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Abstract. We set up Heegaard Floer theory over the integers, using canonical orientations
coming from coupled Spin structures on the Lagrangian tori. We prove naturality of Hee-
gaard Floer homology, sutured Floer homology, and link Floer homology over Z. We give a
new proof of the surgery exact triangle in this context, as well as a definition of involutive
Heegaard Floer homology over Z.

1. Introduction

In a series of papers, such as [30], [29], [31], [26], Ozsváth and Szabó developed Heegaard
Floer theory: a collection of invariants of 3-manifolds, 4-manifolds, and knots. Since then,
the theory has become an important tool in low-dimensional topology, leading to numerous
applications.

In the original papers, the 3-manifold and knot invariants were defined as homology groups
with coefficients in Z, and the 4-manifold invariants were integers defined up to sign. However,
at some point the community started ignoring signs, and it became customary to work over
the coefficient field F2. Notably, naturality of the Heegaard Floer invariants [16] and their
full functoriality properties under cobordisms [46, 48] were only established over F2. This is
sufficient for many applications, but it does constitute a limitation for others. By contrast,
monopole Floer homology [19] was defined over Z, and the Seiberg-Witten invariants [44] are
integers (with the sign determined by a homology orientation on the 4-manifold).

In Lagrangian Floer homology, there are several ways to choose signs for the counts of
moduli spaces. One way is by coherent orientations [6], where one trivializes the determinant
line bundles over sufficiently many homotopy classes of disks arbitrarily, and then trivializes
them over the rest of the homotopy classes in the unique compatible way. Another way, which
is more popular in the recent literature, is through canonical orientations induced from Spin
or Pin structures on the Lagrangians; see [41, 10, 40]. Yet another way is by using twisted
derived local systems on the Lagrangians [37].

In their papers on Heegaard Floer homology, Ozsváth and Szabó used coherent orientations
to pin down the signs. The purpose of our paper is to offer a different perspective on Heegaard
Floer theory over Z, by using canonical orientations instead. These are better suited for
questions about naturality and functoriality. We establish the naturality properties here and
thus place the theory over Z on a solid footing.

The canonical orientations on moduli spaces are constructed as follows. Ideally, we would
like to fix Spin structures on the Lagrangian tori Tα and Tβ that appear in Heegaard Floer
homology. However, a Spin structure requires in particular an orientation, and in our case the
Lagrangians do not have natural orientations. Rather, they have a coupled orientation (that
is, an orientation on their product), which has the same origin as the absolute Z/2-grading
in Heegaard Floer homology defined in [29, Section 10.4].

Instead of Spin structures, one can settle for Pin structures on the Lagrangians; these do
not need a background orientation. We choose Lie group Pin structures, that is, structures
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invariant under the torus action. Up to homotopy, there is only one Lie group Pin structure
on the torus, and this suffices to determine the isomorphism class of the Heegaard Floer
groups over Z. Nevertheless, specifying the choice only up to homotopy is not enough for
discussing naturality. The space of Lie group Pin structures has the homotopy type of RP∞,
with π1 = Z/2, and the monodromy on Floer homology around a non-trivial loop in this
space is multiplication by −1.

To rectify this problem, note that a Lie group Pin structure on the Lagrangian torus Tα is
specified by the Pin structure in the tangent space at each point. In turn, this tangent space
can be identified with A = H1(Uα;R), where Uα is the alpha handlebody in the Heegaard
splitting. Similarly, the tangent space to Tβ can be identified with B = H1(Uβ;R), where Uβ
is the beta handlebody. While there are no canonical Pin structures on A and B, it turns out
that there is a canonical coupled Spin structure on the pair (A,B). Coupled Spin structures
are a new concept that we introduce in this paper. They make sense for a pair of parallelizable
Lagrangians (such as our tori), and make use of an underlying coupled orientation (which
exists in our setting). We will see that coupled Spin structures produce canonical orientations
on the moduli spaces of J-holomorphic strips, and thus give Lagrangian Floer groups that are
well-defined up to canonical isomorphism. In our context, we use them to define Heegaard
Floer complexes over Z.

With these choices, we establish the invariance of Heegaard Floer homology under the
usual Heegaard moves from [30], as well as its naturality, following the proof scheme in [16]:

Theorem 1.1. Let Y be a closed, oriented 3-manifold equipped with a basepoint z ∈ Y and a

Spinc structure s. The Heegaard Floer homologies ĤF , HF+, HF− and HF∞ (defined using
the canonical coupled Spin structure) are invariants of the triple (Y, s, z), well-defined up to
natural isomorphism in the category of Z[U ]-modules.

The canonical orientations on moduli spaces that we construct produce in particular a
coherent orientation system as in [30, Definition 3.11]. Thus, our Heegaard Floer groups are
isomorphic to those constructed by Ozsváth-Szabó in [30], for some (unspecified) orientation

system. Up to equivalence, there are 2b1(Y ) orientation systems. In [29, Theorem 10.12],
Ozsváth and Szabó further select a special orientation system, using their calculation of a
twisted version HF∞. We expect that their system is the same as the one arising from our
work, but do not prove this here.

We mention one important way in which the proof of naturality in Theorem 1.1 departs
from the arguments in [16]. Juhász, Thurston, and Zemke used maps associated to equiv-
alences between the curve systems on the Heegaard diagram. (An equivalence is replacing
such a system with any other that represents the same handlebody. We can think of it as a
composition of isotopies and handleslides.) Over F2, it is relatively easy to see that the maps
induced by equivalences commute. Over Z, it is harder; one can prove this up to a sign, as
in [12]. What we do instead is to use maps associated to isotopies and handleslides. We then
have to check certain relations associated to loops of handleslides, using the description of
those loops in [16, Appendix A].

With our framework in place, we give a new proof of the surgery exact triangle from [29,
Section 9], with Z coefficients. (See Theorem 6.1.) Interestingly, the natural maps induced
by counting holomorphic triangles (using the coupled Spin structures) are not the ones that
appear in the triangle. One needs to use twisted coefficients for the maps, and we show that
one can do so without changing the three Heegaard Floer groups themselves.

Another application of Theorem 1.1 is a definition of involutive Heegaard Floer homology
over Z. Over F2, this theory was defined in [14], by taking the homology of the mapping
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cone of an involution ι on Heegaard Floer complexes. The map ι involves moves on Heegaard
diagrams and thus relies on naturality. Since we now have this property over Z, the same
construction can be done with integer coefficients. (See Section 7.4 below.)

In a different direction, we prove analogues of Theorem 1.1 for sutured Floer homology
and for link Floer homology. Sutured Floer homology is an invariant of balanced sutured
manifolds introduced by Juhász [15]. Roughly, a balanced sutured manifold is a compact
3-manifold M with boundary, whose boundary ∂M is split along a collection of sutures γ
into two parts R+ and R−. The balanced condition says that R+ and R− have the same
Euler characteristic. The construction of sutured Floer homology proceeds along similar
lines to that of Heegaard Floer homology, but we no longer have a canonical coupled Spin
structure. Instead, we are forced to choose one, and this is equivalent to choosing a coupled
Spin structure S on the pair of vector spaces (H1(M,R−;R), H1(M,R+;R)). We call this
data a homological coupled Spin structure. From this we can define a sutured Floer homology
group SFH (M,γ, s, S) over Z.

Theorem 1.2. Let (M,γ) be a sutured manifold equipped with a Spinc structure s and a
homological coupled Spin structure S. Then, the sutured Floer homology SFH (M,γ, s, S) is
a natural invariant of the quadruple (M,γ, s, S).

