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Abstract. This is a survey article about the connections between knot theory and four-
dimensional topology. Every four-manifold can be represented in terms of a link, by a Kirby
diagram. This point of view has led to progress in computing invariants of smooth four-
manifolds that can detect exotic structures. We explain how this was done in two contexts:
Heegaard Floer theory and skein lasagna modules. We also describe a program to understand
four-manifolds through the properties of knots on their boundaries.

1. Introduction

Knots and four-manifolds are two central notions in low-dimensional topology. The goal
of this article is to explore some recent advancements that came out of the interplay between
these notions.

Knot theory (briefly reviewed in Section 2) is the study of closed loops in three-dimensional
space. Knots can be distinguished by various algebraic invariants. Traditionally, such invari-
ants took the form of numbers or polynomials; two famous ones are the Alexander and
the Jones polynomial [7, 37]. Since the turn of the millennium, an important development
has been the emergence of homological invariants, which are multi-graded abelian groups.
Examples include knot Floer homology [82, 88] and Khovanov homology [41].

Modern four-dimensional topology has its origins in the early 1980’s, when the independent
work of Michael Freedman and Simon Donaldson revolutionized the field and made clear the
distinction between topological and smooth four-manifolds [25, 17]. Further progress came
in the 1990’s with the introduction of the Seiberg-Witten invariants [103]. We will review a
few highlights of four-dimensional topology in Section 3, focusing on what are called exotic
pairs: manifolds that are homeomorphic but not diffeomorphic.

Many of the early results on exotic pairs relied on solving PDE’s using specific properties
of the manifolds, such as having a Kähler form, a metric with positive scalar curvature, or
a connected sum decomposition. The class of four-manifolds that admit these properties is
limited, so it is desirable to have more topological methods that apply to all four-manifolds.
In practice, topologists represent four-manifolds pictorially through Kirby diagrams. A Kirby
diagram encodes a handle decomposition of the manifold, which is determined by a framed
link in the connected sum of several copies of S1 ×S2; see Section 4. Kirby diagrams are the
key to relating four-manifold topology to the world of knots and links.

Can one compute four-manifold invariants by starting with a Kirby diagram as input? A
success story in this direction is Heegaard Floer theory, which was developed by Ozsváth
and Szabó as a symplectic counterpart to Seiberg-Witten theory [76, 75, 83]. The resulting
four-manifold invariants are conjecturally the same as the Seiberg-Witten invariants, and
are algorithmically computable (at least mod 2) from a Kirby diagram [62]. While the
general algorithm is not effective in practice, simpler methods can be used to compute specific
examples, and they led to the discovery of new exotic pairs [49]. We refer to Section 5 for
more details.
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(a) (b) (c) (d) (e)

Figure 1. (a) the unknot; (b) the Hopf link; (c) the trefoil; (d) the Bor-
romean rings; (e) the Conway knot

Apart from computing existing four-manifold invariants, knot theory is also helpful in
defining new such invariants. Skein lasagna modules [71] are invariants associated to a framed
link in the boundary of a four-manifold. Their definition relies on having a homological link
invariant with good cobordism properties; Khovanov homology is an example. In particular,
one can consider the skein lasagna module of the empty link in the boundary of a four-
manifold, and hence obtain a four-manifold invariant. When the four-manifold is represented
by a Kirby diagram, ways of computing the skein lasagna modules have been developed
in [59, 64]. One remarkable application is the first analysis-free proof of the existence of
exotic pairs of compact, orientable four-manifolds (with boundary) [90]. This circle of ideas
is explored in Section 6.

Finally, in Section 7 we describe a more speculative program to construct exotic pairs
by understanding which knots on the boundary of a four-manifold bound embedded disks
in that manifold. There is some hope that this method could be used to tackle the smooth
four-dimensional Poincaré conjecture, or at least detect exotic pairs of simply-connected four-
manifolds with definite intersection form [24, 63].
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Ren, Fabian Ruehle and Paul Wedrich for comments that improved the paper, and Nathan
Dunfield and Sherry Gong for discussions about their work [19]. I was partially supported
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2. Knot theory

A link is a collection of closed strings in three-dimensional space. More formally, it is a
compact, smooth one-dimensional submanifold of R3. It is customary to equip the link with
an orientation. Further, since topologists like compact spaces, it is common to add a point at
infinity to R3, and view the link as an oriented submanifold of the three-dimensional sphere
S3 = R3 ∪ {∞}.

A connected link is called a knot. Some examples of knots and multi-component links are
shown in Figure 1. The main goal of knot theory is to classify knots (and links) up to isotopy,
i.e., up to smooth deformation inside the ambient space through smooth submanifolds. The
reader can easily find tables of knots and links online [1, 55].

Instead of considering smooth links, one can equivalently work with piecewise linear links,
made of finitely many non-intersecting segments connected at their ends. One can further
arrange that the vertices of the link are on the three-dimensional integer lattice. It is then
clear that the link is specified by a finite amount of data. This gives knot theory a strong
combinatorial flavor. In practice, links are usually represented by their planar diagrams
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R1 R3R2

Figure 2. Reidemeister moves

L+ L− L0

Figure 3. Three links that differ near a crossing

(regular projections to two-dimensional space), and then these projections are encoded in
various ways (Gauss codes, DT codes, PD codes, etc.) Two planar diagrams represent the
same link (up to isotopy) if and only if they can be related by a sequence of the Reidemeister
moves shown in Figure 2.

To show that two links are isotopic, it suffices to exhibit a sequence of moves relating their
diagrams. To show that two links (for example, the unknot and the trefoil) are not isotopic
is more difficult: one needs an invariant, that is some quantity or algebraic object, typically
defined in terms of a planar diagram, that is unchanged by Reidemeister moves. If the values
of the invariant are different, we conclude that the two links are not isotopic.

One of the best-known link invariants is the Alexander polynomial [7]. Given a link L, its

Alexander polynomial ∆(L) is a Laurent polynomial in a variable q1/2. (In the case of a knot,
we only see integer powers of q.) There are several equivalent definitions of this polynomial;
some of them can be found in the textbook [51]. The topological origin of the polynomial
has to do with the homology of the infinite cyclic cover of the link complement. For our
purposes, it suffices to say that the invariant is characterized by the normalization ∆(U) = 1
(where U is the unknot) together with the skein relation

∆(L+)−∆(L−) = (q1/2 − q−1/2)∆(Lo),

which relates the polynomials of three links that differ at a single crossing in the manner shown
in Figure 3. These properties allow for the Alexander polynomial to be calculated recursively,
by starting from any planar diagram. For example, for the unlink of two components we have

(q1/2 − q−1/2)∆( ) = ∆( )−∆( ) = 1− 1 = 0 ⇒ ∆( ) = 0.

For the trefoil T , a slightly longer calculation shows that

∆(T ) = q−1 − 1 + q.

This implies that T is not isotopic to the unknot.
Another link invariant is the Jones polynomial [37], denoted V (L). This was discovered

much later than the Alexander polynomial, although it has a very similar characterization.
It is normalized by V (U) = 1 and satisfies the skein relation

q−1V (L+)− qV (L−) = (q1/2 − q−1/2)V (Lo).

The Jones polynomial does not have a simple topological definition, but it admits an alternate
skein-theoretic characterization, due to Kauffman [39]. To describe it, let us first introduce
framed links. A framed link is a link L together with a normal vector field; alternatively, we
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Figure 4. A diagram of the (right-handed) trefoil with its blackboard fram-
ing. This corresponds to λ = 3.

D D0 D1

Figure 5. A link diagram and its two resolutions at a crossing

can push off the link along that field and obtain a parallel copy L′ of L, and view the framed
link as the pair (L,L′). In particular, given a planar diagram D of L, we can push off the
link along a normal vector inside the plane; this gives the blackboard framing. See Figure 4.

Up to homotopy, a framing can be specified by a single integer, the linking number λ
between L and L′. We sometimes write the framed link as L = (L, λ). The framing corre-
sponding to λ = 0 is called the Seifert framing, and can be different from the blackboard
framing. Indeed, the value of λ for the blackboard framing is given by the writhe

w =
1

2
(#positive crossings−#negative crossings) ,

where a crossing is called positive or negative according to whether it looks like L+ or L− in
Figure 3.

