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p.3: In the formula (3), by n; we mean the cardinality of Q; (or of X;).

p-10: Proposition 2.12 does not follow immediately from Lemma 2.11; we need a more
involved argument. Let us settle for proving that the filtered quasi-isomorphism type of
C~(G) is independent of the ordering. Suppose we have a different ordering, where the
marking O; is what previously was Oy (another marking on the same link component).
Without loss of generality, we can assume that O; and Oy are related as in the proof of
Lemma 2.11, i.e., there is a marking X; on the row of O; and the column of O. We seek
to show that C~(G), as a complex over Fo[Uy, ..., U], is filtered quasi-isomorphic to itself
when Uy takes the role of U;.

Let us consider C~(G) as a dg module over the dg algebra

A:FQ[U177U57Uk7H]/(dU1::dUZ:dUkzoadH:U’b_Uk)a

where H is the operator defined in the proof of Lemma 2.11. Then C~(G) is filtered quasi-
isomorphic to a free module over A (by, for instance, the bar resolution). But the free
module A itself is quasi-isomorphic to

Fo[Ut, ..., U, Up)/(dUy = - - = dU; = dUy, = 0,U; = Uy,).

On that module, the actions by U; and Uy, are actually the same. It follows that the same
is true for the bar resolution and hence for C~(G), up to filtered quasi-isomorphism.

p.24 line 7: Here, by O;(p) we denote the number of O markings on the ith component
of the link that appear in p (counted with multiplicities). This is in contrast to the rest of
the paper, where O;(p) counts the multiplicity of a single marking O;.

The rest of that paragraph would benefit from more details, which we provide here. To
justify that #(Q Np) = #(QNp’), observe that the difference of p and p’ (as a two-chain) is
a periodic domain on the grid with X; = O; = 0. Let P be the space of periodic domains.
This is (2n — 1)-dimensional, generated by the rows and columns, with a relation that the
sum of the rows equals the sum of the columns. The kernel of the map

P =7 pe Oip) = Xi(p), i =1,...,1,

is spanned by differences of the form T'—T”, where T and T” are either rows or columns (or
possibly one is a row and one is a column) supporting the same component of the link. All
such differences satisfy #Q(T —T") = 0, so the claim follows.

To define the filtration F, pick some generator x, set F(x) = 0. For any other generator
y = U{“ Uf"’..U,’j"y, define its filtration level by choosing a domain p from x to y with
O;(p) = k; for all i, and setting F(y') = F(x) — #(Q N p).
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p-49: In Proposition 5.5, the right hand side of the displayed equation should have the
superscript (Maslov degree) of HL be 25 — d + 1 — ¢ instead of 25 — d. In the proof, when
we rotate the diagram by 90 degrees the Alexander and Maslov gradings change by:

Ai(p(x)) = —Ai(z) — (ni = 1), M(d(x)) = —M(z) — (n—1).
The result follows from Propositions 2.15 and 5.3.
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