Finally, we consider link Floer homology, an invariant of links in three-manifolds introduced
by Ozsváth and Szabó in [26], [28]. The original construction was over Z for knots (see [26],
[36], but only over F2 for links, due to the presence of disk bubbles. For links in S3, a
refinement over Z was constructed using grid homology in [25]. For links in arbitrary 3-
manifolds, Sarkar [38] explained the existence of several possible theories over Z (depending
on some choices). In our set-up, we find a canonical coupled Spin structure on the Lagrangian
tori, and we use it to identify a single preferred theory over Z. This theory comes in several

flavors, such as ĤFL or HFL−.

Theorem 1.3. Let L = (L,w, z) be a multi-based oriented link in a three-manifold Y , and

s a Spinc structure on Y relative to L. Then, the link Floer homologies ĤFL(Y,L, s) and
HFL−(Y,L, s) are natural invariants of the triple (Y,L, s).

In the proofs of the naturality statements in Theorems 1.2 and 1.3, we again need to
consider loops of handleslides. We will make use of the work of Qin [35], who recently
generalized the results of [16, Appendix A] to these contexts.

In future work, we will use canonical orientations to prove that Heegaard Floer homology
and link Floer homology are functorial over Z under cobordisms, refining the results of
Ozsváth-Szabó [31] and Zemke [46], [48]. The cobordism maps are determined by homology
orientations, in a manner reminiscent of what happens in monopole Floer homology [19].

Organization of the paper. In Section 2 we discuss Spin, Pin, and coupled Spin struc-
tures on vector bundles. In Section 3 we explain the general construction of canonical ori-
entations from Pin structures, in the context of Lagrangian Floer theory. In Section 4 we
define Heegaard Floer homology over Z and prove that its isomorphism class is a 3-manifold
invariant. In Section 5 we prove Theorem 1.1 in its full strength, by establishing naturality.
In Section 6 we prove the surgery exact triangle. In Section 7 we discuss signs in a few other
settings, and in particular prove Theorems 1.2 and Theorem 1.3.

Acknowledgements. We thank Irving Dai, András Juhász, Tye Lidman, Robert Lip-
shitz, Maggie Miller, Tom Mrowka, Qianhe Qin, Sucharit Sarkar, Eha Srivastava, and Ian
Zemke for helpful conversations. MA was partially supported by NSF award DMS-2103805.
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2. Spin, Pin, and coupled Spin

In this section we review some generalities about Spin and Pin structures, and then intro-
duce the new notion of a coupled Spin structure.

2.1. Pin structures. We start by listing some relevant facts about Pin structures, comparing
them to the better-known Spin structures. For more details, we refer to [18] and [40].

Throughout the paper let Pin(n) denote the positive Pin group in dimension n. This
is the central extension of O(n) by Z/2 determined (as a group extension) by the element
w2 ∈ H2(BO(n);Z/2). It can be constructed explicitly as follows. Let Cℓ(n) be the real
Clifford algebra on n generators e1, . . . , en, subject to the relations e2i = 1 for all i, and
eiej = −ejei for all i ̸= j. Then, Pin(n) is the subset of Cℓ(n) consisting of elements of the
form v1v2 · · · vk where vi are unit vectors in Rn = Span(e1, . . . , en). The subgroup Spin(n) ⊂
Pin(n) consists of those v1v2 · · · vk with k even, and the double cover map Pin(n) → O(n) is
given by composing reflections across the hyperplanes v⊥i .

We obtain a commutative diagram of Lie group homomorphisms

1 // Z/2 //

id
��

Spin(n)

��

// SO(n)

��

// 1

1 // Z/2 // Pin(n) // O(n) // 1

Remark 2.1. The group Pin(n) is denoted Pin+n in [18]. It is to be distinguished from the
negative Pin group, denoted Pin−n in [18], which is the central extension of O(n) by Z/2
classified by w2 + w2

1 ∈ H2(BO(n);Z/2). For example, for n = 1 we have

Pin+1
∼= Z/2× Z/2, Pin−1

∼= Z/4,
so that the surjection Pin(1) → O(1) splits.

For n = 2, we have Pin+2
∼= O(2), whereas Pin−2 is the group appearing in gauge theory

from the symmetries of the Seiberg-Witten equations [11, 23].

From now on, whenever we talk about a base B for a vector bundle, we will assume that
B is paracompact.

Definition 2.2. Let E → B a real vector bundle of rank n with an inner product, and
Fr(E) → B the principal O(n)-bundle of orthonormal frames in E. A Pin structure on E is
defined to be a lift of Fr(E) to a principal Pin(n)-bundle. In particular, if M is a smooth
manifold, a Pin structure on M is a Pin structure on the tangent bundle TM .

Definition 2.3. An isomorphism between two Pin structures on a bundle E → B is an
isomorphism of principal Pin(n)-bundles commuting with the projections to Fr(E).

If E is oriented, then the choice of a Pin structure on E is equivalent to that of a Spin
structure. However, Pin structures can be defined without choosing orientations, and they
can exist on non-orientable bundles.

Proposition 2.4. ([18, p.185-186]) A vector bundle E → B admits a Pin structure if and
only if w2(E) = 0. If one exists, the set of Pin structures on E up to isomorphism forms an
affine space over H1(B;Z/2).
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Thus, given a Pin structure P# on E and an element η ∈ H1(B;Z/2), we can twist P#

by ℓ and obtain a new Pin structure on E (up to isomorphism), denoted P# ⊗ η.
A concept closely related to isomorphism is that of homotopy.

Definition 2.5. A homotopy between two Pin structures P#
0 , P#

1 on a bundle E → B consists
of a Pin structure on the pullback of E to B× [0, 1], whose restriction to the two ends agrees

with P#
0 and P#

1 , respectively. Two homotopies are equivalent if the corresponding Pin
structure over the product of B with the boundary of [0, 1]× [0, 1] extends to a Pin structure
on the interior.

Remark 2.6. Alternatively, one may formulate these notions as follows: A Pin structure on a
vector bundle E over B is a lift of a representative classifying map B → BO(n) to BPin(n).
A homotopy of Pin structures is given by a homotopy between the lifts (through other such
lifts), and the notion of equivalence corresponds to a homotopy of homotopies.

The classification of Pin structures up to homotopy is the same as up to isomorphism.

Lemma 2.7. Two Pin structures on a vector bundle E → B are isomorphic if and only if
they are homotopic.

Proof. If the two Pin structures are homotopic, then after choosing a Pin connection in the
bundle over B × [0, 1] we get an isomorphism by parallel transport. Conversely, if we have
an isomorphism, we can construct a Pin bundle over B × [0, 1] by gluing two trivial bundles
over B × [0, 2/3) and B × (1/3, 1] using that isomorphism. □

The advantage of talking about homotopies is that we can iterate them. We can talk about
homotopies of homotopies (what we called equivalences), and also about higher homotopies.
Using this data we can construct a simplicial set whose vertices are Pin structures on E, and
whose n-simplices correspond to n-homotopies. We call this the space of Pin structures on
E.

Remark 2.8. Up to homotopy equivalence, the space of Pin structures on a vector bundle
E does not depend on the inner product on E. For simplicity, we will suppress the inner
products from our future discussions.

Proposition 2.9. Let E → B be a vector bundle that admits a Pin structure. Then
the space of such structures is (non-canonically) homotopy equivalent to the mapping space
Map(B,RP∞).

Proof. We think of Pin structures in terms of maps to the classifying space, as in Remark 2.6.
The fibration

Map(B,BZ/2) → Map(B,BPin(n)) → Map(B,BO(n))

gives the desired result, using the fact that BZ/2 = RP∞. □

The above result has various generalizations one of which we will use: given a point b ∈ B,
the space of Pin structures on E which are fixed at b is homotopy equivalent to the space of
based maps from B to BO(n).