The Kauffman bracket ⟨D⟩ ∈ Z[A,A−1] of a planar link diagram D is determined by the
properties

⟨⃝⟩ = 1,(1)

⟨⃝ ⊔D⟩ = (−A2 −A−2)⟨D⟩,(2)

and a skein relation that, instead of the links in Figure 3, uses those from Figure 5:

(3) ⟨D⟩ = A⟨D0⟩+A−1⟨D1⟩.
It turns out that the resulting Laurent polynomial ⟨D⟩ is not an invariant of the link,

but one of the framed link L = (L,w), which is represented by the diagram together with
its blackboard framing. To get a true link invariant (in fact, the Jones polynomial), we
renormalize as follows:

(4) V (L) = (−A)−3w⟨D⟩|q1/2=A−2 .

Both the Alexander and the Jones polynomials can be upgraded to homology theories:
knot Floer homology and Khovanov homology, respectively. We leave their definitions for
Sections 5.3 and 6.1. For now, we mention a few of their properties.

Knot Floer homology, discovered independently by Ozsváth-Szabó [82] and Rasmussen
[88], associates to a knot K a bigraded abelian group

(5) ĤFK (K) =
⊕
i,s∈Z

ĤFK i(K, s).
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The graded Euler characteristic of ĤFK is the Alexander polynomial:∑
s,i∈Z

(−1)iqs · rk Z
(
ĤFK i(K, s)

)
= ∆(K).

Similarly, Khovanov homology [41] is a bigraded abelian group

(6) Kh(K) =
⊕
i,j

Khi,j(K)

whose graded Euler characteristic is the (suitably normalized) Jones polynomial∑
i,j∈Z

(−1)iqj/2 · rk Z
(
Khi,j(K)

)
= (q1/2 + q−1/2)V (K).

The knot homologies are more powerful invariants than the corresponding polynomials.
For example, a question one can ask about a knot invariant is whether it detects the unknot
U : if a knot has the same invariant as U , is it isotopic to U? In the case of the Alexander
polynomial, the answer is negative: the Conway knot C shown in Figure 1(e) has ∆(C) = 1,
just like the unknot. In the case of the Jones polynomial, unknot detection is a famous open
problem. However, for the two knot homologies, the question has affirmative answers.

Theorem 2.1 (Ozsváth-Szabó [81]). If a knot K satisfies ĤFK (K) ∼= ĤFK (U), then K is
isotopic to the unknot U .

Theorem 2.2 (Kronheimer-Mrowka [46]). If a knot K satisfies Kh(K) ∼= Kh(U), then K is
isotopic to the unknot U .

3. Four-manifolds

The classification of manifolds is a major problem in topology. There are two versions of
this problem. One can ask about topological manifolds (spaces that look locally like Rn), in
which case the classification should be up to homeomorphism (bijective continuous map whose
inverse is continuous). On the other hand, one can ask about smooth manifolds (topological
manifolds equipped with a smooth structure, i.e., a C∞ atlas of charts), in which case the
classification should be up to diffeomorphism (bijective C∞ map whose inverse is C∞).

The two classification problems are equivalent for manifolds of dimension up to 3: any such
topological manifold admits a unique smooth structure up to diffeomorphism. In dimensions
4 and higher, the problems diverge:

• There exist non-smoothable topological manifolds. The first such example was found
by Kervaire in dimension 10 [40];

• There exist topological manifolds with several non-diffeomorphic smooth structures.
The first example was found by Milnor in dimension 7 [68].

Although these phenomena exits in higher dimensions, they take a particularly striking form
in dimension four. For example:

• In all dimensions d ̸= 4, the Euclidean space Rd admits a unique smooth structure.
By contrast, R4 has uncountably many smooth structures [98];

• In all dimensions d ̸= 4, a compact manifold can admit only finitely many smooth
structures [44]. By contrast, in dimension 4 there are compact examples with infinitely
many smooth structures [26, 74];

• In all dimensions d ̸= 4, counting the number of smooth structures on the d-dimensional
sphere Sd has been reduced to a problem in algebraic topology. By contrast, in di-
mension 4 this is a famous open problem, which we now state.
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Conjecture 3.1 (Smooth four-dimensional Poincaré Conjecture (SPC4)). Up to diffeomor-
phism, there exists a unique smooth structure on S4.

The topological four-dimensional Poincaré Conjecture (that a four-manifold homotopy
equivalent to S4 is actually homeomorphic to S4) was proved by Freedman [25]. In fact,
his work produced a complete classification of closed, simply connected topological four-
manifolds, up to homeomorphism. (The simply connected restriction is necessary: if we allow
the manifolds to have an arbitrary fundamental group π1, their classification is impeded by
an undecidable problem in group theory, the group isomorphism problem.)

On the smooth side, much progress came from gauge theory: the study of certain nonlinear,
elliptic partial differential equations that originated from physics and exhibit gauge symmetry
(symmetry under the infinite-dimensional group of automorphisms of a bundle). The use of
gauge theory in four-dimensional topology dates back to Donaldson [17], who looked at self-
dual solutions of the Yang-Mills equation. The Seiberg-Witten equations were introduced in
1994 [93, 94, 103], and became an even more effective tool.

Recall from the introduction that an exotic pair consists of two smooth manifolds that
are homeomorphic but not diffeomorphic (in other words, two non-diffeomorphic smooth
structures on the same topological manifold). One cannot distinguish the diffeomorphism
type by classical topological invariants such as homology or homotopy groups. Rather, in
dimension four, the two manifolds in an exotic pair are distinguished roughly as follows. We
equip each manifold with a generic Riemannian metric and count the number of solutions to
a gauge-theoretic equation. Each solution is counted with a sign, and one shows that (under
certain hypotheses) the total count is independent of the metric. It is thus a four-manifold
invariant, and if its values are different on the two manifolds, we conclude that the manifolds
are not diffeomorphic.

Of course, to run this strategy one needs a good source of examples for which the invariants
are computable. One such source is algebraic geometry. Projective algebraic surfaces provide
many examples of four-manifolds. The simplest ones are the complex projective space CP2

and its blow-ups. Topologically, these can be expressed as connected sums

CP2#nCP2,

where CP2 is CP2 with the orientation reversed. Another famous example is the K3 surface

K3 = {[z0 : z1 : z2 : z3] ∈ CP3 | z40 + z41 + z42 + z43 = 0}.

Solutions to the Yang-Mills equations on projective algebraic surfaces are related to holo-
morphic vector bundles. This enables the computation of the Donaldson invariants (signed
counts of solutions). Similarly, solutions to the Seiberg-Witten equations on projective alge-
braic surfaces are related to divisors, and this helps the computation of the corresponding
Seiberg-Witten invariants. As sample applications, one can prove the existence of exotic

smooth structures on CP2#9CP2 or on K3; see [18, 74, 26, 20]. Seiberg-Witten theory also
has deep connections to symplectic geometry [99, 100]. By combining these methods with

cut-and-paste techniques, one can construct exotic smooth structures on CP2#kCP2 for all
k ≥ 2; see [6].

As a rule of thumb, the larger the four-manifold (in terms of the size of its homology), the
easier it is to find exotic smooth structures. On relatively simple four-manifolds such as

S4, S2 × S2,CP2,CP2#CP2, S1 × S3, T 4,

the existence of exotic smooth structures is still an open problem.
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Figure 6. Surgery diagrams for: (a) the Poincaré homology sphere; (b) the
3-torus T 3 = S1 × S1 × S1; (c) the Poincaré sphere again

Another key factor in the construction of exotica is the type of intersection form. On a
closed, simply-connected four-manifold X, there is a non-degenerate bilinear form on second
homology

H2(X;Z)×H2(X;Z) → Z,
given by the intersection product. All known exotic examples of simply-connected four-
manifolds have the property that this form is indefinite. When the form is definite, we might
as well focus on the positive-definite case (by changing the orientation if necessary). It then
follows from Freedman’s work that the manifold is homeomorphic to a connected sum #nCP2.
The following question remains unsolved.

Question 3.2. Does there exist an exotic smooth structure on #nCP2 for some n ≥ 0?

Note that SPC4 is a particular case of this problem, corresponding to n = 0.

