Q be knots. Denote the reflection of K by K. Then for any
X, the manifolds Xgxx and Xoux are diffeomorphic.

Note that the above holds when @ is the unknot, so Xy = X4 is a special case.

The Alexander polynomial is determined by the knot complement (which we can see in
the way that the Seiberg-Witten series is determined by the Alexander polynomial, which
itself comes from the knot complement). Moreover, one can show that the knot complement
is an Eilenberg Maclane space,

S* - N(K) = K(m(S* — K), 1).

Therefore the Seiberg-Witten invariant is determined by the fundamental group of the knot
complement. This motivates the following open question:

Open question. Does 71(S? — K) determine the diffeomorphism type of Xf?

If this open question holds true, then diffeomorphism types of a given homeomorphism
class of a smooth manifold are at least as complicated as the fundamental groups of knot
complements. Moreover, the following theorem holds:

Theorem 4.9.9. If K, Ky are prime and have the same knot groups (i.e. the fundamental
groups of their knot complements are isomorphic), then K1 = Ko or K = K.

This means that fundamental groups of knot complements are at least as complicated as
knots. Therefore if the previous open question holds true, we would have simply connected
smooth 4-manifolds are at least as complicated as knots. That would be unfortunate from
a classification viewpoint!
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4.10 Furuta’s 10/8-theorem (lecture 14)

Suppose X* is a smooth, closed, simply connected spin 4-manifold. (Recall that X admits
a spin structure if and only if @ x is even.) Then

b(X) 2 5 lo(X)]
Equivalently,
ax=m (] o) @B
with m > 2p.

Proof. We give a proof sketch. The main ideas are as follows:

1. Study the Pin(2) symmetries of the solution space to SW. Construct a Pin(2)-
equivariant “SW map”.

2. Extend the analysis of this map to Sobolev completions (which are easier to work
with in this case).

3. Construct and study finite dimensional approximations to the infinite dimensional
map.

4. Use Furuta’s theorem on local properties of the approximations to more closely study
the SW map, to conclude the result.

1. Since Qx is even, 0 is a characteristic element of X. Define a spin® structure s on X to
be a lift of the underlying spin structure. Then ¢;(s) = 0.
It follows that s =5, so the space of solutions to the SW equations is invariant under
conjugation:
j:(A,®)— (—A )

sends solutions to solutions. On the other hand, Gauge invariance ensures that the solution
space is also invariant under

(A, ®) — (A, ).
Combining these symmetries gives Pin(2) invariance of solutions to SW:
Pin(2) =S'uj-S' cCqjC=H.
Recall the map
SW : T(S*) @ Connections — I'(S™) & Q2 & (Q°/R)

defined by -
SW(®, A) = (Bad, F — 7} (90), d"(A — Ay)).
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This is Pin(2)-equivariant. We write this as
SW :H™ @ R® — H*® @ R™,
where the Pin(2) is given by left multiplication on H*®, and its action on R is given by
St 2=z, j-ax=—=z.

2. To study this map, we want to work in the completions of the domain and codomain
so that functional analysis can be applied. We begin by introducing some terminology.
Let E — M be a vector bundle over a Riemannian manifold, where E is equipped with
an inner product and connection. We denote the space of smooth sections by C*°(FE), and
the kth Sobolev completion by Lf(E). The kth Sobolev completion is the space of all ¢
such that

Vipe L?ic0,...,k}.

The Li norm is
Hsﬂllii = [lgl® + -+ + V¥

Note that different metrics and connections give rise to equivalent norms. In our case, we
obtain a map

SW:H=IL3(STaTX)»H =L} (S®AT*X ®R)/R.
We can decompose this map into two pieces:
SW=~C+c, (=da,SW = (Da,,d" +d).

Then ¢ is the linear part of SW , and ¢ consists of the constant and quadratic terms. From
Fredholm theory, we have
o

2 _
ind ¢ = dimker ¢ — dim coker ¢ = %

=7

This is realised by

2 _
ind By, = Cl(sza = —%, ind(d" + d*) = —b.
3. We now investigate finite dimensional approximations of SW : # — H'. Choose a

sequence of finite dimensional subspaces
coker{ CVj, C Vjy1 C --- CH/,

such that |J,, Vi, is dense in H’. (The subscript denotes the dimension.) Let U,, = ¢71(V},).
The Sobolev completions are Hilbert spaces, so we have access to orthogonal projections.
For each n, define -

SWy, = £+ projy. c: Uy — V.
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This is the “finite dimensional approximation” to SW.
4. An important lemma by Furuta concerning the local structure of solutions is the
following:

Lemma 4.10.1. There exists R,e > 0 such that for all sufficiently large n, if z € U,
satisfies ||z|| < 2R, and |SW,(z)| < &, then ||z| < R.

The main idea is that STW n 18 a good approximation to SW on bounded sets. From
this theorem, we obtain a map

SW. . B(2R)/0B(2R) — B(c)/9B(¢)

defined by

SWo(z) if |[SW(z)| <e
T =
* otherwise.

—+
Up to homotopy, this is a Pin(2)-equivariant map SW,, : U;" — V. As Pin(2) represen-
tations, we can write V,, = H® @ R? for some a and b.+ But now using finite dimensionality
and the index of ¢, we see that U, = H% /16 ¢ Rb=b2 | Explicitly, this is because

ind ¢ = dim ker £ — dim coker £ = dim U,, — dim V,,,

so writing Qx = m <(1) [1)> ® 2p(—FEs) gives 0 = —16p and by = m. In summary, we
obtain a Pin(2)-equivariant map
£ (Ha+p ® H’éb—m)—i— — (H* & éb)-ﬁ-'

The map has natural restrictions on the direct summands. Restriction onto the second
summand gives a map

£:(0,a) = (0,(d* +d*)a), a=A— A.

This is a linear map corresponding to the inclusion (RP~™)* < (RP)*. The existence
of such a Pin(2)-equivariant map forces, essentially by the Borsuk Ulam theorem, that
m > 2p + 1. This implies the 10/8-theorem. O

Recently (2018) the theorem was improved:

Theorem 4.10.2 (Hopkins, Lin, Shi, Xu). If X is a simply connected closed smooth 4-
manifold, with n = 2p > 4, then

2p+2 p=1,2,56
m><2p+3 p=3,4,7 mod 8.
2p+4 p=0
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More precisely, it was shown using Pin(2)-equivariant stable homotopy theory that any
map as constructed at the end of the above proof exists if and only if
2p+2 p=1,2,5,6
n>492p+3 p=3,4,7 mod 8.
2p+4 p=0

Since this is a complete characterisation, it shows that this is the best possible result that
can be obtained using Sieberg-Witten theory.

Open question. Is the “11/8”-theorem true? That is, if

QX =m <(1) (1)> D 2p(—E8),

then is m > 3p?

If so, this would complete the classification of homeomorphism classes of simply con-
nected smooth 4-manifolds.

4.11 Exotic smooth structures on R*

In this section, we prove the existence of an exotic smooth structure on R*. Later we give
a proof outline that there are infact uncountably many distinct smooth structures on R?.
Our first example with arise from

X = CP?#9CP2.
Its intersection form is
Qx =1)@9(-1) = (—E3) @ (—1) D (1).

Denote by a an element of Ha(X;Z) that spans the (1) term of Qx. Suppose for a
contradiction that « is represented by a smoothly embedded 2-sphere S?. We can then choose
a D?-bundle over S? with Euler number 1, so that the boundary of the neighbourhood is
S3. Then this boundary realises a smooth connected sum

X = X'#CP?, Qx/ = (-FEg) @ (-1).

But one can show that (—FEg) @ (—1) is not diagonalisable, despite being definite. This
contradicts Donaldson’s diagonalisability theorem, so X’ cannot be smooth.