Example 2.10. Let M be the circle S1, equipped with either orientation. It is well-known
that M admits two isomorphism classes of Spin structures:

• the bounding one, which is obtained by restricting a Spin structure on D2, and hence
represents the zero element in the Spin bordism group Ω1

Spin
∼= Z/2. In this case the

oriented frame bundle of TS1 is just S1 itself, and this Spin structure corresponds to
its nontrivial (connected) double cover;
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• the Lie group one, which is obtained by choosing a Spin structure on the tangent space
to S1 at a single point, and extending it to the whole circle in an S1-equivariant way.
This represents the nontrivial element in Ω1

Spin, and corresponds to the trivial double

cover of S1.

See for example [17, p.35-36].
We will use the same terminology (bounding and Lie group) for the corresponding isomor-

phism classes of Pin structures on the circle, which are independent of the orientation. Note,
however, that this is a slight misnomer: the Pin bordism group Ω1

Pin is trivial, because a Lie
group Pin structure also bounds (a Möbius band equipped with its own Pin structure).

Definition 2.11. Fix a splitting of the extension Pin(1) → O(1). This determines a canonical
Pin structure on any one-dimensional vector space, and hence (by equivariant extension) a
canonical representative of the Lie group Pin structures on the circle. When we are interested
in a Pin structure on S1 on the nose (not just up to isomorphism), this is what we call the
Lie group Pin structure.

By contrast, one can show that the action of rotation on the space of Pin structures on
D2 generates a non-trivial loop, so that there is no natural choice of bounding Pin structure
on S1.

Remark 2.12. In Seidel’s book [40], a Lie group Pin structure on the circle is called trivial,
and a bounding one nontrivial. We will not use this terminology here, to prevent confusion—
since either kind of structure can be considered trivial from a different perspective: that of
bordism, or that of equivariant trivializations.

Example 2.13. Let V be a vector space, viewed as a vector bundle over a point. Then,
there are non-equivalent homotopies between Pin structures on V . The simplest case to
consider is when the two Pin structures that we are comparing are the same; in that case,
such isomorphisms correspond bijectively to Pin structures on the circle which are fixed at a
point, as can be seen by gluing the endpoints of the interval. In fact, by Proposition 2.9, the
space of Pin structures on V is (non-canonically) homotopy equivalent to BZ/2 = RP∞, and
π1(RP∞) = Z/2.

Example 2.14. On a torus Tn we will be interested in the Lie group Pin structures, those
that are equivariant with respect to the Lie group multiplication on Tn. The space of such
structures is the same as that of Pin structures on the tangent space at any point, and thus
homotopy equivalent to RP∞. Unlike in the case n = 1 considered in Example 2.10 and
Definition 2.11, for n ≥ 2 we do not have a canonical representative anymore.

Remark 2.15. One disadvantage of Pin (as opposed to Spin) structures is that they do not
behave well with respect to direct sums. Indeed, suppose that E and E′ are two vector
bundles over the same base B. Then

w2(E ⊕ E′) = w2(E) + w2(E
′) + w1(E)w1(E

′).

Thus, if E and E′ are Spin (have w1 = w2 = 0) then so is E ⊕ E′, and in fact we get an
induced Spin structure on E ⊕E′. By contrast, if E and E′ are Pin (have w2 = 0), this does
not guarantee that E ⊕ E′ is Pin.

The source of this issue is the lack of a natural multiplication map Pin(n) × Pin(n′) →
Pin(n + n′). If we use the explicit description of the Pin groups as subsets of the Clifford
algebras, we could try to define the map by

(v1 . . . vk, v
′
1 . . . v

′
k′) 7→ v1 . . . vkv

′
1 . . . v

′
k′ .
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However, the left hand side is equal to

(1, v′1 . . . v
′
k′) · (v1 . . . vk, 1) ∈ Pin(n)× Pin(n′)

which should be mapped to v′1 . . . v
′
k′v1 . . . vk ∈ Pin(n + n′). Thus, we run into the problem

that the elements v1 . . . vk and v′1 . . . v
′
k′ commute in Pin(n + n′) only up to a sign (−1)kk

′
.

On the other hand, there is a natural multiplication Spin(n)×Spin(n′) → Spin(n+n′), since
in that case we only work with even values of k and k′.

2.2. Coupled orientations. The notion of coupled orientation that we introduce here will
play a role in our take on Lagrangian Floer homology in Section 3.2. We will then come back
to it in Section 4.1.

Definition 2.16. For n,m ≥ 0, we define the coupled special orthogonal group1 SO(n;m) to
be the group of pairs of orthogonal matrices with the same determinant:

SO(n;m) = {(A,B) ∈ O(n)×O(m) | det(A) = det(B)}.

Definition 2.17. Let E, F be two real vector bundles (with inner products) over the same
base B, of ranks n and m respectively. A coupled orientation on (E,F ) is a lift of Fr(E) ×
Fr(F ) → B from a principal O(n)×O(m) bundle to a principal SO(n,m) bundle.

Lemma 2.18. A coupled orientation on (E,F ) is equivalent to an orientation on the direct
sum E ⊕ F . It exists if and only if w1(E) = w1(F ).

Proof. For the first part, observe that there is a pull-back diagram

SO(n;m)

��

� � // SO(n+m)

��

O(n)×O(m) �
�

// O(n+m)

Thus, lifting a principal O(n)×O(m) bundle to SO(n;m) is the same as lifting the induced
O(n+m) bundle to SO(n+m). The latter is the data of an orientation on the direct sum.

The second part follows from the relation w1(E ⊕ F ) = w1(E) + w1(F ). □

Definition 2.19. Let E,F,E′, F ′ be four real vector bundles over a base B. Given cou-
pled orientations on (E,F ) and (E′, F ′), we can form their direct sum. This is the coupled
orientation on (E ⊕ E′, F ⊕ F ′) induced by the map

SO(n;m)× SO(n′,m′) → SO(n+ n′;m+m′),(1)

((A,B), (C,D)) 7→
((

A 0
0 C

)
,

(
B 0
0 D

))
.

Definition 2.20. For any vector bundle E, there is a canonical coupled orientation on (E,E),
induced from the natural map

(2) O(n) → SO(n;n), A 7→ (A,A).

Lemma 2.21. Let E and E′ be two vector bundles over the same base B. Equip (E,E) and
(E′, E′) with their canonical coupled orientations, then take their direct sum. The result is
the canonical coupled orientation on (E ⊕ E′, E ⊕ E′).

1Warning: the similar notation SO(n,m) is often used in the literature to denote a different group, that
of transformations that preserve an indefinite bilinear form of signature (n,m) and have determinant one.
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Proof. This is a consequence of the commutativity of the diagram

O(n)×O(n′)

��

// SO(n;n)× SO(n′;n′)

��

O(n+ n′) // SO(n+ n′;n+ n′)

which involves maps of the form (1) and (2). □

Observe that the equivalence in Lemma 2.18 is based on the map

(3) O(n)×O(m) → O(n+m), (A,B) 7→
(
A 0
0 B

)
.

Under this equivalence, the canonical coupled orientation on (E,E) corresponds to the ori-
entation on E ⊕ E given by an ordered basis of the form

((v1, 0), . . . , (vn, 0), (0, v1), . . . , (0, vn)),

where {v1, . . . , vn} is any basis of E. Let us call this the concatenated orientation on E ⊕E.
There is another natural choice of orientation on E ⊕ E, from bases of the form

((v1, 0), (0, v1), . . . , (vn, 0), (0, vn)).