4. Kirby diagrams

The connection between knot theory and four-manifolds runs through three-manifolds, so
let us first describe how one can construct three-manifolds using links. Let L = (L, λ) be a
framed link in S3 with ℓ components, and let ν(L) a standard tubular neighborhood of L.
The result of surgery on L is the three-manifold

S3(L) = (S3 \ ν(L)) ∪∂ν(L)

ℓ⊔
i=1

(S1 ×D2),

obtained from the complement of ν(L) by gluing back ℓ solid tori S1×D2 along their bound-
aries. The gluing is done so that the meridians ∗ × ∂D2 are attached to the components of
the parallel copy of L specified by the framing.

Theorem 4.1 (Lickorish-Wallace [50, 102]). Any closed, oriented three-manifold is the result
of surgery on a framed link in S3.

Pictorially, we represent the three-manifold by a link with integers attached to each com-
ponent; these determine the framing as noted in Section 2. The result is a surgery diagram
for the manifold. Some examples are shown in Figure 6. The surgery diagram is not unique;
many framed links represent the same three-manifold.

There is also a four-manifold (with boundary) associated to surgery on a framed link L.
This is called the trace of the surgery, denoted X(L), and is constructed as follows:

X(L) = D4 ∪∂ν(L)

ℓ⊔
i=1

(D2 ×D2),
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ν(L)

D4

S3

2-handle

Figure 7. The trace of a surgery. The disk D4 is depicted as the half-space
below the indicated plane.

Here, we view ν(L) as part of the boundary ∂D4 = S3, and each copy of D2 ×D2 (called a
2-handle) is attached along ∂D2×D2 = S1×D2 to a component of ν(L). (The identification
of such a component with S1 ×D2 is determined by the framing.) See Figure 7.

The result of attaching the 2-handle to D4 is a priori a four-manifold with corners. In the
definition of X(L) we implicitly smooth the corners. The result is a compact four-manifold
with boundary, and one can check that ∂X(L) = S3(L). In light of this, Theorem 4.1 has
the following consequence.

Corollary 4.2. Every closed, oriented three-manifold is the boundary of a compact, oriented
four-manifold.

Surgery traces form a key part of Kirby diagrams, the standard pictorial representations
of four-manifolds. To introduce Kirby diagrams, let us first review a few notions of Morse
theory. On a closed, connected manifold X of some dimension n ≥ 0, a generic smooth
function f : X → R is Morse, that is, all of its critical points are non-degenerate. As we
follow the sublevel sets {f(x) ≤ C as C goes from −∞ to ∞, their diffeomorphism type
changes only as we pass critical values, and in that case it changes by attaching handles.
Specifically, when we encounter a critical point of index k, we attach a k-handle Dk ×Dn−k

along ∂Dk ×Dn−k. One can re-arrange the handles so that they appear monotonically (k-
handles before l-handles for k < l), and we have a single 0-handle and a single n-handle. We
refer to [69] and [70] for more details. See Figure 8 for the example of the 2-torus.

In the case of a closed four-manifold X, we get a decomposition into handles as follows:

• one 0-handle, which is a copy of D4;
• several 1-handles, which produce a boundary connected sum ♮k(S1 × D3), whose
boundary is #k(S1 × S2);

• several 2-handles, which are attached along the neighborhood of a framed link L ⊂
#k(S1 × S2). When k = 0, this corresponds to the surgery trace discussed earlier;

• some 3-handles, which are attached along neighborhoods of 2-spheres in the boundary
of the manifold obtained at the previous step. We assume that, after attaching the
3-handles, the new boundary is S3;

• a 4-handle, which is a copy of D4 attached along its whole boundary.

The Kirby diagram associated to this decomposition is simply a picture of the framed link
L ⊂ #k(S1×S2). To draw #k(S1×S2), we represent S3 as R3∪{∞}, then remove k pairs of
balls from R3 and identify the boundaries of the balls in each pair. The framing is indicated
by a dashed parallel copy of the link, or (when k = 0) by marking an integer next to each
link component. An example of a Kirby diagram is shown in Figure 9.
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∅

=

Figure 8. A handle decomposition of the 2-torus from a Morse function.
As we pass critical points from bottom to top, the sublevel set changes by
attaching first a 0-handle, then a 1-handle, then another 1-handle, and finally
a 2-handle.

Figure 9. A Kirby diagram (representing S4). The two spheres are identified
by reflection about the vertical plane.

Interestingly, under the assumption that 3-handles can be attached so that the new bound-
ary is S3, the way we attach these handles is essentially unique, and does not require extra
data in the diagram. Indeed, the boundary after we attach the 2-handles must be some
connected sum #l(S1×S2), and the uniqueness boils down to a theorem of Laudenbach and
Poénaru [48], which says that every diffeomorphism of #l(S1×S2) extends to the handlebody
♮l(S1 ×D3).

Of course, the presentation of a four-manifold by a Kirby diagram is not unique. It can be
shown that any two such presentations are related by a sequence of certain moves [43]. This
is the subject of Kirby calculus; see [29] for an introduction.

In this paper we will mostly deal with the case when the handle decomposition has no
1-handles, so the link L is in S3. Such a manifold is called geometrically simply connected,
and it is an open problem whether every closed, simply connected four-manifold has this
property. In practice, many simply connected manifolds have it. Figure 10 shows Kirby
diagrams (without 1- or 3-handles) for CP2, S2 × S2, and the K3 surface. All of these
manifolds are obtained from a surgery trace X(L) with boundary S3(L) = S3 by attaching
a copy of D4.

There is also a variant of Kirby diagrams for compact, connected four-manifolds X with
non-empty boundary. A handle decomposition for such a manifold can be taken to have a
single 0-handle, some 1-, 2-, and 3-handles, and no 4-handles. We again draw it as a framed
link L ⊂ #k(S1 × S2). In this case we no longer have the assumption on the boundary after
attaching 3-handles; this boundary can be any three-manifold Y = ∂X. We can no longer
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1 0 0

(a) (b) (c)

0

−1−1

Figure 10. Kirby diagrams for: (a) The complex projective space CP2; (b)
S2×S2; (c) The K3 surface. The third picture is based on Figure 2 in [57]; all
the circles there have framing −2, except for the trefoil with framing 0. The
boxes marked −1 indicate a negative full twist of all the strands in the box.

apply the Laudenbach-Poénaru theorem so the way the 3-handles are attached has to be
specified in the text.

In particular, if we draw a framed link L in S3, this can be viewed as a Kirby diagram for
either:

(a) a closed four-manifold, in case S3(L) = #l(S1 × S2) for some l; or
(b) a compact four-manifold with boundary S3(L), in general.

5. Heegaard Floer theory

5.1. Floer homologies. Recall from Section 3 that counting solutions to the Yang-Mills
or Seiberg-Witten equations produces the Donaldson and Seiberg-Witten invariants, respec-
tively, which can detect exotic smooth structures. To compute these invariants, in some cases
one can use connections to geometry, but a more widely applicable method is through cut-
and-paste techniques. The idea is to break the four-manifold into simpler pieces, compute
invariants of these pieces, and investigate how these behave under gluing.

The pieces are four-manifolds with boundary, and their invariants will not be numerical
(as for closed manifolds), but rather elements in a group associated to the boundary, called
Floer homology. This group is an invariant of three-manifolds constructed roughly as follows.
Given a three-manifold Y , we look at solutions to the relevant equations (Yang-Mills or
Seiberg-Witten) on the cylinder R× Y that are invariant under translation by R. We define
a chain complex whose generators are these solutions, and whose differential is of the form

∂x =
∑
y

n(x, y)y,

with n(x, y) ∈ Z being the count of (not necessarily translation invariant) solutions on R×Y
that limit to x and y as we go to −∞ and +∞ in the R direction. The homology of the
complex is called Floer homology. In the Yang-Mills context, this was introduced in [21] and
in the Seiberg-Witten context in [65, 56, 27, 45].
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Let us denote the Floer homology theory of Y (in some setting) by F (Y ). Then, the
invariant of a four-manifold W with boundary Y is

F (W ) = [
∑
x

m(x)x] ∈ F (Y ),

where m(x) is the count of solutions on the manifold with cylindrical end X ∪ ([0,∞)× Y ),
converging to x as we go to the infinite end. We can alternatively think of F (W ) as a
homomorphism

F (∅) = Z → F (Y )

sending 1 to the count above. More generally, if we have a cobordism W between three-
manifolds Y and Y ′ (that is, a four-manifold W with ∂W = (−Y ) ⊔ Y ′), we get a map

F (W ) : F (Y ) → F (Y ′).