While o cannot be represented by a smoothly embedded sphere, it can actually be
represented by a topologically embedded sphere. This follows from Freedman’s theory: by
gluing Casson handles onto disks, one can construct ¥ C X such that X is a topological
sphere representing «, and moreover 3 has a neighbourhood which smoothly embeds in
CP?. Namely,

U = CP? — B*, U a neighbourhood of ¥.
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Proposition 4.11.1. Z = CP? — ¥ is homeomorphic to R*, but not diffeomorphic.

Proof. We first establish that Z is not homeomorphic to R* by using Freedman’s theorem
for open 4-manifolds. One can verify that m1(Z) = 1, and H.(Z) = 0, using Seifert-van
Kampen and Mayer-Vietoris. In particular, Z is contractible.

Next note that Z is “simply connected at infinity”. l.e. for all C' C Z compact, there
exists D C Z compact with C' C D such that m(Z — D) — m1(Z — C) is trivial. In our
case, ZNU = CP? — B* — CP' = $3 x (0,1). This is the “end” of Z. This is simply
connected as required.

By Freedman’s theorem for open 4-manifolds, it follows that Z is homeomorphic to R*.

~

Next we show that Z is not diffeomorphic to R*. Assume it is. Any compact subset of R*
can be enclosed in a smoothly embedded 3-sphere (i.e. given any C C R* compact, we can
write R* = (R* — B*) U B*, with C ¢ B*) In our case, let K = CP? — U, where U is the
neighbourhood defined earlier. Then K is compact. Suppose for a contradiction that K is
enclosed in a smooth 3-sphere. Then

X" = (X —nbhd(%)) Uss B*
is a smooth simply connected manifold, with

Qxr = (—Eg) & (—1).
But by Donaldson’s theorem, this is impossible! ]

Theorem 4.11.2. There uncountably many exotic R%s.

Proof. We give a proof outline. Above we verified the existence of one exotic R*, which we
denote by ER?*. Let h : R* — ER?* be a homeomorphism. Then write

h(B(p) = ERS.
The refined theorem is the following:

Theorem 4.11.3. There exists po > 0 such that for all s >t > pg, ER? is not diffeomor-
phic to ER}.

Therefore our one example earlier provides an uncountable family. A proof sketch
of the refined result is as follows: suppose ¢ : ER} — ER? is a diffeomorphism. Let
h(S*(p)) = Y,. Next choose z € (t,s) and consider ¢ !(Y,). This gives copies of Y, on
either side of Y;. By repeatedly gluing, we obtain a smooth 4-manifold “with periodic end”.
One can conclude that the intersection form @ of this smooth manifold with periodic end
is actually just Qx_uy = (—FEs) @ (—1).

However, Taubes proved a version of Donaldson’s theorem for smooth manifolds with
periodic ends from which it follows that Q must be diagonalisable. This is a contradiction,
SO (o cannot exist. ]
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Remark. The proof of Donaldson’s theorem for smooth manifolds with periodic ends uses
Yang-Mills theory. There is no known proof using Seiberg-Witten theory.

Question from class. Does the space of all smooth structures on R* have any meaningful
structure? topological or algebraic?

Answer. No, the above only gives a small family, in general we know nothing about what
the space of all smooth structures looks like. O
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Chapter 5

Khovanov homology

The Khovanov homology is an intrinsically “combinatorial” invariant of knots. Using this,
we will obtain the following:

e A new proof of the Milnor conjecture (Rasmussen)
e Existence of exotic R*s (Rasmussen-Gompf)

e A possible approach to disprove the smooth 4-dimensional Poincaré conjecture.

5.1 Definition of Khovanov homology (lecture 15)

Today we explore the definition and proof of invariance. We work with an oriented link
L C S3, with planar diagram D C R2. Recall that Reidemeister moves of link diagrams
characterise isotopy of links.

Proposition 5.1.1. The outline of Khovanov homology is as follows:

1. For each link diagram D, there is a corresponding cochain complex

D~ C(D) = @ ¢ (D).

i,JEL
This is equipped with boundary maps

d:C“ (D) — C™(D), d*=0.

2. We see that the index 7 gives the homological grading. On the other hand, the index
j defines the “quantum” or “Jones” grading.
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3. The Khovanov homology is defined by

Kh**(L) = H**(C(D)) = Kb (L).

We show that this is invariant under Reidemeister moves, and hence an invariant of

L.
Question from class. Are there any maps between the different Jones gradings?
Answer. Yes, we can define maps, but for our purposes we do not do this (yet). ]

Remark. In Russian, Khovanov is pronounced a little more like Hovanov. (Technically
the kh is a voiceless velar fricative.) On the other hand, we see above that our theory
should really be called a cohomology theory rather than a homology theory. Therefore it
would be more correct for our theory to be

Hovanov Khomology.

Why do we call the j index the “Jones” index? Given a chain complex, its Euler
characteristic is defined to be

V(H(C)) = S (-1 tk HY(C).

7

For a bigraded complex, we modify this definition to obtain a Laurent polynomial. In
particular, for the Khovanov homology,

X(Kh**(L)) = 3 "(=1)'q’ tk KN (L) = J1(q) € Zla,q .
0,

Remarkably, this Euler characteristic is an “unnormalised Jones polynomial”:
jL(q) = (¢+q YHJp(¢%), for Jp(t) the Jones polynomial.

Definition 5.1.2. Recall that the Jones polynomial is the polynomial invariant that trans-
formed knot theory, characterised by the following skein relations:

e Ju(t) =1.
o t71JL, (1) = tJp_(t) = (/2 —t7YV2) L (¢).

Here Ly, L_, and Ly correspond to the same link with a single crossing modified: L, has
the positive oriented crossing, L_ the negative crossing, and Ly the un-crossing.
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Example. For example, the trefoil knot has Jones polynomial
Js, (1) =t + 3 — ¢4,
Therefore Js,(¢) = (¢ + ¢ )(@* +¢° —¢*) = ¢+ ¢* +¢° — .

It turns out the Khovanov homology of the trefoil can be described as in the following
table:

i
i 012 3 X
9 Y/ -1
7 ZJ27 || 0
5 Z 1
3 Z 1
1 Z 1

reading the Euler characteristic off the table, it is clear that we recover
X(Kh**(31)) =g +¢° +¢" — ¢’
as required.

Remark. We soon observe that links with an odd number of components only have non-
trivial homology in the odd Jones degrees, while links with even components have non-
trivial homology in the even degrees.

Before proceeding further, we establish some notation. Hereafter M will denote a graded
abelian group. (Think: Jones grading.) To shift the grading up by ¢, we write M{/¢}.

Now consider a cochain complex C° — C' — C? — ..., (Think: homological grading.)
Then C[s] corresponds to shifting this grading up by s. That is,

Cls)F = o+,

Note that this convention is the opposite of some sources. We follow Bar-Natan, On
Khovanov’s categorification of the Jones polynomial.

Definition 5.1.3. We now define the modules in the Khovanov complex. (The boundary
maps will come later.)

1. Let D be an oriented link diagram, with n crossings. Then each crossing is either
positive or negative - we write n = ny + n_ where ny is the number of positive
crossings, and n_ the negative crossings.
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2. Regardless of orientation, any crossing can be resolved in exactly two ways:
N\ O AY 1 A\
A —X( A— X

The resolutions are labelled 0 or 1 depending on the choice. Our diagram D can have
all crossings resolved in 2" ways, each resolution corresponding to some « € {0,1}".
This is called the cube of resolutions. The resolution of D corresponding to « is
denoted by D,,.

3. Any two resolutions that differ by one choice (e.g. (0,0,1,0,1) and (0,0,0,0,1)) have
an edge between them. These are formally £ € {0, 1, x}", with

£= (fl,---,fn), fj = x for a unique j.
In the above example, the edge would be

§=1(0,0,%,0,1).
4. Define V. =7Z @ Z, spanned by v; and v_. Any « € {0,1}" determines a module,
Va(D) =V{[al}, o=,k =# circles in D,.