We call this the shuffled orientation. It differs from the concatenated one by (−1)n(n−1)/2.
The shuffled orientation behaves better with respect to direct sums, in the following sense:
Given shuffled orientations on E ⊕ E and E′ ⊕ E′, their direct sum is an orientation on
(E ⊕ E) ⊕ (E′ ⊕ E′) which corresponds to the shuffled orientation on (E ⊕ E′) ⊕ (E ⊕ E′)
under the isomorphism that interchanges the second and third summands.

To make everything be compatible with direct sums, it is desirable to have the canonical
coupled orientation on (E,E) correspond to the shuffled orientation on E⊕E. We can achieve
this by adjusting the map (3) in the particular case where n = m. In that case we consider
the map

(4) O(n)×O(n) → O(2n), (A,B) 7→ C−1

(
A 0
0 B

)
C,

where C is the permutation matrix taking the standard basis (e1, e2, . . . , e2n−1, e2n) to the
basis (e1, en+1, e2, en+2, . . . , en, e2n).

Convention 2.22. In this paper we will only use coupled orientations on pairs (E,F ), where
E and F have the same rank. When doing so, to go from a coupled orientation on (E,F )
to an orientation on E ⊕ F we will use the map (4) instead of (3). Therefore, the canonical
coupled orientation on a pair (E,E) will correspond to the shuffled orientation on E ⊕ E.

So far we have discussed coupled orientations on vector bundles. Let us turn to the
analogous notion for manifolds.

Definition 2.23. LetM0 andM1 be two smooth manifolds. For i = 0, 1, let πi :M0×M1 →
Mi be the projection. A coupled orientation on (M0,M1) is a coupled orientation on the pair
of vector bundles (π∗0TM0, π

∗
1TM1) on M0 ×M1.

Remark 2.24. By Lemma 2.18, a coupled orientation on (M0,M1) corresponds to an orien-
tation on the bundle

T (M0 ×M1) = π∗0TM0 ⊕ π∗1TM1.
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In other words, we can think of a coupled orientation on (M0,M1) as an orientation of the
productM0×M1. We will only use this notion when dimM0 = dimM1; then, the correspon-
dence to the orientation on M0 ×M1 is defined using the map (4), as in Convention 2.22.

2.3. Coupled Spin structures. We now define some notions that will be used in Section 4
and later.

Definition 2.25. We introduce the group S̃pin(n;m) to be the (Z/2×Z/2)-cover of SO(n;m)
given as the pull-back

(5) S̃pin(n;m)

��

� � // Pin(n)× Pin(m)

��

SO(n,m) �
�

// O(n)×O(m)

We let the coupled Spin group Spin(n;m) be the quotient of S̃pin(n;m) by the diagonal
subgroup Z/2 ⊂ Z/2× Z/2.

Explicitly, S̃pin(n;m) is the subgroup of Pin(n) × Pin(m) consisting of pairs of the form
(v1 . . . vk, u1 . . . ul) with k+ l even, and Spin(n;m) is its quotient by the equivalence relation

(v1 . . . vk, u1 . . . ul) ∼ (−v1 . . . vk,−u1 . . . ul).

Definition 2.26. Let E, F be two real vector bundles (with inner products) over the same

base B, of ranks n and m respectively. A S̃pin structure on (E,F ) is a lift of Fr(E) ×
Fr(F ) → B to a principal S̃pin(n,m) bundle. A coupled Spin structure on (E,F ) is a lift of
Fr(E)× Fr(F ) → B to principal Spin(n,m) bundle.

Lemma 2.27. A coupled Spin structure on a pair (E,F ) exists if and only if w1(E) = w1(F )
and w2(E) = w2(F ). If one exists, then the space of such coupled Spin structures is (non-
canonically) homotopy equivalent to Map(B,RP∞). In particular, isomorphism classes of
coupled Spin structures form a torsor over H1(B;Z/2).

Proof. The pull-back diagram (5) shows that a S̃pin structure is the same as the data of a
coupled orientation together with Pin structures on the two bundles. From Lemma 2.18 and

the definition of the Pin group, a S̃pin structure exists if and only if w1(E) = w1(F ) and
w2(E) = w2(F ) = 0.

In fact, the same diagram shows that we can characterize S̃pin(n;m) as the central ex-
tension of SO(n;m) by Z/2× Z/2 determined by the pull-back of the element π∗1w2 ⊕ π∗2w2

from

H2(BO(n)× BO(m);Z/2× Z/2) ∼= H2(BO(n)× BO(m);Z/2)⊕H2(BO(n)× BO(m);Z/2)

to H2(BSO(n;m);Z/2 × Z/2), where π1 and π2 are the projections from BO(n) × BO(m)

to the two factors. Dividing S̃pin(n;m) by the diagonal Z/2 action gives Spin(n;m) as the
central extension of SO(n;m) by Z/2 determined by the pull-back of

π∗1w2 + π∗2w2 ∈ H2(BO(n)× BO(m);Z/2)

to H2(BSO(n;m);Z/2). This says that, once we have a coupled orientation (which exists iff
w1(E) = w1(F )), the remaining obstruction to the existence of a coupled Spin structure is
w2(E) + w2(F ).
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The classification statement about Map(B,RP∞) follows from the same argument as in
the proof of Proposition 2.9. Furthermore, isomorphism is equivalent to homotopy (by the
same argument as in Lemma 2.7), and we have π0(Map(B,RP∞)) = H1(B;Z/2). □

Remark 2.28. We will mostly be interested in coupled Spin structures on a pair (V,W ) of
vector spaces, viewed as vector bundles over a point. Suppose that the pair (V,W ) is equipped

with a coupled orientation. Then, Pin structures on the two vector spaces determine a S̃pin
structure and hence (in a non-injective way) a coupled Spin structure on (V,W ). If we fix
the isomorphism class of the Pin structure on V , the space of its representatives is homotopy
equivalent to RP∞; the same goes for W . The map to coupled Spin structures is modeled
on the multiplication RP∞ × RP∞ → RP∞ which comes from viewing RP∞ as BZ/2. In
particular, suppose we have a loop of Pin structures on (V,W ) that gives the standard
generator of π1(RP∞) ∼= Z/2 for both V and W . Then, the induced loop in the space of
coupled Spin structures is trivial, representing 1 + 1 = 0 in π1(RP∞) ∼= Z/2.

Remark 2.29. We also have a commutative diagram

(6) Spin(n)× Spin(m)

��

// S̃pin(n;m)

��

SO(n)× SO(m) // SO(n,m).

This implies that Spin structures on two bundles E and F determine a S̃pin and hence a
coupled Spin structure of (E,F ).

Given a coupled orientation, Lemma 2.27 and Remark 2.28 show that coupled Spin struc-
tures are a weaker condition that having Pin structures on each bundle. However, one
advantage they have over Pin structures is that they behave well with respect to direct sums:

Lemma 2.30. Let E,F,E′, F ′ be four real vector bundles over a base B. Given coupled Spin
structures on (E,F ) and (E′, F ′), there is an induced coupled Spin structure on (E⊕E′, F ⊕
F ′).

Proof. This follows from the existence of a natural multiplication map

Spin(n,m)× Spin(n′,m′) → Spin(n+ n′,m+m′)

as follows. If we denote the elements of Pin(n) by v1 . . . vk, and those of Pin(m) by u1 . . . ul,
then the elements of Spin(n,m) are equivalence classes of pairs [(v1 . . . vk, u1 . . . ul)] with k+ l
even. Similarly, the elements of Spin(n′,m′) are equivalence classes [(v′1 . . . v

′
k′ , u

′
1 . . . u

′
l′)] with

k′ + l′ even. We let the multiplication be(
[(v1 . . . vk, u1 . . . ul)], [(v

′
1 . . . v

′
k′ , u

′
1 . . . u

′
l′)]
)
7→ [(v1 . . . vkv

′
1 . . . v

′
k′ , u1 . . . ulu

′
1 . . . u

′
l′)].