This assignment is functorial: composition of cobordisms results in composition of the maps.
We obtain a structure called a topological quantum field theory (TQFT).

If a closed four-manifold W is decomposed into pieces as

W = W1 ∪Y1 W2 ∪Y2 · · · ∪Yn−1 Wn,

its invariant is given by

(7) F (W ) = F (Wn) ◦ · · · ◦ F (W2) ◦ F (W1).

Thus, it suffices to understand the invariants of the pieces.

5.2. Heegaard Floer homology. The first step in making use of Floer-theoretic cut-and-
paste techniques is to understand the Floer homology of three-manifolds. This is non-trivial,
as it still involves solving PDEs on R × Y . It is useful to make an additional cut in the
three-manifold: split it along a surface Σ into two handlebodies U0 and U1. This is called a
Heegaard splitting. By stretching the metric along Σ, the original equations on R×Y become
maps

(8) u : R× [0, 1] → M(Σ),

where M(Σ) is the moduli space of dimensionally-reduced solutions on Σ; that is, solutions to
the PDEs on R2 ×Σ that are invariant under translation in both R directions. Furthermore,
it turns out that M(Σ) has a natural symplectic structure, and the maps in (8) need to be
pseudo-holomorphic: They satisfy a nonlinear analogue of the Cauchy-Riemann equation,
with respect to an almost complex structure compatible with the symplectic form.

This heuristic shows that the gauge-theoretic Floer homology of Y should be isomorphic
to a symplectic invariant called Lagrangian Floer homology. This proposal was made in the
Yang-Mills setting in [8], and came to be known as the Atiyah-Floer conjecture. It was even
more fruitful in the Seiberg-Witten setting, where Ozsváth and Szabó developed Heegaard
Floer theory [76, 75].

The dimensionally-reduced Seiberg-Witten equations on a surface Σ are called the vortex
equations, and their moduli spaces are symmetric products of the surface [36, 13]. Inspired
by this, Ozsváth and Szabó defined the Heegaard Floer homology of a three-manifold Y with
a Heegaard splitting U0 ∪Σ U1 by counting pseudo-holomorphic strips as in (8), with

M(Σ) = Symg(Σ) = (Σ× · · · × Σ)/Sg.

Here, g is the genus of Σ; on the right hand side we take the product of g copies of Σ and
divide it by the action of the symmetric group Sg. The handlebody U0 can be specified by
a collection of g simple closed curves α1, . . . , αg on Σ, such that attaching disks to Σ along
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these curves and then filling in with a three-ball D3 results in U0. Similarly, the handlebody
U1 can be specified by a collection of curves β1, . . . , βg. From here we construct Lagrangian
submanifolds

Tα = α1 × · · · × αg, Tβ = β1 × · · · × βg ⊂ Symg(Σ).

The generators of the Heegaard Floer complex are intersection points x ∈ Tα∩Tβ, and the
differential counts pseudo-holomorphic strips in M(Σ) with boundaries on Tα and Tβ. The
homology of the complex is Heegaard Floer homology, HF (Y ). (In [76] there are actually

several flavors of this construction, denoted ĤF , HF+, HF−, HF∞, which differ in how they
keep track of a basepoint z ∈ Σ. We will not get into the details here, and write any of these
versions as HF .)

Compared to Seiberg-Witten theory, Heegaard Floer homology has the advantage that
at least the generators of the chain complex are easy to understand topologically. They
correspond to g-tuples of points on Σ:

x = {x1, . . . , xg}
with xi ∈ αi ∩ βσ(g) for some permutation σ of {1, . . . , g}. Computing the differential is still
challenging, because it involves solving the nonlinear Cauchy-Riemann equations.

In [83], Ozsváth and Szabó constructed invariants of four-manifolds (with or without
boundary) that fit into the TQFT framework sketched in Section 5.1. They are defined
by starting from a handle decomposition of the four-manifold, as in Section 4, associating
maps to each handle, and composing these maps as in (7). This offers a first indication
that the perspective of viewing four-manifolds in terms of Kirby diagrams may be useful for
computing invariants.

We mention that Heegaard Floer homology was later proved to be isomorphic to Seiberg-
Witten (monopole) Floer homology; see [47, 15]. Similarly, the Ozsváth-Szabó invariants of
four-manifolds are expected to be equal to the Seiberg-Witten invariants. This remains a
conjecture, but for most purposes the Ozsváth-Szabó invariants are a perfectly good sub-
stitute for Seiberg-Witten: They have been proved to have many of the same properties,
and calculations for specific classes of four-manifolds have yielded the same results. See for
example [77, 34].

5.3. Knot Floer homology. In Section 2 we mentioned an invariant of knots called knot

Floer homology, denoted ĤFK . Its original construction in [82] and [88], is a variant of that
of Heegaard Floer homology. We start with a Heegaard splitting for S3, with α and β curves
as before, and we encode the knot by marking two basepoints on the surface, away from the
curves. Specifically, recall that each handlebody is obtained from the surface Σ by adding
some disks and a three-ball; in each three-ball we draw a segment joining the basepoints, and
the knot is the union of these two segments.

Knots are simpler objects than three-manifolds, so it should not be surprising that knot
Floer homology is (in many ways) easier to study than Heegaard Floer homology. In fact, a

completely combinatorial description of ĤFK was given in [61], based on the idea of general-
izing the original set-up by allowing more basepoints and curves. This allows for a judicious
choice of knot presentations called grid diagrams.

A (toroidal) grid diagram is an n × n grid on the surface of a torus (viewed as a square
with the opposite sides identified), with the following data:

• a collection of n parallel horizontal curves α1, . . . , αn, splitting the torus into n rows;
• a collection of n parallel horizontal curves β1, . . . , βn, splitting the torus into n
columns;
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(a) (b)

Figure 11. (a) A grid diagram representing the trefoil. (b) An empty rec-
tangle from x to y on this grid. The generator x is the collection of red dots,
and the generator y is the collection of blue dots.

• a collection of n markings O1, . . . , On, such that each row and each column contain
exactly one of these markings;

• another collection of n markings X1, . . . , Xn, such that each row and each column
contain exactly one of these markings.

Let us join the O to the X markings by vertical segments inside each column, and by hori-
zontal segments inside each row. When the segments cross each other, we draw the vertical
ones on top. The result is a planar diagram for a link L. See Figure 11(a) for an example.

We now form a chain complex freely generated over Z by n-tuples of points

x = {x1, . . . , xn}

with xi ∈ αi ∩ βσ(n) for some permutation σ. Note that there are exactly n! generators.

(These come with two gradings, which eventually produce the bi-grading on ĤFK from (5);
we will not give their definitions here.)

The differential on the complex is

∂x =
∑
y

r(x,y)y,

where r(x,y) is the count of empty rectangles between x and y. Such rectangles can exist
only when the coordinates of x and y differ in exactly two rows (and in exactly two columns).
Then, those two rows and two columns split the torus into four rectangles. By an orientation
convention, the two where the rectangle is on the left of the segment drawn from x to y on
each row are considered to go “from x to y.” If such a rectangle does not contain any O-
or X-markings, nor any other coordinates of x and y, it is counted (with a certain sign) in
r(x,y). See Figure 11(b) for an example.

The homology of this complex is denoted H̃FK , and is not quite an invariant of the link.

Nevertheless, one can show that if the link has ℓ components, then H̃FK is obtained from

ĤFK by tensoring with n− ℓ copies of a free abelian group of rank two.
There are other versions of this construction, where one counts rectangles that may contain

O- or X-markings. These give rise to different flavors of knot Floer homology (sometimes
called grid homology). A comprehensive introduction is the textbook [80].

The perspective of grid homology yields the following result.

Theorem 5.1 ([61]). Knot Floer homology (in all its versions) is algorithmically computable.
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Indeed, there exist computer programs that use the grid diagram description to calculate

ĤFK [9]. The key fact that enabled this description was that isolated holomorphic disks
in Symn(T 2) with boundary conditions on Tα and Tβ are in one-to-one correspondence to
empty rectangles. In broad strokes, we can say that working with knots and grids resulted
in a setting where gauge-theoretic equations can be solved explicitly: each empty rectangle
is a pseudo-holomorphic strip in the moduli space of vortices, and hence corresponds to a
solution of the Seiberg-Witten equations on R2 × T 2.