Moreover, each vy has Jones grading +1. (Thus v; ® v; has Jones grading 2, and
so on.)

5. A pre-shifted complex is defined by [|D|]" = €D
is defined by shifting this complex:

Vo (D). The Khovanov complex

a,laf=r

c**(D) = (IPI*[-n-Kny —2n_},d).
(Of course we have yet to define the boundary map d.)

Definition 5.1.4. Now with the “objects” of the Khovanov complex defined, we define
the maps.

1. Every edge in the cube of resolutions (oriented from |a to |a|+1) joins two resolutions
whose number of components differs by 1. If the number of components decreases,
the map is of type m:

Uy ® Vg = Ut
Uy ®U_ = v_
V- QU4 > U_
v- @v_ — 0.

86



If the number of components increases, the map is of type A:

Vp = V- Q@Up + U4 QU
m:
V_ = U_ QU_.

This defines the boundary map on two components, and on the rest the map is defined
to be the identity. This gives d¢ for each edge .

2. Define (—1)§ = (—1)2i<i & where j is the location of * in £. For example, %00 ~ 1,
1x1~ —1.

3. The differential d” of the complex is defined by

d" = Z (—1)£d§.

¢ starts at o,|a|=r

5.2 Khovanov example: the right-handed trefoil

Example. As an example, we work through the trefoil knot. We first determine the cube
of resolutions in terms of diagrams (figure and then the actual maps (figure .

®
> _on ,Q

i 00__,00

loe
100 IOI

Figure 5.1: Cube of resolutions of the trefoil in terms of diagrams.

Based on this information, the bigraded complex forms the following table.
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Figure 5.2: Khovanov complex of the trefoil.

AN 0 1 2 3
J
9 vy @ Uy ® v
vy Q@ vy Vy Q@ Uy Qv
7 v, @V, vy @Uo @ Uy
vl @l V- R Uy Q Uy
Vy | V2 ®U_, - QU4 | V4 KU_ QV_
5 vy @ vyt v v @u vl @ | v- @ vy @u_
v | v v v @ | v ®@v_ ®@uy
v_ V- ®U_
3 vy @Uo, v- ®@uy | v v @l V- QU Qv
v v’ @
1 V- @U_

Based on the above table and maps, we can compute homology groups. For example,

Kh?*9(3;) = Kh®!(3)) =2z, Kh*?(3;) = Kh"'(3;) = 0,5 # 3, #0.

These are immediate, since all boundary maps in the j = 1 and j = 9 gradings are trivial.
We do not provide all calculations here, but we now determine the homology for the j =7
grading. The potentially non-trivial homology occurs in the (2,7) and (3,7) cells, where

we have a sequence isomorphic to

N BN/ BN/ | BN
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To determine the map d, we refer back to figure Since each map is A, by also referring
to the signs, we find the following:

Vp QUy =L Quy @U_ + vy QU_ @ vy
V@V = vp ®@up ®uo +u- ®up @ vy
V] @V = —vp ®U_ ®up — V- @ vy ® vy

Expressing this as a matrix, we have

11 0 100
d=11 0 -1]~1(0 1 O
01 -1 0 0 2

The second matrix is the Smith normal form of the matrix representing d. Using this
change of basis, we have a sequence

id, 2 @2
s 02l P P27 0
Therefore the homology can be read off as
Kh?"(3;) =0, Kh*>"(3;) =7Z/2Z.

Computing the rest of the table, we find that the Khovanov homology of the trefoil is as
follows.

Khovanov homology of 3;

NClol 1] 2 3

j

9 7

7 7J2Z
5 Z

3 Z

1 Z

Proposition 5.2.1. The Khovanov complex is genuinely a complex, that is, d? = 0.

Proof. This follows from a case-by-case analysis. O

5.3 Isotopy invariance of Khovanov homology

We have established that the Khovanov homology is truly a homology theory, but it has
not yet been shown to be independent of the choice of diagram (of a given link). We must
show that it is invariant under Reidemeister moves. We make use of the following lemma
extensively (but first we need some definitions).
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Definition 5.3.1. Let (C,d) be a complex, and C’ C C' a subcomplex. This means that
d(C") C C'. This also gives rise to a quotient complex, C'/C’. We then obtain a short exact
sequence

0—-C" —-C—=C/C"—0

of complexes, which induces the usual long exact sequence on (co)homology

<. = HY(C") = HY(C) - H/(C/C") - HTYC') = --- .
Lemma 5.3.2. If (" is acyclic, i.e. if H*(C') = 0, then H*(C') = H*(C/C"). Similarly if
H*(C/C") =0, then H*(C") = H*(C).

This this notation established, we are ready to prove invariance under Reidemeister
moves. Invariance under those of types 2 and 3 are left as an exercise, but we prove
invariance of Khovanov homology under type 1 Reidemeister moves.

Proposition 5.3.3. Khovanov homology is invariant under type 1 Reidemeister moves.

Proof. Let D be a diagram with a crossing x that can be removed by a type 1 Reidemeister
move. Write [|D|] to denote the pre-shifted Khovanov complex of D. This factors as

C = [|Dol]] = [|D1]}{1}

where [|Dg|] is a subcomplex which consists of all diagrams where x has a 0 resolution, and
[|D1]] the subcomplex corresponding to = having the 1 resolution. Note that each diagram
(vertex) in [|Dpl|] has an additional component L coming from the 0 resolution of z. On the
other hand, the 1 resolution at x corresponds exactly to the type 1 Reidemeister move at x,
so that [|Dq|] is exactly the pre-shifted complex of D after applying a type 1 Reidemeister
move.

The component L contributes two free elements vy and v_. Consider the subcomplex
C’ of C, where the space associated to L is restricted to the span of vy. Since the map m
is defined by

m:vy QW — w,

we have an isomorphism
C" = (| Dollus ar £ —— [IDa[]{1}.
The quotient complex C'/C” is then given by
C/C" = [|Do|lo_ at L — 0.

But [|Dol]y_ at 1 is isomorphic to [|D'|][{—1}, where D" is D after the type 1 Reidemeister
move has been applied. The shift {—1} is to cancel the change in grading due to D’ having
one fewer crossing. But now by the previous lemma,

Kh(D) = [[D[[{ns — 2n_} = [ Doll._ at {ns — 2n_} = [[D'[}{ns — 2n_ — 1} = Kh(D').
OJ
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Proposition 5.3.4. The Khovanov homology is invariant under type 2 and type 3 Reide-
meister moves.

Proof. These follow a similar argument. Details can be found in Dror Bar-Natan’s paper
(which is available on the ArXiV). O

5.4 Generalising Khovanov homology: TQFTs (lecture 16)

Recall that any crossing in a link diagram can be resolved in two ways, giving either the
0 resolution or 1 resolution. If a link diagram is oriented, there is a unique way to resolve
each crossing so that it agrees with the orientation.

Given a link diagram D with ¢ components, there are 2¢ possible orientations O, each
with a unique resolution Dg.

In the first section of today’s lecture, we explore the core of the invariance proofs of the
previous lecture to better understand Khovanov homology. A seemingly arbitrary choice
was that each component of a resolution was associated to Z @ Z, and the maps m and A
were not motivated either.

We now attempt to better understand the underlying ingredients of Khovanov homol-
ogy, independent of the choices.

1. The spaces were direct sums and tensor products of V = Z @ Z. These had maps
m: VeV o>V, andA:V->VeV.

2. 1 €V is a unit for m, and € : V' — Z defined by £(v4) = 0 and ¢(v_) = 1 is a counit
for A.

3. The map m itself is a commutative associative multiplication. A is a cocommutative
coassociative comultiplication.

4. The maps satisfy the Frobenius law, Aom =(m®1)o (1® A).
These are exactly the ingredients of a commutative Frobenius algebra.

Proposition 5.4.1. To obtain a homological invariant of knots like Khovanov homology,
we need V' a commutative Frobenius algebra, free of rank 2.