This lands in the right place because k+k′+ l+ l′ is even. Furthermore, we do not encounter
the same commutativity problem as the one for Pin discussed at the end of Section 2.1. In
the current setting, when we commute the two factors, the result is

[(v′1 . . . v
′
k′v1 . . . vk, u

′
1 . . . u

′
l′u1 . . . ul)] = [((−1)kk

′
v1 . . . vkv

′
1 . . . v

′
k′ , (−1)ll

′
u1 . . . ulu

′
1 . . . u

′
l′)].

The right hand side is same equivalence class as [(v1 . . . vkv
′
1 . . . v

′
k′ , u1 . . . ulu

′
1 . . . u

′
l′)]. Indeed,

we have (−1)kk
′
= (−1)ll

′
because k ≡ k′ (mod 2) and l ≡ l′ (mod 2). □

We end with a few more properties of coupled Spin structures.



CANONICAL ORIENTATIONS IN HEEGAARD FLOER THEORY 11

Lemma 2.31. Given any vector bundle E, the pair (E,E) has a canonical coupled Spin
structure.

Proof. This comes from the existence of a natural map O(n) → Spin(n, n) defined as follows.
We view O(n) as Pin(n)/± 1. Given an element v1 . . . vk ∈ Pin(n), we map its image in O(n)
to

[(v1 . . . vk, v1 . . . vk)] ∈ Spin(n, n).

Observe that changing v1 . . . vk by a sign produces the same equivalence class in Spin(n, n).
□

Lemma 2.32. Given vector bundles E, F and S over the same base B, a coupled Spin
structure on (E,F ) naturally induces one on (E ⊕ S, F ⊕ S).

Proof. This follows from Lemmas 2.30 and 2.32. □

Lemma 2.33. Let f : E → F be a bundle map between vector bundles over the same base B
(covering the identity on B). Suppose f has fixed rank, so that K = ker(f) and C = coker(f)
form vector bundles over B. Then, a coupled Spin structure on (C,K) induces one on (F,E).

Proof. Recall that our vector bundles are implicitly equipped with inner products; see Re-
mark 2.8. Therefore, if we let I = im(f) then by taking orthogonal complements we get
isomorphisms E ∼= K ⊕ I and F ∼= C ⊕ I. The conclusion follows from Lemma 2.32. □

Lemma 2.34. Let (E,ω) be a symplectic vector bundle, and L0, L1 ⊂ E be Lagrangian
sub-bundles such that L0 ∩ L1 is also a sub-bundle (i.e., has fixed rank). Then:

(1) An inner product on E induces a canonical bundle isomorphism τL0,L1 : L0 → L1;
(2) There is a canonical coupled Spin structure on (L0, L1).

Proof. (1) Let (L0 ∩ L1)
ω be the symplectic complement to L0 ∩ L1 in E. Then E′ = (L0 ∩

L1)
ω/(L0∩L1) is symplectic, and inside it we have Lagrangian sub-bundles L′

0 = L0/(L0∩L1)
and L′

1 = L1/(L0 ∩ L1). Using the inner product we can identify each quotient bundle with
the corresponding orthogonal complement. Furthermore, since L′

0 and L′
1 intersect in the

zero section, the symplectic form gives an identification between L′
0 and the dual to L′

1. The
inner product then gives an identification between L′

0 and L′
1. Taking the direct sum of this

with the identity on L0 ∩ L1 we get the desired identification between L0 and L1.
(2) Apply part (a) and Lemma 2.31. □

Remark 2.35. In the situation of Lemma 2.34 (1), note that τL1,L0 is not the inverse to
τL0,L1 . For example, when L0 and L1 are transverse lines in R2, the isomorphism τL0,L1 is
counterclockwise rotation, and its composition with τL1,L0 is − id on L0.

Remark 2.36. On the other hand, the isomorphisms from Lemma 2.34 (1) behave well with
respect to direct sums. If L0, L1 ⊂ E are as in the lemma, and L′

0, L
′
1 ⊂ E′ is another pair

of the same kind, then

τL0⊕L′
0,L1⊕L′

1
= τL0,L1 ⊕ τL′

0,L
′
1
.

This implies that if we take the direct sum of the canonical coupled Spin structures on (L0, L1)
and (L′

0, L
′
1), we get the canonical coupled Spin structure on (L0 ⊕ L′

0, L1 ⊕ L′
1).

3. Canonical orientations in Lagrangian Floer homology

In this section we explain how Pin structures produce canonical orientations on the moduli
spaces appearing in Lagrangian Floer homology.
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Convention 3.1. Our exposition is inspired from Seidel’s book [40], but we will use the usual
conventions in Heegaard Floer theory [30]. Specifically, we work with Floer homology instead
of Floer cohomology, and when we talk about polygon maps, the Lagrangian boundary condi-
tions are ordered clockwise rather than counterclockwise. Our Floer chain groups CF ∗(L0, L1)
correspond to Seidel’s Floer cochain groups CFn−∗(L1, L0).

3.1. Orientation spaces. We review here the definition of orientation spaces associated to
linear Lagrangian branes, following [40, Section 11]. We describe a slight modification that
is convenient for our purposes.

Given a (2n)-dimensional symplectic vector space V , we let Gr(V ) be the Lagrangian
Grassmannian, whose points are the Lagrangian subspaces of V . In [40, Section 11h], Seidel
considers a natural map to a product of Eilenberg-MacLane spaces

(7) (µ,w2) : Gr(V ) → K(Z, 1)×K(Z/2, 2),
and pulls back the product of the universal fibrations to obtain a Z×RP∞ bundle over Gr(V ),
denoted Gr#(V ). The points Λ# ∈ Gr#(V ) are called abstract linear Lagrangian branes.

The first component of (7),

µ : Gr(V ) → K(Z, 1) ∼= S1

can be described explicitly as the squared phase map associated to a compatible complex
structure IV and a quadratic complex volume form on (V, IV ); see [40, Section 11j].

In our setting we shall mostly focus on the second component

w2 : Gr(V ) → K(Z/2, 2).

We let Gr†(V ) be the pullback of the universal fibration, which is an RP∞ bundle over Gr(V ).
Furthermore, Gr#(V ) is a Z-cover of Gr†(V ).

An alternate description of Gr†(V ) is as follows. Let

iV : Gr(V ) → BO(n)

be the composition of the forgetful map from Gr(V ) to the ordinary Grassmannian of n-planes
in V , with the map to BO(n) induced by some inclusion V ↪→ R∞. Then, Gr†(V ) is the
pullback of the bundle BPin(n) → BO(n) under iV ; compare [40, p.60]. Thus, we can think
of a point Λ† ∈ Gr†(V ) as a Pin structure on the underlying Lagrangian subspace Λ ∈ Gr(V );
i.e., a principal homogeneous Pin(n)-space equipped with an isomorphism P#×Pin(n)Rn ∼= Λ.
This interpretation is particularly useful in families: a family of Lagrangian subspaces in V
parametrized by a base space B (i.e., a Lagrangian bundle over B) is described by a map
B → Gr(V ), and a lift of this map to Gr†(V ) is the same as a Pin structure on the Lagrangian
bundle.