5.4. Surgery formulas. We now arrive at the crux of the matter: Once we have a link
invariant that we understand reasonably well (knot Floer homology), how can this help us
compute a four-manifold invariant (in this case, the Ozsváth-Szabó invariant, which is a
replacement for the Seiberg-Witten invariant)? The connection goes through three-manifold
invariants (Heegaard Floer homology), using what are called surgery formulas.

In Section 4 we mentioned that every three-manifold Y can be expressed as surgery on a
framed link L ⊂ S3. In the case where L = (L, λ) is a knot, the Heegaard Floer homology
of Y = S3(L) was related to the knot Floer homology of L by the integral surgery formula
proved by Ozsváth and Szabó in [84]. This says that HF (S3(L)) is the homology of a mapping
cone

A(L) → A(∅),

where A is a certain version of knot Floer homology, and the framing λ is involved in defining
the map itself. Moreover, the formula identifies the four-manifold invariant of the trace X(L)
with the class of a given element of A(∅) in the mapping cone above.

This surgery formula was generalized to links by the author and Ozsváth in [60]. In that
case, instead of a mapping cone we have a mapping hypercube (an iterated mapping cone)
involving the knot Floer homologies of the link and all its sublinks, as well as maps, chain
homotopies and higher chain homotopies connecting them. If L′ ⊂ L is a sublink, then the
Heegaard Floer map induced by the cobordism from S3(L′) to S3(L) (given by surgery on
L− L′) is identified with the inclusion of a certain subcomplex of the hypercube.

Theorem 5.1 provides a combinatorial description of the groups that sit at the vertices
of the mapping hypercube mentioned above. There is more work needed to describe the
maps and (higher) homotopies, but this was accomplished in [62], in terms of counting other
geometric shapes on the grid diagram. The result was a combinatorial description of the
Heegaard Floer homology of S3(L), and of related cobordism maps. Thus, if we have a
four-manifold that is made only of two-handles (that is, the trace of a link surgery X(L)),
we obtain an expression for its Ozsváth-Szabó invariant. This kind of expression can be
generalized to all four-manifolds, using handle decompositions and the composition rule (7).
We have the following consequence.

Theorem 5.2 ([62]). The Heegaard Floer homologies of three-manifolds and the Ozsváth-
Szabó four-manifold invariants (mod 2) are algorithmically computable.

The mod 2 restriction is a technical point, due to the fact that the link surgery formula has
only been proved with Z/2 (rather than with Z) coefficients. The same formula is expected
to hold over Z, and in any case the four-manifold invariants mod 2 suffice to detect many
exotic pairs.

Remark 5.3. The first combinatorial description of Heegaard Floer homology was given by

Sarkar and Wang in [91], for the hat version ĤF . Theorem 5.2 extended this to all versions.
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5.5. Applications. Theorem 5.2 is a conceptual result, of little use in practice. Interesting
closed four-manifolds are represented by complicated links (see the Kirby diagram for K3 in
Figure 10(c)), and therefore need large grid diagrams. If n is the size of the grid diagram,
the number of generators of the associated knot Floer complex is n!, super-exponential in n,
which makes computations extremely difficult.

Nevertheless, there are other methods for computing Heegaard Floer invariants. For Hee-
gaard Floer homology (at least in its hat version), an efficient general method is through
a theory called bordered Floer homology. This applies the cut-and-paste principle to three-
manifolds by decomposing them into simpler three-manifolds with boundary [54, 53]. A
similar bordered theory exists for knots [78, 79], which helps to compute knot Floer homol-
ogy by decomposing the knot into tangles. See [97] for a computer interpretation.

For the moment, bordered theory has not been sufficiently developed to tackle four-
manifold invariants directly. The methods that are most effective for that in practice are
more ad hoc: For particular four-manifolds, one can decompose them into handles and take
advantage of the properties of the links that we encounter in the process (when we attach
2-handles, as in a Kirby diagram). For example, in [77, Section 4], Ozsváth and Szabó
performed a handle-by-handle calculation of the invariant of the K3 surface.

This method was refined in recent work of Levine, Lidman, and Piccirillo [49]. There,

they construct a new exotic CP2#9CP2 handle by handle, and showed it is exotic using
the Ozsváth-Szabó invariant. The computation involves the relation between knot Floer
homology and cobordism maps induced by surgeries, and also makes use of bordered Floer
homology. One interesting property of the resulting four-manifold is that it has a free invo-
lution. Its quotient by that involution has π1 = Z/2 and negative definite intersection form.
Here is a corollary.

Theorem 5.4. (Levine-Lidman-Piccirillo [49]) There exists an exotic pair of closed ori-
entable four-manifolds with definite intersection form.

This is the first example of this kind. It does not quite answer Question 3.2, because
the manifolds are not simply connected (have π1 = Z/2). It still shows the power of Hee-
gaard Floer theory, and of the idea of computing four-manifold invariants by using handle
decompositions.

In later work, Lidman and Piccirillo used similar methods to construct an exotic CP2#5CP2

[52].
In a different direction, knot Floer homology was used by Juhász and Zemke [38] to compute

the Ozsváth-Szabó invariants of four-manifolds obtained by a construction called concordance
surgery. (It had not been known how to do the same computation in the Seiberg-Witten
setting.)

6. Skein lasagna modules

6.1. Khovanov homology. In Section 2 we briefly mentioned a knot homology theory called
Khovanov homology, whose Euler characteristic is the Jones polynomial. We now sketch its
definition.

Recall that the Jones polynomial can be obtained from the Kauffman bracket by a renor-
malization (4), and that the Kauffman bracket satisfies Equation (3). By iterating this
equation over all n crossings in a diagram D, we get a sum of 2n terms, one for each com-
plete resolution of D (where all the crossings are resolved in one of the two ways indicated
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Figure 12. A cube of resolutions and the Khovanov chain complex for a
diagram of the Hopf link

in Figure 5). Each complete resolution is an unlink of some number m of components, and
therefore its bracket is (−A2 −A−2)m−1.

The construction of Khovanov homology is based on the same idea, with the expression
−A2 −A−2 replaced by a free abelian group of rank two,

V = Span {1, x}.

We form a hypercube of complete resolutions as in Figure 12, where the vertices are labeled
by ε = (ε1, . . . , εn) ∈ {0, 1}n. Then, we form a chain complex where at each vertex we place
a tensor product V ⊗m. We take the direct sum of all the groups associated to a value of
|ε| = ε1 + · · ·+ εn. These are our chain groups.

The differential d relates the groups at ε to those at ε′ where ε′ differs from ε at a single
crossing, say j ∈ {1, . . . , n}, so that εj = 0 but ε′j = 1. The resolution at ε′ is obtained from
that at ε by either joining two circles or splitting a circle into two.

If two circles get joined together, we define the contribution of d using the multiplication
map

m : V ⊗ V → V

12 = 1, 1x = x1 = x, x2 = 0,

tensored with the identity on all the other factors (for unchanged circles).
If one circle gets split in two, we use the comultiplication

∆ : V → V ⊗ V

∆(1) = 1⊗ x+ x⊗ 1, ∆(x) = x⊗ x,

and again tensor with the identity on the remaining factors.
We also multiply each term in the differential by a sign (−1)ε1+···+εj−1 . One can check

that the resulting map d satisfies d2 = 0, and thus defines a chain complex. The homology
of that complex is Khovanov homology, Kh(K). (We can further equip it with two gradings
as in (6), but we will not discuss those here.)

The definition above is purely algebraic, and Khovanov homology is deeply connected to
modern representation theory. However, it also shares some properties with the analyti-
cally defined Floer homologies from Subsection 5.1. Specifically, it is functorial under link
cobordisms, as follows. Suppose we have a smoothly embedded surface Σ ⊂ [0, 1]× R3 with
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boundary ∂Σ = (−L0)⊔L1, for some links L0 ⊂ {0}×R3 and L1 ⊂ {1}×R3. Then, we have
a well-defined map

Kh(Σ) : Kh(L0) → Kh(L1),

and composition of cobordisms corresponds to composition of maps. See [35, 42, 10, 11].
This TQFT property lies at the heart of the construction of four-manifold invariants from

Khovanov homology that will be presented in Subsection 6.3.