The easiest way to think about commutative Frobenius algebras is to consider (1+1)-
dimensional topological quantum field theories (TQFTs).

Theorem 5.4.2. There is an equivalence of groupoids

{TQFTs 2Cob — Vecty} «+— comFroby.

We do not give a formal proof, but describe (1+1) dimensional TQFTs (i.e. functors
2Cob — Vecty), and give examples of how they correspond to commutative frobenius
algebras.
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Remark. Here we describe TQFTs as functors into vector spaces, but in our context they
are abelian groups.

Definition 5.4.3. The category 2Cob consists of (1+1) dimensional cobordisms. That
is, the objects are closed one-manifolds (disjoint unions of circles), and the morphisms are
cobordisms between them.

Definition 5.4.4. Vecty, is the category of vector spaces over a field k. A (1+1) dimen-
sional TQFT is a functor that sends a 1-manifold to a vector space, and a cobordism to
a homomorphism between them. Moreover, these respect the monoidal (tensor product)
structure: for X,Y 1-manifolds,

Z(XUY) =Z(X)® Z(Y).

The following table describes the four generators of 2Cob, and how they correspond
to maps in a Frobenius algebra.

M Z(M) Interpretation

1:k— A unit

m:A®A— A | multiplication

e A=k counit

A:A— A® A | comultiplication

Properties such as associativity, commutativity, and the Frobenius law can all be verified
by using the classification of surfaces. We give one example here:

idy = Z =7 Q
QD) T

=7 o/

=mo (l®idy).
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Example. Khovanov homology can be expressed in a perhaps more intuitive form by using
the perspective of Frobenius algebras. Write

V = Z[z])/(z?).

Define m : V ® V — V to be the usual product on Z[z]/(x?). 1 is of course a unit. The
map AV — V ® V defined by

Al =1z+zel, Alx)=z®z

is a comultiplication, and ¢ : V' — Z defined by

is a counit. This defines the Khovanov homology with the symbols vy =1 and v_ = .

Example. We can consider a deformation
V = Z[z]/(z* - t),

over the ring Z[t]. Let 1 and € be as above, and m the usual multiplication on V. We
define a modified comultiplication maps as follows:

Al)=1z+zl, Alx)=zz+t(1x1).

This also defines a Frobenius algebra. With the notation v, ,v_, the multiplication and
comultiplication maps can be written as

vy @ Vg = Uy
m:{ vy @U_,v_ Q®Uy > v_
V_ ®U_ i—>t’U+

A Vy U4 ®U_ +v- ® vy
o = U_ @u_ + vy @ vy

This gives rise to a complex C'(D) of Z[t]-modules. When ¢ = 0 this is the Khovanov
complex. When ¢ = 1, this is the Lee complez, which we denote by Chree(D).

The corresponding integral homology theories are denoted by Kh(K) and Lee(K),
called the Khovanov and Lee homologies respectively. We write Kh'(K) to represent the
Khovanov-Lee homology over Z]t].
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5.5 Lee homology and spectral sequences

At the end of the previous section we introduced the Khovanov-Lee homology Kh'(K),
which is valued in Z[t]. Evaluation at 0 gives the Khovanov homology, and evaluation at 1
the Lee homology.

If C'(D) is the Khovanov-Lee complex, the boundary maps can be written as

d+t®:CY (D) — C"(D)

where the t® term can be read off the modified definitions of m and A. Here d is the usual
Khovanov differential, which changes (7, ) by (1,0). On the other hand, ® changes (i, j)
by (1,4). We have not only that d?> = 0, but also (d + ®)? = 0.

Observe that for any j, C927 is closed under the action of (d 4+ ®). Therefore the
Khovanov complex has a filtration

A filtered complex is exactly what gives rise to a Spectral sequence.

Definition 5.5.1. A spectral sequence is a collection of pages. L.e. a collection of complexes
(E",d"), where d" o d” = 0, and E™! = H*(E",d").

Example. In our context, the filtration of the Lee complex gives a spectral sequence with
E' = (C*,d),
E? = (H*(E"),®") = (Kh(K), "),
= E*° = H*(C,d+ ®) = Lee(K).

The important result being used is that every filtered complex gives a spectral sequence
which converges to the homology of the original complex.

Example. Write Kh(K;Q) to denote Kh(K) ®7 Q. We write out some of the pages of the
rational spectral sequence corresponding to the trefoil knot.

E' page for 3; E? page for 3;
Nlo |23 NSlol1]2] 3
J J
9 Q 9 Q
7 Q| Q3 7
5 Q|Q°|Q°|Q° 5 Q
3 Q1 Q| Q| Q 3 Q
1 Q 1 Q
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E3 page for 3; E*° page for 3;

7 7

N | 0123 N 0123
J J

9 9

7 7

5 5

3 |Q 3 |Q

1 | Q 1 1Q

Observe that Lee(3;) = Q% = Q2" where c is the number of components of the trefoil knot.
This is a general result.

Theorem 5.5.2. Lee(L; Q) =2 Q*, where c is the number of components of L.
Proof. To prove this, we define a new basis for V. Specifically, define a and b by
a=v4+v_, b=v_—v4.

The Lee complex boundary maps are then induced by

a®a — 2a
a —a®@a
m:sa®bb®a —0 :
b —b®b.
b®b — —2b

Claim: Lee(L) is generated by the “canonical generators” which we now construct.
1. Let O be an orientation of a diagram D of L. (There are 2¢ choices of orientation).

2. There is a unique resolution D¢ of D which is compatible with the orientation. This
is a disjoint union of circles.

3. Let C € Dp. Define 7(C) € Z/27Z to be the number of circles separating C' from
infinity, plus 1 if C is oriented clockwise.

4. Define gc = a if 7(C) =0, and gc = b if 7(C) = 1. Define

So= @ go-

CeDp

The claim is that the So (of which there are exactly 2¢) are generators of Lee(L). We
break this proof into two pieces.

Lemma 5.5.3. The collection of Sy forms an orthonormal set in Lee(D), so that dim Lee(D) >
2¢.
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We first note that if any two circles have the same label (either a or b) then they cannot
meet at a resolved vertex. It follows that each Sp is a cycle, i.e. (d+ ®)Sp = 0. Therefore
[So] € Lee(D).

Now that it has been established that these are all elements of Lee(D), we equip CLee(D)
with an inner product by declaring that the {a®a®b®- - -} is an orthonormal basis. The
map d + ¢ has an adjoint with respect to the inner product, namely

a®a —a

bbb b
(d+®)":¢a 20 ® a

b = —2b®b

rest — 0.

Then one can show that (d + ®)*Sp = 0. But this implies that each Sp descends to an
element of Lee(D) while preserving pairwise orthogonality, since
Lee(D) = H*(SLee(D)) = ker(d + @)/ im(d + ®) = ker(d + ®) Nker(d + ®)*.
In summary this proves that dim Lee(D) > 2.
Lemma 5.5.4. In fact, dim Lee(D) = 2°.

To see this, it remains to prove that dim Lee(D) < 2¢. This follows from an induction
on the number of crossings of D. Let Dy and D1 be 0 and 1 resolutions of a single crossing x
in D. Then Cree(D1) C CLee(D) is a subcomplex. This gives rise to a long exact sequence

-+ — Lee(D1) — Lee(D) — Lee(Dy) — Lee(Dy) — - -

There are two cases to consider. First suppose the two strands crossing at x belong to
distinct components of D. Then Dy and D; each have ¢ — 1 components each. By the
inductive hypothesis,
dim Lee(Dg) = dim Lee(D;) = 2¢71.
By the long exact sequence,
dim Lee(D) < dim Lee(Dy) + dim Lee(D;) = 2¢71 +2¢71 = 2¢,

This proves the first case. For the second case, suppose the strands meeting at x belong
to the same component. Then one of Dy, D; has ¢ components, and the other ¢ + 1
components. (Assume without loss of generality that Dy has ¢ components, and D; has
¢+ 1 components.) The induced map

Lee(Dy) SN Lee(Dy)

is then injective. Therefore dim Lee(D) = dim cokeri = 2¢. (The size of the cokernel can
be verified by showing that the canonical generators of Lee(Dp) map to half of those of
Lee(Dy).) The other case is formally dual, with a surjective map and so on.