In the notation of [40, Section 11j], an element of Gr#(V ) is a triple

Λ# = (Λ, α, P#),

where Λ ∈ Gr(V ), α ∈ R is such that e2πiα = µ(Λ) ∈ S1, and P# is a Pin structure on Λ.
The pair Λ† = (Λ, P#) is the projection of Λ# to Gr†(V ).

Next, consider two points Λ#
0 ,Λ

#
1 ∈ Gr#(V ), such that the underlying Lagrangians Λ0,Λ1 ⊂

V intersect transversely. Choose a path

ρ# = (Λ#
t )t∈[0,1]

connecting the two points, and let ρ = (Λt)t∈[0,1] be its projection to Gr(V ). There is a
technical condition we need to impose on ρ, that it has negative definite crossing form at
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t = 1 with the constant path Λ1; see [40, Section 11g]. Then, the Maslov index of the path

ρ depends only on Λ#
0 and Λ#

1 , and is denoted

i(Λ#
0 ,Λ

#
1 ) ∈ Z.

Furthermore, one can consider a Fredholm problem on a capped half-infinite strip H, with
moving Lagrangian boundary conditions {Λt} that are constant near the infinite end, as in
[40, Section 11g] or [9, p.143], but reflected to be in line with our Conventions 3.1.:

Λ0

Λ1

Λt

We call H a cap. The ∂̄ operator on H associated to this set-up is denoted ∂̄ρ. Consider its
determinant index bundle

det(∂̄ρ) = λtop((coker ∂̄ρ)
∗)⊗ λtop(ker ∂̄ρ).

The orientation space

o(Λ#
0 ,Λ

#
1 )

is the abelian group generated by the two orientations ω, ω̄ on det(∂̄ρ), modulo the relation
ω̄ = −ω. Since this is a free abelian group of rank-1, it is non-canonically isomorphic to Z.

Remark 3.2. Rotating our cap by 180◦, we see that it is equivalent to the cap in Seidel’s
book with boundary conditions given by the reflected path Λ1−t from Λ1 to Λ0. By Equation
(11.27) in [40], we have

(8) index(det(∂̄ρ)) = i(Λ#
1 ,Λ

#
0 ) = n− i(Λ#

0 ,Λ
#
1 ).

Also, the orientation space o(Λ#
0 ,Λ

#
1 ) is canonically isomorphic to the one in Seidel’s book

tensored with λtopΛt (for any t). Note that, compared with [40], we have not changed the

definition of the Maslov index i(Λ#
0 ,Λ

#
1 ); but we have changed the definition of o(Λ#

0 ,Λ
#
1 ).

We have also changed the meaning of the notation H: in [40], our cap is denoted H̄, and its
reflection across a vertical axis is called H.

Lemma 3.3. The orientation space

o(Λ#
0 ,Λ

#
1 )

depends, up to canonical isomorphism, only on Λ#
0 and Λ#

1 (in particular, not on the choice
of path ρ# with these endpoints).

Proof. This is discussed in [40, p.164]. The essential point in the following: the space of
paths in Gr(V ), with endpoints Λ0 and Λ1, has Z-many components, each of which has
fundamental group Z/2. The orientation space of the operator det(∂̄ρ) associated to paths ρ
defines a non-trivial local system over this space, as shown by de Silva in [41]. Imposing the
grading condition distinguishes a homotopy class of paths. More importantly, considering
paths of Lagrangians equipped with Pin structures yields a simply connected space of paths,
which can be thought of as a 2-fold cover of the space of paths in Gr(V ). Its components over
a fixed path in Gr(V ) are distinguished by the homotopy class of the path of Pin structures
relative the endpoints. Thus, parallel transport through paths of paths in Gr#(V ) yields
isomorphisms of determinant lines that are independent of all choices. □
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Lemma 3.4. The local system formed by the orientation spaces o(Λ#
0 ,Λ

#
1 ) over the space of

all Pin structures on Λ1 is non-trivial (and similarly for Λ0).

Proof. Recall that the space of Pin structures on Λ1 has the homotopy type of RP∞, and

thus π1 = Z/2; see Example 2.13. Consider a homotopically non-trivial loop {P#
1,s}s∈[0,1]

of Pin structures on Λ1, restricting to P#
1 at t ∈ {0, 1}. Concatenating this with the path

(Λt) gives a family of boundary conditions for the cap, parametrized by s ∈ [0, 1]. There
is a corresponding family of Cauchy-Riemann operators. Appealing once again to the non-
triviality of det(∂̄ρ) over the space of paths in Gr(V ) [41], we conclude that the monodromy
on the orientation space is −1. Compare [40, Remark 11.19]. □

The following result is ultimately derived from the fact that every even index loop in the
Grassmanian of Lagrangians is homotopic to a loop in the image of the action by the unitary
group; that equips the orientation operator with a trivialization coming from deforming the
corresponding Fredholm problem to one which is complex linear. This will not be apparent
in our proof, which uses instead formal properties established in [40].

Proposition 3.5. Suppose we are given Λ†
0,Λ

†
1 ∈ Gr†(V ), and a value ϵ ∈ Z/2. Pick lifts

Λ#
0 ,Λ

#
1 ∈ Gr#(V ) of Λ†

0,Λ
†
1 so that

(9) ϵ = i(Λ#
0 ,Λ

#
1 ) mod 2.

Then, the orientation spaces o(Λ#
0 ,Λ

#
1 ) are canonically isomorphic, for all choices of Λ#

0 ,Λ
#
1

satisfying (9).

Proof. A shift operation S on the elements Λ# = (Λ, α, P#) ∈ Gr#(V ) is introduced in [40,
Section 11k]:

SΛ# = (Λ, α− 1, P# ⊗ λtop(Λ)).

Lemma 11.21 in [40] says that

(10) i(Λ#
0 , SΛ

#
1 ) = i(Λ#

0 ,Λ
#
1 )− 1

and

(11) o(Λ#
0 , SΛ

#
1 )

∼= o(Λ#
0 ,Λ

#
1 ).

For n = 1, the isomorphism (11) is determined by clockwise rotation by π in the plane. In
higher dimensions, it is determined by asking for it to be compatible with direct sums.

Similar arguments to those in the proof of Lemma 11.21 in [40] show that

(12) i(SΛ#
0 ,Λ

#
1 ) = i(Λ#

0 ,Λ
#
1 ) + 1

and

(13) o(SΛ#
0 ,Λ

#
1 )

∼= o(Λ#
0 ,Λ

#
1 ).

For us, a more relevant shift operation Σ is the one given by

ΣΛ# = (Λ, α− 1, P#),

since this preserves the underlying Λ† ∈ Gr†(V ). Observe that the corresponding double shift
is the same:

(14) Σ ◦ Σ = S ◦ S.
The index does not depend on the Pin structure, so from (10) and (12) we deduce that

i(Λ#
0 ,Λ

#
1 ) = i(Λ#

0 ,ΣΛ
#
1 ) + 1 = i(ΣΛ#

0 ,Λ
#
1 )− 1.
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Therefore, to establish what we need for the proposition, it suffices to find canonical
isomorphisms

o(Λ#
0 ,Λ

#
1 )

∼= o(Λ#
0 ,Σ

2Λ#
1 )

∼= o(Σ2Λ#
0 ,Λ

#
1 )

∼= o(ΣΛ#
0 ,ΣΛ

#
1 ).

The first two isomorphisms follow from (11) and (13), together with (14). The final

isomorphism, o(Λ#
0 ,Λ

#
1 )

∼= o(ΣΛ#
0 ,ΣΛ

#
1 ), is clear because by using the family {ΣΛ#

t } for
the index problem on the cap H, the index problem does not change: the Lagrangian paths
{Λt} are the same. □

In view of Proposition 3.5, we introduce the notation

(15) o(Λ†
0,Λ

†
1, ϵ) := o(Λ#

0 ,Λ
#
1 )

for Λ†
0,Λ

†
1 ∈ Gr†(V ), and ϵ ∈ Z/2. Here, Λ#

0 and Λ#
1 are any lifts satisfying (9).