6.2. The skein module. The four-manifold invariants were inspired by a skein-theoretic
construction one dimension lower, which we now review. Given a three-manifold Y , the
Kauffman bracket skein module of Y , denoted KBSM (Y ), is generated over Z[A,A−1] by all
framed links in Y modulo the local relations (2), (3) from the definition of the Kauffman
bracket; see [86, 101]. Each framed link has an invariant, its class ⟨L⟩ ∈ KBSM (Y ).

In the case of Y = S3, one can easily check that KBSM (S3) = Z[A,A−1], with a generator
being the empty link. The class of a framed link L ⊂ S3 is simply its Kauffman bracket.

For general three-manifolds, one can view ⟨L⟩ as a generalization of the Jones polynomial
(up to a normalization factor). However, while the Kauffman bracket skein module is easy
to define, it is hard to compute. There is an extensive literature devoted to its computation.
It took many years to even establish a basic finite dimensionality property: in [31], Gunning-
ham, Jordan and Safronov proved a conjecture of Witten, that KBSM (Y ) ⊗ C(A) is finite
dimensional over C(A). It is expected that KBSM (Y )⊗C(A) is related to the SL(2,C) Floer
homology of three-manifolds defined in [2].

6.3. A new invariant of four-manifolds. We now describe an invariant introduced by
Morrison, Walker and Wedrich in [71]. It is associated to a link in the boundary of any four-
manifold; by taking the link to be empty, it also gives an invariant of the four-manifold. The
invariant generalizes Khovanov homology in the same sense that the link invariants in the
Kauffman bracket skein module generalize the Jones polynomial. The idea is that, instead
of imposing the local skein relations in 3D, we impose local relations from cobordism maps
in 4D.

In the set-up of [71], they work with a differently normalized version of Khovanov homology,
that depends on the framing of the link; for simplicity, we still denote it by Kh. This is
functorial under framed surface cobordisms in [0, 1]× R3.

In fact, we need a more refined cobordism property, proved in [71]. This says that whenever
we have a collection of four-balls B1, . . . , Bk in the interior of another four-ball B, and we
are given a framed surface

Σ ⊂ B \ (∪k
i=1Bi)

with boundaries Li ⊂ ∂Bi and L ⊂ ∂B, there is a well-defined cobordism map

Kh(Σ) :

k⊗
i=1

Kh(Li) → Kh(L).

To define it, we remove a basepoint zi from each ∂Bi, a basepoint z from ∂B, as well as an
embedded tree connecting zi and z and disjoint from Σ. The result is that Σ now lives in
[0, 1]×R3, so we can use the ordinary Khovanov map. The extra input from [71] is that this
map does not depend on what basepoints and tree we removed.

Now let X be a compact four-manifold with boundary ∂X = Y . (Recall from Corollary 4.2
that every Y appears this way.) Let L be a framed link in Y .

Definition 6.1. A lasagna filling F = (Σ, {(Bi,Li, vi)}) of X with boundary L consists of
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Figure 13. A lasagna filling
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Figure 14. Equivalence of lasagna fillings

• A finite collection of disjoint 4-balls Bi (called input balls) embedded in the interior
of X;

• A framed surface Σ properly embedded in X \ ∪iBi, meeting ∂X in L and meeting
each ∂Bi in a link Li; and

• for each i, an element vi ∈ Kh(Li).

See Figure 13.

Definition 6.2. The skein lasagna module of L relative to X is

S(X;L) := Z{lasagna fillings F of X with boundary L}/ ∼

where ∼ is the transitive and linear closure of the following relations:

• Linear combinations of lasagna fillings are set to be multilinear in the elements vi;
• F1 and F2 are set to be equivalent if F1 has an input ball Bi with label vi, and F2 is ob-
tained from F1 by replacing Bi with another lasagna filling F3 = (Σ′, {(B′

i,L′
i, v

′
i)}) of

a four-ball such that vi = Kh(Σ′)(⊗v′i), followed by an isotopy rel ∂X. See Figure 14.

In particular, if X is any compact four-manifold (with or without boundary), we let S(X) :=
S(X; ∅).

The name skein lasagna module is inspired by some earlier terminology due to Jones:
One dimension lower, one considers “spaghetti and meatballs” pictures consisting of linked
paths joining three-balls inside another three-ball. In dimension four, the lasagna fillings are
two-dimensional, hence their name.

The procedure we described above upgrades a link invariant to a four-manifold invariant,
and is quite general. It can be applied not only to Khovanov homology but to any other link
homology satisfying similar properties. In [71] the authors apply it to the Khovanov-Rozansky
homologies associated to the Lie algebras glN for any N . (The case N = 2 is Khovanov
homology.) Furthermore, in [14], Chen upgrades knot Floer homology in an analogous way,
and defines an invariant called the Floer lasagna module.
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Going back to the skein lasagna modules from Khovanov homology, let us discuss a few of
their basic properties. First, they are (by construction) functorial under cobordisms, in the
following sense. Given a four-manifold W with boundary Y , a cobordism Z from Y to Y ′,
and a properly embedded framed surface Σ ⊂ Z with boundaries L ⊂ Y and L′ ⊂ Y ′, there
is a natural map

ΨZ,Σ : S(W ;L) → S(W ∪ Z;L′)

given by attaching Σ to lasagna fillings.
Second, the bigrading on Khovanov homology descends to one on skein lasagna modules,

and there is a further decomposition according to the relative homology class of the lasagna
filling:

S(W ;L) =
⊕
i,j∈Z

⊕
α∈∂−1([L])

Si,j(W ;L, α).

Here, L = (L, λ) and ∂−1([L]) ⊂ H2(W ;L) is the preimage of the fundamental class [L] ∈
H1(L) under the boundary homomorphism. A lasagna filling can be further filled with
surfaces inside the input ball to produce the class α.

6.4. Computational methods. As in the case of the 3D skein modules, the 4D skein
lasagna modules are (relatively) easy to define, but hard to compute.

The simplest calculation can be done in the case X = D4. Then L ⊂ ∂D4 = S3 has a
Khovanov homology itself, Kh(L), and there is a natural map

S(X;L) → Kh(L), [(Σ, {(Bi,Li, vi)})] → Kh(Σ)(⊗ivi).

It is not hard to see that this is an isomorphism, so S(X;L) ∼= Kh(L). Thus, skein lasagna
modules generalize Khovanov homology.

To do other calculations, it is helpful to decompose the four-manifold into handles as in
Section 4. Surgery formulas have been developed in [59] and [64], describing how the skein
lasagna module behaves under a handle attachment. The formulas for k-handles are getting
more complicated as k gets smaller.

To begin, attaching a 4-handle does not change S(W ;L). For example, we have S(D4) =
S(S4) = Z.

Next, let us consider a 3-handle attachment to (W ;L), along a sphere S2 ⊂ Y = ∂W
(disjoint from L). Let the result be W ′. Break the sphere into two hemispheres ∆+ and
∆−, and push their interiors slightly inside a cylinder I × Y , where I = [0, 1]. Consider the
difference of two cobordism maps

f = ΨI×Y,∆+ −ΨI×Y,∆− : S(W ;L) → S(W ;L),

where we identified W with W ∪ (I × Y ).

Theorem 6.3 (Theorem 3.7 in [64]). If W ′ is obtained from W by attaching a 3-handle as
above, then

S(W ′;L) ∼= S(W ;L)/ im(f).

We move on to the 2-handle formula. Suppose W ′ is obtained from W by attaching 2-
handles along a framed link K ⊂ Y = ∂W . We are also given a framed link L ⊂ Y disjoint
from K (but possibly linked with it). We let K(r1, r2) denote the cable of K consisting of
r1 + r2 parallel push-offs of K (according to its framing), where r1 of them are oriented the
same way as K and r2 are oriented in the opposite direction. Let also U be the unknot.
For each r1 and r2, there is a cobordism Z from the disjoint union K(r1, r2) ∪ L ⊔ U to
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K(r1 +1, r2 +1)∪L, given by removing a small disk from an annulus that goes between two
oppositely oriented strands of K(r1 + 1, r2 + 1).