This completes the proof that dim Lee(D) = 2¢. Therefore Lee(D) = Q2. O
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5.6 Rasmussen’s s-invariant (lecture 17)

Let K C S? be a knot. Recall that the slice genus is the minimal genus of a surface bound
by K in a 4-ball:

gs(K) == min{g(X) : £ ¢ B* properly smoothly embedded, 9% = K.}

Recall the Milnor conjecture (now a theorem), which we proved earlier using Seiberg-Witten
gauge theory:

Theorem 5.6.1 (Milnor conjecture). Let K denote the p,q-torus knot, for p, q coprime.
Then gs(K) = (p—1)(¢ — 1)/2.

e The original proof, due to Kronheimer and Mrowka in 1993, used Yang-Mills gauge
theory.

e Several years later, Kronheimer and Mrowka proved the result using Seiberg-Witten
gauge theory.

e In 2004, Rasmussen gave a “combinatorial” proof. This is what we’ll start discussing
today.

Recall that the slice genus is a lower bound for the unknotting number, and the p, ¢g-torus
knot K can be unknotted in (p — 1)(¢ — 1)/2 moves. Therefore

9s(K) < u(K) < (20—1)2(q—1>_

On the other hand, today we introduce Rasmussen’s s-invariant s € 2Z. We show that
1. [s(K)| < 2g,(K).
2. s(K)=(p—1)(g—1).

Therefore by combining 1 and 2,

(p_ 1)2((1_ 1) — 3(5) < gs(K)-

This will prove the Milnor conjecture.

To give a definition of the s-invariant, we consider Khovanov and Lee homology with
rational coefficients. Recall that a diagram D for an arbitrary knot K determines a complex
(C(D),d) called the Khovanov complezx. This in turn determines a homology theory which
is invariant under Reidemeister moves, which we call the Khovanov homology Kh(K). By
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perturbing the boundary maps, we obtain a different complex (Cree(D),d + @) called the
Lee complex, and this also gives an invariant homology theory Lee(K). Moreover,

Kh(K) = Lee(K) =Q @ Q.

Although Lee(K) is almost trivial, the two surviving copies of Q have Jones (q) gradings.
Let Smax = Smin be the Jones gradings of the two copies. Since K is a knot, Syax, Smin are

both odd. Moreover, the isomorphism type of the spectral sequence is an invariant of K,
SO Smax and spin are also invariants. It turns out that Spax = Smin + 2, so we define the
Rasmussen invariant to be

S(K) = Smax(K> —1= Smin(K) + 1 € 2Z
While this is the idea, we now give a formal definition of syax(K) and spyin(K).

Definition 5.6.2. Let D be a diagram of a knot K. Then Cpe.(D) has a filtration
CLee(D) D --- D CEI(D) 5 CEZIT YD) 5 --- D0,

since the map d + ® changes the bidegree (i,7) by (1,0) (by d) and by (1,4) (by ®). For
each j, we define

I; = im(H*(C{Z) (D)) = H*(CLee(D))) C Lee(D).

Lee

Note that there exists some N so that we need only consider —IN < j < N for j as above.
Then
Lee(D)=1_NyDI_-Ny1D---DIn=0.

This induces a grading on Lee(D), by

Lee(D) = @Ij/1j+1-
J

Now any class [z] in Lee(D) has a grading, namely

q([z]) = max{j : q(z) = j,z € [z]}, q(z) = max{j: x € G}/ (D)}.

In particular, we define
Smax() = max{q([a]) : [¢] € Lee(K), [z] £ 0},  smin(K) = min{q([a]) : [¢] € Lee(K), [2] # 0}.

Given these formal definitions of the invariants sy, and Smax, the definition of the
Rasmussen invariant rests on the following result:

Proposition 5.6.3. Let K be a knot. Then spax(K) = Smin (K) + 2.
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Note that this justifies the definition of the Rasmussen invariant to be s(K) = spax—1 =
Smin + 1.

Proof. The main idea of the proof is to study the two canonical generators So and Sz of
Lee(K) = Q @ Q introduced in the previous lecture. We use combinations of these to first
show that Smax — Smin = 2 mod 4. (In particular, they differ by at least 2.) Whe they
show that they differ by at most 2, to obtain the desired equality.

First note that for a knot K, we already know that Cie. is supported only in odd
quantum gradings. Define

Clee,even(D) = generated by elements with ¢ =1 mod 4
ClLee,odd(D) = generated by elements with ¢ =3 mod 4

Note that d preserves the ¢ grading while ® changes it by 4, so d + ® preserves ¢ modulo
4. In particular, Cree(D) = Creeeven(D) @ ClLeeodd(D), where the direct summands are
preserved by d + ®. It follows that

Lee(K) = Leeeyen(K) @ Leeggq(K).

We now make use of this direct summand structure. Define ¢ : Cpee(D) — Cree(D) to act
by 1 on Cleeeven, and -1 on Cree odd- Then any x € Cree(D) decomposes as
r+u(z) x—(z)

T=T gt

where the first term lives in Cleeeven, and the second in Cheeodd- We further define
i:V — Vbyi(v_)=v_and i(vy) = —vy. Then = £i®". Moreover, setting a = v_ +v4
and b = v_ — v; as an alternative basis, we have i(a) = b and i(b) = a.

We now analyse So and Sz more closely. These actually arise from the same diagram!
Switching all orientations in a diagram and then resolving gives rise to the same resolution,
but with all orientations switched. Therefore

i([So]) = £[Sg]-
It follows that the canonical even/odd decomposition is given by

[So] + [55] N [Sol ~ [Sal

[So] = 5 5

This proves that the two copies of Q in Lee(K) = Q @ Q live in different gradings mod 4,
as required. That is,
Smax — Smin = 2 mod 4.

In particular, smax is at least sy + 2.
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Finally we show that spyax is at most sy + 2. This follows from a similar calculation
as showing that the Khovanov homology is invariant under Reidemeister moves. Let D’
denote the diagram of K obtained by adding a crossing via a type 1 move. Then

Cree(D') = (CLee(D Lo) — CLee(D)>‘
This can expressed as the short exact sequence
0 = CLee(D) = CLee(D') = ClLee(D LU 01) — 0
which induces a long exact sequence in homology
.-+ = Lee(K) — Lee(K) — Lee(K U01) S Lee(K) — - -

where Lee(K U0;) = Lee(K) ® V. Depending on labels near the crossing  of D" obtained
from the type 1 move, we denote the two canonical generators of Cree(D) by s, and sy.
Without loss of generality, ¢(sq — $p) = Smax, and q¢(Sq + $p) = Smin. One can verify that

O([sa — 8] ® [a]) = [sal,
from which it follows that
Smax — 1 = Q([Sa - Sb] ® [a]) < Q([sa]) +1 = spin + 1.

Therefore sSmax < Smin + 2 as required. Earlier we established that syax > Smin + 2, so this

completes the proof that smax = Smin + 2. O

In summary the Rasumussen s-invariant is well defined.

5.7 The s-invariant bounds the slice genus

Recall that the proof strategy for proving Milnor’s conjecture is two establish the following
two facts:

1 |s(K)| < 294(K).
2. s(K)=(p—1)(g—1).
We now prove the first of these.

Proposition 5.7.1. For a knot K, |s(K)| < 2gs(K).
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Proof. The idea is to use the functoriality of Khovanov-homology under link cobordisms.
Let Lo and L be links, with ¥ C R3? x [0, 1] a cobordism between them. We induce maps
Fs, : Kh(Lg) — Kh(L1), and Fx ree : Lee(Lg) — Lee(L1) and use their properties.

