

**ERRATUM TO THE ARTICLE “PIN(2)-EQUIVARIANT
SEIBERG-WITTEN FLOER HOMOLOGY AND THE TRIANGULATION
CONJECTURE”**

CIPRIAN MANOLESCU

p.19: In the proof of Lemma 3.6, the first displayed equation after (30) says that $I(\Theta) \cong (V_\tau^0)^+$. Instead of V_τ^0 , we should have the direct sum of eigenspaces of (a projection of) the linearization of the gradient of CSD_ω at Θ , for eigenvalues in the interval $(\tau, 0)$. This linearization l_ω is a perturbation of the operator l whose eigenspaces define V_τ^0 . When the Dirac operator \mathcal{D} has zero kernel (which is true for generic metrics), the small perturbation from l to l_ω produces a vector space isomorphic to V_τ^0 (as a $Pin(2)$ -representation), but this is no longer true if \mathcal{D} has 0 as an eigenvalue.

This does not affect the conclusion that the S^1 -fixed part of $I(\Theta)$ is $(\tilde{\mathbb{R}}^s)^+$. Indeed, the other part of the linearization, $d + d^*$, does not have kernel (because $b_1 = 0$), so the number of eigenvalues between τ and 0 corresponding to the S^1 -fixed point set remains the same under a small perturbation.

Acknowledgements. I would like to thank Marco Marengon and Wenzhao Chen for pointing out this error.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, 450 JANE STANFORD WAY, BUILDING 380, STANFORD, CA 94305, USA

Email address: cm5@stanford.edu