

ERRATA TO THE ARTICLE “ON COMBINATORIAL LINK FLOER HOMOLOGY”

CIPRIAN MANOESCU

Page numbers refer to the arXiv version v3.

p.3: In the formula (3), by n_i we mean the cardinality of \mathbb{O}_i (or of \mathbb{X}_i).

p.10: Proposition 2.12 does not follow immediately from Lemma 2.11; we need a more involved argument. Let us settle for proving that the filtered quasi-isomorphism type of $C^-(G)$ is independent of the ordering. Suppose we have a different ordering, where the marking O_i is what previously was O_k (another marking on the same link component). Without loss of generality, we can assume that O_i and O_k are related as in the proof of Lemma 2.11, i.e., there is a marking X_j on the row of O_i and the column of O_k . We seek to show that $C^-(G)$, as a complex over $\mathbb{F}_2[U_1, \dots, U_\ell]$, is filtered quasi-isomorphic to itself when U_k takes the role of U_i .

Let us consider $C^-(G)$ as a dg module over the dg algebra

$$\mathcal{A} = \mathbb{F}_2[U_1, \dots, U_\ell, U_k, H]/(dU_1 = \dots = dU_\ell = dU_k = 0, dH = U_i - U_k),$$

where H is the operator defined in the proof of Lemma 2.11. Then $C^-(G)$ is filtered quasi-isomorphic to a free module over \mathcal{A} (by, for instance, the bar resolution). But the free module \mathcal{A} itself is quasi-isomorphic to

$$\mathbb{F}_2[U_1, \dots, U_\ell, U_k]/(dU_1 = \dots = dU_\ell = dU_k = 0, U_i = U_k).$$

On that module, the actions by U_i and U_k are actually the same. It follows that the same is true for the bar resolution and hence for $C^-(G)$, up to filtered quasi-isomorphism.

p.24 line 7: Here, by $O_i(p)$ we denote the number of O markings on the i th component of the link that appear in p (counted with multiplicities). This is in contrast to the rest of the paper, where $O_i(p)$ counts the multiplicity of a single marking O_i .

The rest of that paragraph would benefit from more details, which we provide here. To justify that $\#(Q \cap p) = \#(Q \cap p')$, observe that the difference of p and p' (as a two-chain) is a periodic domain on the grid with $X_i = O_i = 0$. Let P be the space of periodic domains. This is $(2n - 1)$ -dimensional, generated by the rows and columns, with a relation that the sum of the rows equals the sum of the columns. The kernel of the map

$$P \rightarrow \mathbb{Z}^\ell, \quad p \mapsto O_i(p) = X_i(p), \quad i = 1, \dots, \ell,$$

is spanned by differences of the form $T - T'$, where T and T' are either rows or columns (or possibly one is a row and one is a column) supporting the same component of the link. All such differences satisfy $\#Q(T - T') = 0$, so the claim follows.

To define the filtration \mathcal{F} , pick some generator \mathbf{x} , set $\mathcal{F}(\mathbf{x}) = 0$. For any other generator $\mathbf{y}' = U_1^{k_1} U_2^{k_2} \dots U_n^{k_n} \mathbf{y}$, define its filtration level by choosing a domain p from \mathbf{x} to \mathbf{y} with $O_i(p) = k_i$ for all i , and setting $\mathcal{F}(\mathbf{y}') = \mathcal{F}(\mathbf{x}) - \#(Q \cap p)$.

p.49: In Proposition 5.5, the right hand side of the displayed equation should have the superscript (Maslov degree) of \widehat{HL} be $2S - d + 1 - \ell$ instead of $2S - d$. In the proof, when we rotate the diagram by 90 degrees the Alexander and Maslov gradings change by:

$$A_i(\phi(x)) = -A_i(x) - (n_i - 1), \quad M(\phi(x)) = -M(x) - (n - 1).$$

The result follows from Propositions 2.15 and 5.3.

Acknowledgements. I would like to thank John Baldwin and Shelly Harvey for pointing out these errors, and Peter Ozsváth for suggesting the argument to fix the proof of Proposition 2.12.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, 450 JANE STANFORD WAY, BUILDING 380, STANFORD, CA 94305, USA

Email address: cm5@stanford.edu