By Morse theory, X splits into building blocks with one critical point each, of indices
0,1, or 2. (These are with respect to the height function = : ¥ — [0,1].) If Dy is a
diagram for Lo, and D; a diagram for L, then Dy and D7 must be related by a sequence
of Reidemeister moves and Morse moves. By a Morse move, we mean the change in level
set as we pass a critical point. Explicitly,

e Passing an index 0 critical point corresponds to taking a disjoint union with an
unknot.

e Passing an index 1 critical point corresponds to locally swapping two horizontal arcs
with two vertical arcs or vice versa.

e Passing an index 2 critical point corresponds to destroying a disjoint unknot.

Therefore to define a map Fx, : Kh(Lg) — Kh(L;) we must define maps corresponding
to each Reidemeister or Morse move, and glue them together. We must then verify that
the map Fy is an invariant of X, that is, it must not depend on the choice of Morse
function/decomposition.

Explicitly, to each move, we associate the following maps:

e For each Reidemeister move D; to D;;1, there is a canonical isomorphism F; :
Kh(D;) — Kh(D;1) as used in the proof of the well-definedness of Khovanov homol-

ogy.

e For an index 0 Morse move D; to D;11 = D; U0;, define F; : Kh(D;) — Kh(D;1) to
send 1+ vy on the 0; component, and the identity elsewhere.

e For an index 1 Morse move D; to D;y1, define F; to be m or A at the location of
the move depending on the change in the number of components, and the identity
elsewhere.

e For an index 2 Morse move D; to D;y1, define F; to send v— to 1 and v4 to 0 at the
location of the move, and the identity elsewhere.

If Dy,..., D, are a sequence of diagrams from Ly to L1, the composition of the F; defines
the map Fy, : Kh(Lg) — Kh(L1). We claim without proof that the map Fy, is well defined
up to sign as an invariant of 3. That is, the map does not depend on the decomposition
of ¥. (This is a theorem of Khovanov and Jacobsson.) Note that this fact is not actually
needed for the proof!

A similar construction works for the Lee homology! We obtain maps F; 1,ce : Lee(Lg) —
Lee(L;) as well.
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Suppose X is an oriented cobordism from Lg to L1, such that every component of ¥ has
a boundary component on Lg. Then by verifying each Reidemeister and Morse move, one
can show that Fy ree([So|, ]) is a non-zero multiple of [Sp|, |, where O is an orientation
of ¥. This means that if X is a connected cobordism between knots Ky and K7, then
Fylee : Q@ Q — Q@ Q is an isomorphism.

Suppose X has genus g = gs(K) for a knot K. Then removing a disk D, ¥’ =X —Disa
genus g cobordism from K to the unknot. Now Fy and F¥; 1ee are maps from Khovanov and
Lee homologies of K to that of the unknot. How do they change the quantum gradings?
Observe that Reidemeister moves leaves ¢ invariant, while Morse moves of index 0 and 2
change ¢ by +1, and Morse moves of index 1 change ¢ by —1. Therefore Fy, changes g by
X(Y), and Fx 16 by at least x(X').

Let x € Lee(K) — {0} be a class attaining ¢(x) = Smax = s + 1. Then

1> q(Fsv () > q(z) + x(X') = s + 1 — 2g5(K).
The first inequality is because Fsy(x) lives in Lee(0;). Therefore
s < 2g4(K)

as required. o -
Finally for the general result, consider the mirror K of K. This bounds a surface X

with the same genus as ¥. But now s(K) = —s(K), so
—s(K) <2g = 2g5(K).

Combining this with the previous result, we can bound gs(K') below by |s(K)|/2 as required.
U

5.8 Combinatorial proof of Milnor’s conjecture (lecture 18)

In the previous lecture we defined the Rasmussen s-invariant for knots, and showed that
it satisfies
|s(K)| < 294(K).

Today we show that s(7},4) = (p —1)(¢ — 1). This will be a special case of the calculation
of s for positive knots.

Definition 5.8.1. A knot K is positive if it has an oriented diagram with only positive
crossings.

For example, a torus knot is a positive knot.

Remark. This notion is distinct from that of braid-positivity we introduced several lec-
tures ago.
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If D is a positive diagram of a positive knot, then its oriented resolution Dy is in fact
the zero resolution! Our final result needed to prove the Milnor conjecture is the following:

Proposition 5.8.2. If K has a positive diagram D with n crossings, and Dy consists of k
circles (components), then s(K) =n+1— k.

Proof. Recall from the previous lecture that the s-invariant has the explicit formula

o — 1S0] +[55]) + a(lSo] — [S5])
5 .
Here one of [Sp] £ [S7] has degree s + 1, and the other has degree s — 1. Moreover,

q([So]) = 4([9p]) = s — 1.
Explicitly, the left side is defined to be

s(K) =

q([So]) = max{q(x) : = is homologous to Sp} = max{q(z) : z = So + da}.

But So lives in the lowest homological grading (since our resolution Dy is the zero resolu-
tion). Therefore there is no non-trivial o that can map to da, i.e. there is a unique class
homologous to Sp. Hence

Q([S(’)]) ZQ(SO)a So = (U+:|:U,)®(’U+:|:'U7)®...

The expression on the right has k factors. But this necessarily lies in the same quantum
grading as ®*v_. Therefore by the definition of the Khovanov homology,

q(So)=—k+(ny —2n_)=n—k=s—1.
The claimed result follows. O

Example. The standard diagram of the torus knot T}, , consists of p(q — 1) positive cross-
ings, and its 0 resolution consists of ¢ circles. Therefore s(T,,) = p(¢ —1) —¢+1 =

(p—1(g—1).
We can now pull together a proof of Milnor’s conjecture using just Rasmussen’s s-
invariant.

Proposition 5.8.3. The slice genus of the torus knot 7T}, ; is

(p—1g—1)
gu(Tyq) = LMY,
Proof. The standard diagram can me unknotted in (p — 1)(q — 1)/2 moves, giving
(p—1D-1)
9s(Tpq) < u(Tpq) < Ty

Conversely, the Rasmussen s-invariant gives
(p—Dg—1)  s(Tpq) < 29s(Tp,q)

2 2 — 2 = gS(Tpvq)‘

Therefore we have equality as required. O
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5.9 Combinatorial proof of the existence of exotic R*s

Another application of Khovanov homology is that it gives a novel proof of the existence
of exotic smooth structures on R?*, without requiring any gauge theory. More concretely,
our proof outline is as follows:

1. Use Rasmussen’s s invariant together with a result of Freedman to find knots that
are topologicall slice but not slice.

2. Introduce the trace embedding lemma.

3. Use the trace embedding lemma with manifolds obtained from a knot as in 1 to
construct an open manifold which is homeomorphic to R* but cannot be diffeomorphic
to it. A result of Freedman states that all open 4-manifolds admit admit smooth
structures, so it must then be an exotic R?.

We now carry out the details. First we introduce relevant definitions and results to establish
point 1.

Definition 5.9.1. A knot K is slice (or smoothly slice) if gs(K) = 0. That is, if there
exists a smooth properly embedded disk D ¢ B? such that 0D = K € S3.

By replacing the notion of a smooth embedding with a topological embedding, we
obtain a weaker condition.

Definition 5.9.2. A knot K is topologically slice if there exists a locally flat topologically
embedded disk D C B* such that 0D = K € S?. This means that there is a topological
embedding ¢ : (D? x D?,0D? x D?) — (B*,0B* = S3) such that ¢(0D? x 0) = K. Then
©(D? x 0) is a topologically embedded disk which is locally flat.

Remark. The local flatness condition is necessary to obtain an “interesting” definition:
without this assumption, all knots would be topologically slice by taking the embedded
disk to be a cone over the knot.