Theorem 6.4 (Theorem 1.1 in [59]; Theorem 3.2 in [64]). If W ′ is obtained from W by
attaching a 2-handle as above, then

(9) S(W ′;L) ∼=
⊕

r1,r2∈N
S(W ;K(r1, r2) ∪ L)/ ∼,

where the equivalence ∼ is generated by the following:

• permuting the strands of K(r1, r2) in an orientation-preserving way,
• ΨZ(v ⊗ 1) ∼ 0,
• ΨZ(v ⊗X) ∼ v,

for all v ∈ S(W ;K(r1, r2) ∪ L). (The skein lasagna module gets tensored with Kh(U) under
the split disjoint union with U , and the elements 1 and X are the generators of Kh(U).)

The first version of Theorem 6.4 was proved in [59], for the case where W = D4, so that
W ′ is a 2-handlebody (a four-manifold made by attaching 2-handles to D4). Suppose also
that L = 0. In that situation the right hand side of Equation (9) involves the Khovanov
homologies of the cables K(r1, r2). To compute S(W ′), one needs to understand all these
homologies, which is difficult in general. Nevertheless, it can be done for example when K is
the 0-framed unknot, so that its cables are unlinks. This led to a calculation of S(S2 ×D2).

By taking K to be the unknot with ±1 framings, and then using the fact that a four-handle
does not change the skein lasagna module, in [59] we obtained partial computations of S(CP)
and S(CP2). This sufficed to prove that these two groups are different, so the skein lasagna
module is sensitive to orientation.

The methods in [59] were further refined in work of Sullivan-Zhang [96] and Ren-Willis
[90]. For example, they proved that

S(CP2) = S(S2 × S2) = 0.

There is also a formula for attaching 1-handles; see [64, Theorem 4.7]. We will not state it
here, as it is quite complicated. It suffices to say that in the case of a single 1-handle, and a
framed link L in the boundary of the resulting S1 ×D3, the formula involves the Hochschild
homology of a category of tangles for a bimodule associated to L. One application is the
following calculation. For the link Lp ⊂ S1 × S2 that consists of 2p parallel longitudes
S1 × {pt}, half of which are oriented one way and half the other way:

S(S1 ×D3,Lp)⊗Q ∼=


Q if p = 0,

Q4 if p = 1,

Q∞ if p = ∞.

Altogether, the formulas in [59] and [64] give a general description of S(X;L) from handle
decompositions. These look quite different from the corresponding formulas for Heegaard
Floer homology in Section 5.4, but have the same effect of enabling the computation of
four-manifold invariants in terms of link invariants.

6.5. Detection of exotic pairs. A striking application of skein lasagna modules is a proof,
by Ren and Willis, that these invariants can distinguish exotic smooth structures on some
compact four-manifolds with boundary [90]. The example they consider is a pair of traces
of −1 surgeries on knots: One knot is K1 = −52 and the other is the pretzel knot K2 =
P (3,−3,−8); see Figure 15. The traces W1 = X(K1,−1) and W2 = X(K2,−1) have the



FROM KNOTS TO FOUR-MANIFOLDS 21

K1 K2

−1 −1

Figure 15. An exotic pair of traces

same boundary S3(K1,−1) = S3(K2,−1), are simply connected, and have the same homology
and intersection form. This implies that they are homeomorphic by [12]. They are not
diffeomorphic because their skein lasagna modules are different. For example,

S0,q(W1; 1)⊗Q ∼=

{
Q if q = 1, 3,

0 otherwise,

whereas

S0,q(W2; 1)⊗Q ⊇

{
Q if q = −1, 1,

0 otherwise.

These calculations are based on the 2-handle formula in [59], and on a partial understanding
of Khovanov homology of the cables of K1 and K2, using special properties of these knots. In
the case of K1, the key property is that it admits a diagram with only positive crossings. In
the case of K2, a useful property is that it is slice. (See Subsection 7.1 below for a definition
of sliceness.)

It had been known before that W1 and W2 are an exotic pair, by the work of Akbulut [3]
that used gauge theory. Ren and Willis gave the first analysis-free proof. In their paper they
also exhibited some new exotic examples: detectable using skein lasagna modules, but not
(for the moment) using gauge theory or Heegaard Floer homology. All their examples have
non-empty boundary, and the following is still an open problem.

Question 6.5. Can skein lasagna modules detect exotic smooth structures on some closed
four-manifolds?

In a related direction, Sullivan [95] showed that a variant of skein lasagna modules detects
some exotically knotted pairs of surface embeddings in the four-ball.

Recently, Nahm [72] gave a more direct way of detecting some exotic compact four-
manifolds with boundary, using the cobordism maps on Khovanov homology and without
needing skein lasagna modules. The simplest of his examples are the complements of the
exotic disks in D4 studied in [4, 32].

7. Probing four-manifolds with knots

7.1. Sliceness. A knot K ⊂ S3 is the unknot if and only if it bounds a smoothly embedded
disk. By contrast, if we go to four dimensions by including K ⊂ S3 ⊂ S4, then every knot
K bounds a smoothly embedded disk in S4: we can change the crossings at will and isotope
the knot into the unknot in S4, extend this isotopy to an ambient isotopy of S4 itself, and
follow the disk bounded by the unknot in reverse under the ambient isotopy.
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Figure 16. A slice knot

band ∼=

Figure 17. Attaching a band

There is, however, an intermediate problem that is more interesting. Instead of allowing
the disk to run freely into S4, we ask for it to be properly embedded in one hemisphere D4,
whose boundary S3 contains the knot.

Definition 7.1. A knot K ⊂ S3 = ∂D4 is called (smoothly) slice if it bounds a smoothly,
properly embedded disk in D4.

An example of a non-trivial slice knot is the one in Figure 16. It bounds an immersed disk
in R3 as in the picture. We can think of the intensity of the color as the fourth dimension, and
thus the disk becomes embedded in D4. More generally, when an immersed disk intersects
itself only along intervals as in the local models seen in Figure 16, we say it is a ribbon disk,
and its boundary knot is called a ribbon knot. We can get rid of each ribbon singularity
by attaching a band to the knot as in Figure 17. One can easily see that a knot is ribbon
if and only if there exist some number of k bands such that attaching them produces the
(k + 1)-component unlink.

Observe that every ribbon knot is slice. The converse is a famous open problem.

Conjecture 7.2 (The slice-ribbon conjecture [22]). Every slice knot is ribbon.

Sliceness is a four-dimensional property of knots. Many problems in three-dimensional
topology are decidable: for example, there exist algorithms for deciding whether two knots are
isotopic, or whether two three-manifolds are homeomorphic; see for example [33, 92]. In four-
dimensional topology, on the other hand, many similar problems (such as the homeomorphism
problem for four-manifolds) are undecidable [67]. When it comes to sliceness or ribbon-ness
(which lie at the interface of three- and four-dimensional topology), we do not even know if
these problems are decidable.

While there is no known algorithm for detecting slice knots, in practice one can go quite
far using two kinds of tools:

(a) obstructions for a knot to be slice; or, equivalently, necessary conditions on knot
invariants for this property to hold. For example, we have the Fox-Milnor condition,
that the Alexander polynomial should be of the form f(q)f(q−1) for some Laurent
polynomial f(q) [23]. Other knot invariants are known to vanish for slice knots:
Examples include topological invariants (such as the signature σ), some coming from
gauge theory or Heegaard Floer homology (having names such as τ , ϵ, ν, δ, etc.),
and some from Khovanov homology and related algebraic theories (the best known
example of these is an invariant denoted s that was constructed by Rasmussen [89]);
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(a) (b) (c) (d)

Figure 18. Some knots whose sliceness is unknown: (a) 13n65; (b) the
Whitehead double of the left-handed trefoil; (c) 16n68728; (d) 18nh00000601

(b) constructions of slice disks. In most cases, one simply looks for a ribbon disk in R3,
and one can do so by searching for bands that transform the knot into the unlink.
There are computer programs that do this, some involving machine learning (Bayesian
optimization) [30], and some classical but still very effective [19].

By combining obstructive and constructive methods, Dunfield and Gong [19] went through
the list of all ≈ 350 million prime knots with up to 19 crossings, and showed that approx-
imately 99.5% of them are not slice, and 0.5% are slice. This left only a small percentage
(0.003%, i.e. ≈ 11, 400 knots) for which they could not determine sliceness. The smallest
knots of unknown sliceness have 13 crossings; an example is in Figure 18 (a).