3.2. Lagrangian Floer homology. Lagrangian Floer homology over Z is developed in [9],
[10] using Spin structures on the Lagrangians. In Seidel’s book [40], it was noted that only
Pin structures are necessary, but the exposition there was under the assumption that the
symplectic manifold M satisfies 2c1(TM) = 0 (so that the Floer complex is Z-graded). In
the context of Heegaard Floer theory, it will be convenient to use Pin structures, but the
manifold does not have 2c1(TM) = 0. Nevertheless, since the only Lagrangians considered
in Heegaard Floer theory are orientable, this setting admits a canonical relative Z/2 grading.
In fact, one can specify an absolute Z/2 grading, which then suffices for the sign discussion
in [40] to go through, using what we set up in Section 3.1.

We present here an adaptation of the techniques in [10, Chapter 8] and [40, Section 11] to
the setting of interest to us.

Let (M,ω) be a closed symplectic manifold of dimension 2n. Let L0, L1 ⊂ M be two
connected, transversely intersecting Lagrangians, such that L0 and L1 are orientable, and

equipped with Pin structures P#
0 and P#

1 . We do not choose orientations on the Lagrangians,
but we will assume that they are coupled oriented, in the sense of Definition 2.23; i.e., that
we have an orientation on L0 × L1. (See Remark 2.24.)

Given a coupled orientation on (L0, L1), every intersection point x ∈ L0 ∩ L1 admits an
absolute mod 2 grading

gr(x) ∈ Z/2,
obtained as follows. We compare the orientation of TxL0 ⊕ TxL1

∼= Tx,x(L0 × L1) with the
orientation of TxM coming from ωn. If they are the same, we set gr(x) = n (mod 2). If they
are different, we set gr(x) = n+ 1 (mod 2).

Given x ∈ L0 ∩ L1, in the notation of Section 3.1, we have elements

Λ†
i = (TxLi, P

#
i |TxLi) ∈ Gr†(TxM), i = 0, 1.

We consider the orientation space

(16) o(x) := o(Λ†
0,Λ

†
1, gr(x)).

We denote a generator of o(x), i.e. an orientation of the corresponding determinant line, by
ωx.

The Lagrangian Floer complex is

CF ∗(L0, L1) =
⊕

x∈L0∩L1

o(x),
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with the differential

(17) ∂ωx =
∑

y∈L0∩L1

∑
ϕ∈π2(x,y)
µ(ϕ)=1

(
#M̂(ϕ)

)
· ωy.

Here, π2(x,y) denotes the space of relative homotopy classes between x and y (with boundary
on the two Lagrangians), and µ(ϕ) denotes the Maslov index of such a class. Furthermore,

M̂(ϕ) = M(ϕ)/R is the count of J-holomorphic strips (solutions to Floer’s equation) in the
class ϕ, after dividing by translation by R. It remains to explain what we mean by the signed
count #M(ϕ) ∈ Z, which depends on the orientations ωx ∈ o(y) and ωy ∈ o(y).

Remark 3.6. In Heegaard Floer theory, one considers several variants of the Floer complex,
keeping track of the intersections of the holomorphic disks with a (real codimension two)
symplectic hypersurface D ⊂ M which is disjoint from the Lagrangians. This additional
complication does not affect our discussion of signs.

Remark 3.7. The coupled orientation on (L0, L1) makes the Lagrangian Floer complex ab-
solutely Z/2-graded. In certain situations, the grading can be lifted to a relative or absolute
Z/2N - or Z-grading. Again, this issue is independent from our discussion of signs.

To define the signed count #M̂(ϕ), we need to orient the moduli space. Let

P(L0, L1) = {γ ∈ C∞([0, 1],M) | γ(0) ∈ L0, γ(1) ∈ L1}

and let Ω(ϕ) be the space of (non necessarily holomorphic) Whitney disks from x to y in the
class ϕ ∈ π2(x,y); that is, the space of smooth paths in P(L0, L1) from the constant path cx
at x to the constant path cy at y, in the class ϕ. By picking a homeomorphism from [0, 1] to
R, we can view the moduli space M(ϕ) as a subset of Ω(ϕ).

The orientation on M(ϕ) is governed by orienting the determinant index bundle det(D∂̄)
over Ω(ϕ). Recall that the orientation spaces o(x) and o(y) also come from determinant
index bundles, for operators on the cap H associated to paths of linear Lagrangian branes.
We will denote these by ∂̄x and ∂̄y, for convenience (instead of using the path of branes in
the subscript, as we did in Section 3.1). Once we have an orientation on M(ϕ), we get one

on M̂(ϕ) = M(ϕ)/R using the ordered convention M(ϕ) ∼= R× M̂(ϕ).
To see that orientations ωx ∈ o(x) and ωy ∈ o(y) induce one on det(D∂̄), it suffices to

prove the following lemma.

Lemma 3.8. The Pin structures and coupled orientation on the Lagrangians (L0, L1) induce
a canonical isomorphism:

(18) det(∂̄x)⊗ det(D∂̄) ∼= det(∂̄y).

Proof. The arguments are as in Proposition 11.13 and Section (12b) in [40], with minor
modifications. Given u ∈ Ω(ϕ), we view it as a strip u : [0, 1]×R →M , and trivialize u∗TM
over its domain. Over each of the boundaries {0} × R and {1} × R we get a family of linear
Lagrangians of the same symplectic vector space V = u∗TM . These families interpolate
between TxLi and TyLi, and are equipped with Pin structures.

After some deformations of Fredholm operators, we can glue together the operators ∂̄x and
D∂̄u to obtain a new operator ∂̄newy on the cap H, with boundary conditions interpolating
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between TyL0 and TyL1:

TxL0 TxL0 TyL0

TxL1 TxL1 TyL1

Under the gluing operation, the indices are added and the determinant lines are tensored:

index(∂̄x) + index(D∂̄) = index(∂̄newy ),(19)

det(∂̄x)⊗ det(D∂̄) ∼= det(∂̄newy ).(20)

From the construction of the orientation spaces in Proposition 3.5, together with Equa-
tion (8), we know we must have

index(∂̄x) ≡ n− gr(x) (mod 2).

Equation (19) implies that

index(∂̄newy ) ≡ (n− gr(x)) + (gr(x)− gr(y)) ≡ n− gr(y) (mod 2).

This means that the boundary conditions for ∂̄newy are of the kind needed to define the

orientation space o(y), so the operator ∂̄newy can play the role of ∂̄y. Equation (20) gives the
desired isomorphism (18). □

This completes the description of the differential ∂ on CF ∗(L0, L1). To make sure that the
sum in (17) is finite, and that ∂2 = 0, we need extra assumptions. The usual requirement
is that the Lagrangians are monotone with Maslov numbers greater than 2. However, this is
not the case in Heegaard Floer theory; instead, some ad hoc arguments are used there. In
particular, one shows that the contributions from disk and sphere bubbles to ∂2 are zero.
(The signs of these contributions are discussed in the next section.) Assuming we are in a
situation where the bubble counts are zero, the only other place in the proof that ∂2 = 0

where signs play a role is in the fact that the orientations on M̂(ϕ) are compatible with
gluing. For orientations coming from Pin structures as above, the proof of compatibility with
gluing is as in [40, Section 12f]. Thus, we obtain Lagrangian Floer homology groups, denoted
HF ∗(L0, L1).