We now use the following theorem of Freedman to establish the existence of topologically
slice knots which aren’t slice:

Theorem 5.9.3. If A (t) =1, then K is topologically slice.

Here A is the Alexander polynomial. One method of proliferating knots with trivial
Alexander polynomials is to take the Whitehead double Wh(K) of a knot K. In particular,

Awn( 3 = 1.

However, we can also compute the s-invariant for any given knot - this particular knot
satisfies s(Wh(T3)) = 2. Since s/2 is a lower bound for the slice genus, we know that
9s(Wh(T33)) > 1. Therefore Wh(T3 3) is not slice, despite being topologically slice!
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Remark. In fact, Wh(T23) = 0. This is because the “clasp” in the Whitehead double
is not mirrored, i.e. the Mirror of a Whitehead double is not the Whitehead double of a
mirror. In general, it is known that all Whitehead doubles of torus knots are not slice, but
such a result is not known for mirrors of torus knots!

The next ingredient in our proof of the existence of exotic smooth structures on R*
is the trace embedding lemma. This relates the properties of being slice (or topologically
slice) to embeddings of “traces of 0 surgeries of knots”.

We establish some notation. Let K be a knot, and S?(K) the manifold obtained by
n-surgery along K C S3. Let X,,(K) be the manifold obtained from B* by attaching an
n-framed 2-handle along K. Then X,,(K) is called the trace of the n-surgery along K, and
satisfies 0X,,(K) = S3(K). Alternatively X,,(K) can be thought of a cobordism from S3
to S3(K) (with the S? end capped).

Example. If K is the unknot, then S3(K) =S! x §%, and Xo(K) = (D? x §?) — B%.
The trace embedding lemma takes two forms for each notion of sliceness:

Proposition 5.9.4. K C S? is (topologically) slice if and only if Xo(K) embeds smoothly
(locally flat topologically) in S*.

We only prove the smooth case, as the locally flat case is similar.

Proof. =. If K is slice, it bounds a disk D smoothly embedded in B*. One can verify that
$* = Xo(K) Usg(x) (B* — int(nbhd(D))).

In particular, Xo(K) embeds smoothly in S*.

<. We start by constructing an embedding F : S — Xo(K), so that F(S?) is of the
form D Uy C where D is a smooth disk (and the core of the 2-handle of X((K)) and C
has a single cone point. By assumption, there is a smooth embedding i : Xo(K) — S*.
Therefore we have an embedding io F' : S — S* which is smooth away from the cone point.
Removing a small ball around the cone point, the image of i o F' restricts to a smoothly
embedded disk in B*, whose boundary is K. O

The final step is to combine this result with the previous example of a non-slice topo-
logically slice knot to construct an exotic R?.

Theorem 5.9.5. There exist exotic R%s.

Proof. Let K be a topologically slice knot which is not slice. Write

S* = Xo(K) U (B* — nbhd(D))
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where D is a topologically flat disk, with boundary K. Define
Z =S* — {2} — int(X((K)) = R* — int(Xo(K)).

This is an open topological 4-manifold with boundary. A theorem of Freedman states that
all open 4-manifolds admit smooth structures, so we equip Z with a smooth structure. In
particular 97 is a smooth manifold.

On the other hand, we already know that 0Z is homeomorphic to 0Xo(K), which is
homeomorphic to S3(K). In dimension 3, all topological manifolds admit a unique smooth
structure, so 97 is diffeomorphic to S3(K). Now define

R=ZU, Xo(K)

where ¢ : 07 — S§(K) is a diffeomorphism. This is a smooth manifold, and by Mayer-
Vietoris and Seifert-van Kampen, can be shown to be homeomorphic to R*.

In particular, Xo(K) embeds smoothly in R. Since K is not slice, Xo(K) cannot embed
smoothly in R*. Therefore the smooth structure on R must be distinct from that on R?.
This completes the proof. ]

5.10 FGMW strategy to disprove SPC4

In the previous proof, it was crucial that Z was open. This is because Freedman’s proof of
the existence of smooth structures (on an arbitrary manifold) works everywhere except for
a single point. Can we modify the approach to find exotic smooth structures of non-open
manifolds? What about shedding light on the smooth Poincaré conjecture in dimension 47

We now describe an equivalent formulation of the smooth Poincaré conjecture in 4
dimensions, and show how we can attempt to understand it using Khovanov homology as
we did above.

Proposition 5.10.1. The smooth Poincaré conjecture in dimension 4 (SPC4) is equivalent
to the statement that if W4 is smooth with OW = S? and W contractible, then W is
diffeomorphic to B*.

The equivalence is immediate. To get from S* to W, simply remove a 4-ball, and to
get from W to S*, glue along a 3-sphere (since we know that the 3-dimensional Poincaré
conjecture holds).

The Freedman-Gompf-Morrison-Walker (FGMW) strategy for disproving the smooth
Poincaré conjecture is as follows: find a knot K such that K bounds a smooth disk in some
W contractible with W = S?, s(K) # 0. Then K is not slice, so W # B*. Thus W is an
exotic B*, which gives us an exotic S*.

Example. Earlier in the class we considered potential counter-examples to SPC4. They
can be revisited here: can we find knots K as above in our potential SPC4 counter exam-
ples?
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Example. Suppose W has a handle decomposition with no 3-handles. The attaching
spheres of 2-handles are in fact knots in S, and moreover bound smooth disks in W
(specifically the cores of the handles). Therefore if any of these K have non-trivial s-
invariant, we are done. So far all such K have had trivial s-invariant.

Remark. There are invariants similar to the s-invariant that arise from Seiberg-Witten
and Yang-Mills gauge theory, along with Floer homology theories. However, none of these
can distinguish between sliceness in B* vs sliceness in homotopy B*s, so these cannot work
in a similar strategy.

Whether or not this strategy has a chance of working is an open question. More
precisely, the following problem is open:

Open question. Let K C S3 = 9W*. Suppose W is smooth and contractible. Suppose
3 < W is a smooth proper embedding, with 93 = K. Do we necessarily have

|s(K)| < 2¢(%)?

This is of course true if W = B*. If it is true for all W as above, then the FGMW
strategy fails.

Theorem 5.10.2 (Manolescu, Marengon, Sarkar, Willis). The inequality |s(K)| < 2g(X)
holds as above if W is a Gluck twist of a sphere.

As a corollary, the FGMW strategy fails for Gluck twists. We prove this in the last
lecture.
Recall the following definition of a Gluck twist:

Definition 5.10.3. Let X be a 4-manifold, and S — X an embedding with image S.
Then there is a neighbourhood of S diffeomorphic to S? x D2. Then the Gluck twist of X
by S is

Xs = (X —nbhd(9)) U, (S* x D?)

where ¢ : S? x S! = §% x S! is the map

¢ : (z,e"%) — (rotg(2), ).

Question from class. Can Khovanov homology prove that there are infinitely many
smooth exotic structures on R*?

Answer. Yes. Consider distinct knots which are topologically slice but not slice. There is
another invariant such that if the two knots are distinguished by this invariant, then they
induce different smooth structures. This cannot prove that there are uncountably many
exotic smooth structures however, since there are only countably many knots! O
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5.11 The FGMW strategy fails for Gluck twists (lecture 19)

In the previous lecture we introduced the Freedman-Gompf-Morrison-Walker strategy to
disprove the smooth Poincaré conjecture. It is an open question whether or not the strategy
can be carried out. However, today we give a proof outline to show that the strategy fails
for Gluck twists.

Theorem 5.11.1 (Theorem A - Manolescu, Marengon, Sarkar, Willis). Let K C S = oW,
where W is obtained as a Gluck twist of B*. Suppose ¥ < W is a smooth embedding, with
0¥ = K. Then |s(K)| <2¢(%).

This means that if W is a smooth manifold homeomorphic to B* obtained via a Gluck
twist, and K is a knot bounding a disk in W, we cannot show that K is not slice (and
hence W is not diffeomorphic to B*) by using the s-invariant. In other words, the FGMW
strategy fails for such W.