One famous knot of unknown sliceness is the Whitehead double of the left-handed trefoil,
which is shown in Figure 18 (b). Two other notable knots, whose sliceness had been not
known for a long time, had recently been proven to not be slice: the Conway knot [85] and
the (2, 1)-cable of the figure-eight [16].

7.2. Sliceness and H-sliceness in four-manifolds. There are versions of the slice prop-
erty relative to any closed four-manifold X. Let us denote by X◦ the complement of an open
four-ball in X. This is a compact four-manifold with boundary S3.

Definition 7.3. (a) A knot K ⊂ S3 = ∂X◦ is called slice in X if it bounds a smoothly, prop-
erly embedded disk ∆ ⊂ X◦. Such a disk has a relative homology class [∆] ∈ H2(X

◦, ∂X◦) ∼=
H2(X).

(b) If a disk ∆ exists such that [∆] = 0, the knot K is called H-slice in X.
(c) If a disk ∆ exists such that [∆]2 = −k ∈ Z, the knot K is called k-slice in X.

When X = S4, we recover the usual notion of slice, which in this case is equivalent to
being H-slice, or 0-slice.

There are again many obstructions and constructions that can be used to study the different
sliceness properties in four-manifolds. We refer to [57, Section 2] for some examples. For now
let us mention that the left handed and the right handed trefoils, while not slice in S4, are
slice in CP2; the right handed trefoil is even H-slice in CP2. There exist knots that are not
slice in CP2, whereas every knot is slice in S2×S2. It is unknown whether every knot is slice
in the K3 surface, but this property is known to hold for all knots that can be unknotted by
at most 21 crossing changes [66].

7.3. A program to find new exotica. Rather than fixing a four-manifold X and asking
which knots are slice (or H-slice, or k-slice) in it, we can reverse the question: Given a knot
K ⊂ S3, what do these properties tell us about the four-manifold? In particular, can they
detect exotic pairs?

In the case of H-sliceness, an application of Seiberg-Witten theory shows that the answer
is affirmative:
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Theorem 7.4 (Corollary 1.4 in [57]). There exist smooth, homeomorphic four-manifolds X
and X ′ and a knot K ⊂ S3 that is H-slice in X but not in X ′. As an example, one can take

X = #3CP2#20CP2, X ′ = K3#CP2,

and K to be the right-handed trefoil.

One can also find such examples for k-sliceness. The corresponding problem for sliceness is
still open, although some progress in that direction exists: Lidman and Piccirillo [52] showed
that there exist four-manifolds X and X ′ with the same cohomology ring, and a knot that is
slice in X but not in X ′. (Their manifolds are not homeomorphic though, because they have
different fundamental groups.)

Question 7.5. Does there exist an exotic pair of closed four-manifolds (X,X ′) and a knot
K ⊂ S3 that is slice in X but not in X ′?

In principle, one could use this idea to try to disprove the smooth four-dimensional Poincaré
conjecture (SPC4). There exist many potential counterexamples (manifolds known to be
homeomorphic to S4, but not known to be diffeomorphic to it; i.e., homotopy 4-spheres not
known to be standard). To run this program, one would also need:

(a) an obstruction to sliceness in S4 that does not apply to sliceness in other homotopy
4-spheres, and

(b) a construction of knots that are slice in a homotopy 4-sphere.

With regard to (a), most slice obstructions from classical topology, gauge theory, or
Heegaard Floer homology apply just as well to sliceness in homotopy 4-spheres as in S4.
More promising are the obstructions from Khovanov homology, in particular Rasmussen’s
s-invariant. This vanishes for knots that are slice in the usual sense (in S4), and it is not
known whether the same holds in all other homotopy 4-spheres. However, a popular con-
struction of potential counterexamples to SPC4 is by Gluck twists [28], and it can be proved
that s(K) = 0 for knots K that are slice in a homotopy 4-sphere obtained from S4 by a Gluck
twist [58]. Thus, one needs to avoid this construction.

With regard to (b), one idea is to consider homotopy 4-spheres without 1-handles, and
band together the components of the attaching link for the 2-handles. An early attempt to
disprove SPC4 in this way was in [24], but the homotopy 4-spheres in question turned out to
be standard [5].

A related idea is to consider pairs of knots (K,K ′) with the same 0-surgery: S3(K, 0) =
S3(K ′, 0); these are called 0-friends. Suppose we could find such a pair such that K is slice
and K ′ is not; for example, the sliceness of K ′ could be obstructed by the non-vanishing of
the Rasmussen invariant. Then, one could consider the smooth disk ∆ ⊂ D4 with boundary
K, take the complement of a tubular neighborhood of it, and glue it to the trace of the other
knot:

W = (D4 \ nbhd(∆)) ∪S3(K,0) X(K ′, 0).

It is easy to check that W is a homotopy 4-sphere, and the knot K ′ is slice in it by
construction—because removing a ball from X(K ′, 0) ⊂ W exhibits a 2-handle whose core
disk has boundary K ′. (See Figure 19.) Since K ′ is not slice in S4, we would deduce that W
is not diffeomorphic to S4, hence disproving SPC4.

As of now, no pairs (K,K ′) with the above properties have been found. A general con-
struction of 0-friend pairs (K,K ′) was given by the author and Piccirillo in [63], in terms of
a type of 3-component links called RBG links. In [63], we also put forward five pairs of this
type for which s(K ′) ̸= 0 (hence K ′ is not slice), and we could not establish the sliceness of
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D4

K′
K

∆

D4 \ nbhd(∆) X(K′, 0)

Figure 19. A homotopy 4-ball obtained by gluing a slice disk complement
to the trace of a 0-surgery

K. Soon after, however, Nakamura proved that the knots K in these examples were not slice
[73].

The idea is still being explored. Dunfield and Gong [19] found a few more promising
examples. The knot 16n68278 from Figure 18 (c) is of unknown sliceness, but has a 0-friend
that is not slice. The knot 18nh00000601 from Figure 18 (d) is also of unknown sliceness, and
has a 0-friend that is slice. Interestingly, in this last example the computer program found
bands showing that the 0-friend (which is much larger) is ribbon and hence slice; but could not
find this kind of bands for the knot itself. Therefore, either such bands for 18nh00000601 exist
and are hard to find, or the knot gives a counterexample to either SPC4 or the slice-ribbon
conjecture.

If disproving SPC4 is a tall order, another (still very ambitious) goal would be to answer
Question 3.2 by finding an exotic #nCP2. A strategy is to look for 0-friends such that one is
H-slice in #nCP2 and the other is not. (The Rasmussen invariant still gives an obstruction
to H-sliceness in #nCP2, by the results of [58].) More generally, one can look for k-friends
(pairs of knots with the same k-surgery) such that one is (−k)-slice in some #nCP2 and the
other is not; see [87] for a discussion.
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MA, structure of static gauge theories, 1980.
[37] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2),

126(1987), no. 2, 335–388.
[38] A. Juhász and I. Zemke, Concordance surgery and the Ozsváth-Szabó 4-manifold invariant, J. Eur. Math.
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[66] M. Marengon and S. Mihajlović, Unknotting number 21 knots are slice in K3, Math. Res. Lett., 32(2025),

no. 3, 939–955.
[67] A. Markov, The insolubility of the problem of homeomorphy, Dokl. Akad. Nauk SSSR, 121(1958), 218–

220.
[68] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2), 64(1956), 399–405.
[69] J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton,

NJ, based on lecture notes by M. Spivak and R. Wells, 1963.
[70] J. Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, NJ, notes by L.

Siebenmann and J. Sondow, 1965.
[71] S. Morrison, K. Walker, and P. Wedrich, Invariants of 4-manifolds from Khovanov-Rozansky link ho-

mology, Geom. Topol., 26(2022), no. 8, 3367–3420.

arXiv:2307.08130
arXiv:2505.14387
knotinfo.org


28 CIPRIAN MANOLESCU

[72] G. Nahm, Khovanov homology can distinguish exotic Mazur manifolds, 2025, arXiv:2510.10809.
[73] K. Nakamura, Trace embeddings from zero surgery homeomorphisms, J. Topol., 16(2023), no. 4, 1641–

1664.
[74] C. Okonek and A. Van de Ven, Stable bundles and differentiable structures on certain elliptic surfaces,

Invent. Math., 86(1986), no. 2, 357–370.
[75] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications,

Ann. of Math. (2), 159(2004), no. 3, 1159–1245.
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