It is interesting that such a result can be proven, since we expect to only know infor-
mation about cylinders S® x [0, 1] based on the definition of the Khovanov homology.

Recall that Gluck twist, in our context, is the following manifold: let ¥ = S? — B4
be an embedding. Then there is a neighbourhood N of ¥ diffeomorphic to S? x D?. The
Gluck twist of B* by ¥ is

W=B%=([B'-N)U,N
where ¢ : ON = S? x S — S? x S! is the map
¢ : (z,€?) = (rotg(2), ).
It is known that a Gluck twist of B* is homeomorphic to B*, but not if it is diffeomorphic.

Definition 5.11.2. Gy denotes the Gluck twist of S* by an embedding ¥ < S*, with
S? = 3. By the following remark, there is no ambiguity in writing G's;.

Remark. The diffeomorphism ¢ € Aut(dN) is a generator of m (RP3?) = m,(SO(3)) =
{St — rot(S?)} = Z/27Z. If two maps in Aut(ON) are homotopic, they give the same Gluck
twists.

The proof outline for the MMSW theorem is as follows:
1. Prove a special case with W = CP? — B%.
2. Prove a special case with W = CP? — B*.

3. Use Kirby diagrams to prove a result analogous to the “stable diffeomorphism” clas-
sification of 4-manifolds. Concretely, we show that Gx#CP? is diffeomorphic to CP?,

and Gyx#CP? is diffeomorphic to CP2.

4. We combine the three results to prove the general result.
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We now state and prove the first special case:

Proposition 5.11.3. “Theorem B”. Let W = CP? — B and K C oW = S®. Let
Y C W be smoothly properly embedded, with 9% = K. Suppose [X] =0 € Ho(W,0W) =

Hy(CP?) = Z. Then s(K) < 2¢(%).

Proof. The goal is to reduce the problem further to a surface in a cylinder. In that case
we obtain a map corresponding to the surface (as described in an earlier lecture).

Consider the data of W = CP? — B* K c W = S?, and ¥ € W smoothly properly
embedded, with 0¥ = K and [X] = 0 € Ho(W,0W). Note that Ha(W,0W) is generated
by [CPY].

Let N be a regular neighbourhood of CP!. Then ON = S%. Moreover, the “radial”
projection ON — CP! = S§? is the (negative) Hopf fibration. Decomposing along the
boundary of N, we then have

CP? = N Uy (S? x [0,1]) Ugw B*.

We also assume that [X] = 0 € Hy(W,0W). Therefore [£] - [CP!] = 0. That is, assuming

transversality, ¥ and CP! intersect at 2p points, p positively signed and p negatively signed.
Therefore Y intersects N along 2p disks, and intersects N along 2p circles. Each of these
circles is a fibre of the negative Hopf fibration mentioned above.

The collection of fibres forms a link L, , C S* in the total space of the Hopf fibration.
In fact, this is a torus link 75, 2, with p strands oriented in one direction and p the other
way.

One can define Rasmussen’s s-invariant for links rather than just knots. Recall that
dimLee(L) = 2¢ where L has ¢ components, and Kh(L) = Lee(L). This time there are
many generators, but our link has a given orientation, so there exist canonical generators
So and Sgz. We can define the s-invariant to be

S S» Sol — 97
(1) = 5l + 15D + oS0l 55D
By the definition of %, its restriction to S* x [0, 1] is a cobordism inside S? x [0, 1] from K
to L, ,, of genus g(X). By functoriality of the Khovanov homology under cobordisms (as
in Rasmussen’s proof of the Milnor conjecture), we find that

s(K)—2g(2)+1—2p <s(Lpp).

We can compute s(Lyp). (This takes some work and is the main content of the paper by
MMSW), but these turn out to be 1 — 2p. Therefore the inequality above gives the desired
result. O

It is now straight forward to prove the result for CP? instead of CP?2. Explicitly, we
have the following proposition:
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Proposition 5.11.4. “Theorem C”. Let W = CP? — B and K C W = S%. Let
¥ C W be smoothly properly embedded, with 0¥ = K. Suppose [X] =0 € Ho(W,0W) =
Hy(CP?) = Z. Then —s(K) < 2g(%).

Proof. This follows from theorem B by working with the mirror of K. O

The final ingredient for proving the general theorem (theorem A) is a result reminiscent
of stable diffeomorphisms.

Proposition 5.11.5. For any ¥ < S*, Gy#CP? = CP?, and Gx#CP? = CP?, where Gy,
is the Gluck twist of S* by .

Proof. The proof makes use of Kirby diagrams. Given ¥ < S* we can write Kirby
diagrams for S* and Gy, are as in figure (where the component labelled with a 0 is a
2-handle determined by ¥). We now briefly explain the origins of these Kirby diagrams.

Cs

| D

Figure 5.3: Kirby diagrams for S$* and G'x.
We can write
S*=(S*-N)UN, Gg=(S*-N)u, N,

where ¢ is the twisting map, and N is a regular neighbourhood of . We now choose a
Morse function f : S* — R such that N = f~!(—00,0], and let h : S> — R be the standard
height function. Next let 7 : S? x D? 2 N — S? be the usual projection map.

Finally we update f so that f|y is defined by

flv(z,2) = (hom)(z,2) + |2,

The Kirby diagram for S* shown in figure is with respect to this Morse function f, and
applying a Gluck twist gives the diagram on the right.
Next we prove using Kirby calculus that

G #CP? = CP?#S* =~ CP?.
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We use the above diagrams, making only local changes at the 0-framed 2 handle shown in
green. The proof is contained in figure [5.4] The proof of

G, #CP? = CP2#S* =~ CP?

is similar, and not included. ]

Figure 5.4: Proof that Gx#CP? = CP?#S*.

We now have all of the necessary ingredients to prove theorem A of MMSW (which we
repeat here for clarity).

Theorem 5.11.6 (Theorem A - Manolescu, Marengon, Sarkar, Willis). Let K C S3 = W,
where W is obtained as a Gluck twist of B*. Suppose ¥ < W is a smooth embedding, with
0¥ = K. Then |s(K)| <2¢(%).

Proof. Let W be a Gluck twist of B*, and ¥ C W such that 0% = K. For some surface S,
we have W = Gg — B*. By the above result, Gg#CP? = CP?, so in particular

W#CP? = CP? — B,
By theorem C, it follows that

—s(K) < 29(%).
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Moreover, we also know that Gg#CP? = CP?, from which it follows that W#CP? =
CP? — B*, so by theorem B,
s(K) < 2g(%).

Combining these two results, we find that
|s(K)| < 29(%)
as required. ]

Is there any hope for the FGMW strategy? A modification of the strategy which might
still work is the following result:

Proposition 5.11.7. Suppose K, K’ are knots with S}(K) = S3(K’), but with K slice
and K’ not slice. Then SPC4 is false.

Proof. Recall that S3(K) denotes the result of O-surgery on K. The above result follows
from the trace embedding lemma, which we saw in the previous lecture. Let Xy(K') and
Xo(K') denote the traces of 0-surgery along K and K’ respectively. Then 0X(K) =
0Xo(K') as smooth manifolds. On one hand, we know that

S* = Xo(K) U (B* — nbhd(D)),

where the union glues along the boundary. Therefore we can replace Xo(K) with Xo(K'),
and consider

S = Xo(K') U (B* — nbhd(D)).

From Mayer-Vietoris, Seifert-van Kampen, and the topological Poincaré conjecture, one
can show that S’ is homeomorphic to S*. However, since K’ is not slice, it cannot be dif-
feomorphic to S* (by the trace embedding lemma). Therefore S’ is an exotic S*, disproving
SPC4. 0

So far such K and K’ have not been found, but there is also no evidence that they
cannot be found!
This completes the course! Thank you Ciprian for an amazing class.
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