Proposition 3.9. Given Lagrangians L0, L1 ⊂M equipped with Pin structures and a coupled
orientation (and satisfying the assumptions above), the Floer homology groups HF ∗(L0, L1)
are well-defined up to canonical isomorphism.

Proof. Proposition 3.5 ensures that the orientation spaces o(x) are well-defined (up to canon-
ical isomorphisms), and these isomorphisms commute with the differentials. □

3.3. Bubbles. When showing ∂2 = 0 in the Lagrangian Floer complex, we may encounter
moduli spaces of stable disk bubbles, consisting of sphere bubbles attached to disks. For
future reference, let us discuss their orientations.

For sphere bubbles, the linearization of the ∂̄ operator is complex, so those moduli spaces
are canonically oriented.
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For disk bubbles, the ones relevant to ∂2 = 0 are those in relative homotopy classes
ϕ ∈ π2(M,Li) (i = 0 or 1) with one fixed boundary point:

(21) u : (D2, ∂D2) → (M,Li), u(1) = x ∈ L0 ∩ L1,

and with Maslov index µ(ϕ) ≤ 2. In Heegaard-Floer theory, topological constraints preclude
all disks of non-positive Maslov index, so only the case of Maslov index 2 disks is relevant.
Following the notation in [30, Section 3.7], we let N (ϕ) be the moduli space of such J-

holomorphic disks, and we let N̂ (ϕ) be its quotient by the (two-dimensional) automorphism

group Aut(D2, 1). To define a signed count #N̂ (ϕ), we need the following fact.

Proposition 3.10. Fix i ∈ {0, 1}. The Pin structure on the Lagrangian Li induces a canon-

ical orientation of N̂ (ϕ).

Proof. To orient N (ϕ), we need to trivialize the determinant index bundle det(D∂̄) over the
space of disks u satisfying (21). Given such a disk, we trivialize u∗TM over the disk D2. The
pullback u∗TLi gives a loop ρ : S1 → Gr(Cn) of Lagrangian subspaces along ∂D2. Let us
denote the Cauchy-Riemann operator on D2, with these boundary conditions, by ∂̄ρ. This is
studied in [40], where it is denoted DD,ρ. Since the Maslov index of the path ρ is even (equal
to 2), Lemma 11.17 in [40] says that the Pin structure induces an isomorphism

det(∂̄ρ) ∼= λtop(ρ(1)).

The actual operator we are interested in, D∂̄u, differs from ∂̄ρ in the fact that its value at
1 is fixed to be zero (because u(1) = x is fixed). Thus, we have

ind(D∂̄u) = ind(∂̄ρ)− ρ(1)

as virtual vector spaces. It follows that

det(D∂̄u) ∼= det(∂̄ρ)⊗ λtop(ρ(1))−1 ∼= R,
so the bundle det(D∂̄) is trivialized, as claimed.

The orientation on N (ϕ) induces one on the quotient N̂ (ϕ) after fixing an orientation
on the automorphism group Aut(D2, 1), which we do as follows. We identify D2 with the
upper half-space H (preserving their orientations as subsets of C), such that 1 ∈ ∂D2 gets
mapped to infinity. Then Aut(H,∞) is generated by translations by t ∈ R and dilations by
es, s ∈ R. We choose the orientation on its tangent space to be given by the ordered basis

(∂/∂s, ∂/∂t). Finally, to relate the orientations on N̂ (ϕ) and N (ϕ), we use the convention

N (ϕ) ∼= Aut(D2, 1)× N̂ (ϕ). □

Example 3.11. Let L be the unit circle in the plane M = R2, and let ϕ be the class of the

unit disk. This has Maslov index two, and the moduli space N̂ (ϕ) consists of a single point.
Proposition 3.10 assigns to this point the positive orientation if L is equipped with the Lie
group Pin structure, and the negative one if it is equipped with the bounding Pin structure.
This can be read from the proof of Lemma 11.17 in [40], in which the study of orientations
on det(∂̄ρ) is reduced to the case where the Lagrangian loop ρ is constant. In that case, the
trivialization rule is spelled explicitly, depending on the Pin structure as noted above.

Given a class ϕ ∈ π2(M,Li), there is a corresponding homotopy class of strips (still denoted

ϕ) in π2(x,x). If µ(ϕ) = 2, then the moduli space of strips M̂(ϕ) is one-dimensional, and

the moduli space of disk bubbles N̂ (ϕ) is part of its (zero-dimensional) boundary.

In this case, observe that Lemma 3.8 provides a canonical orientation on M̂(ϕ), because
when x = y, the tensor product det(∂̄x)⊗ det(∂̄y) is trivial.
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Figure 1. Orientations for gluing a disk bubble to a constant trajectory.

Proposition 3.12. For disk bubbles with boundary on L0, the orientation on N̂ (ϕ) from

Proposition 3.10 agrees with the boundary orientation of M̂(ϕ) from Lemma 3.8. For disk
bubbles with boundary on L1, the two orientations disagree.

Proof. Since µ(ϕ) = 2, the moduli space M(ϕ) is one-dimensional, with some part of its

boundary coming from disk bubbles in N (ϕ) ∼= Aut(D2, 1) × N̂ (ϕ). Near that part, the
strips in M(ϕ) are obtained by gluing a disk bubble to the constant trajectory at x. The
gluing involves a parameter T → ∞. Given a disk u in N (ϕ), gluing it with the parameter
T is equivalent to gluing some dilation of u by es with parameter 1, where s → −∞ as
T → ∞. Thus, the dilation coordinate −s on Aut(D2, 1) ∼= Aut(H,∞) corresponds to the
gluing parameter. On the other hand, the translation coordinate t becomes (after gluing)

either the R-translation coordinate on M(ϕ) ∼= R × M̂(ϕ), or its opposite, depending on
whether we consider bubbles with boundary on L0 or L1. See Figure 1.

Since the R factor comes first in the identifications M(ϕ) ∼= R × M̂(ϕ) and N (ϕ) ∼=
Aut(D2, 1) × N̂ (ϕ), the claim follows from the way we chose the orientation on Aut(D2, 1):
we used (∂/∂s, ∂/∂t), which has the same orientation as (∂/∂t,−∂/∂s). □

The count of disk bubbles with boundary on a Lagrangian L appears in the calculation of
the Floer homology of L with itself, which can be formulated using the pearl complex [3].
We state here the result when the count is zero.

Proposition 3.13. Under the assumptions from Section 3.2, suppose L0 = L1 (with the same
Pin structure), and denote this Lagrangian by L. Pick the coupled orientation on (L,L) to
be the product of either orientation on L with itself. Assume the count of stable disk bubbles
vanishes. Then, we have a canonical isomorphism

HF ∗(L,L) ∼= H∗(L; |λtopTL|),
where |λtopTL| denotes the orientation local system on L.

Proof. This follows from the PSS isomorphism [34], which is also discussed in [40, Section
(12e)] and [45]. The PSS isomorphism involves counts of configurations consisting of holo-
morphic caps joined to Morse trajectories, and these can be graded using Pin structures by
an analogue of Lemma 3.8. The isomorphism is usually stated in terms of Floer cohomology,
saying that

HF ∗(L,L) ∼= H∗(L;Z).
The statement for Floer homology can be deduced from this in view of our Conventions 3.1
and Poincaré duality for L. □

Remark 3.14. Since L is assumed to be orientable, the local system |λtopTL| is trivial, so
Proposition 3.13 implies the existence of an isomorphism HF ∗(L,L) ∼= H∗(L;Z). However,
this isomorphism is not canonical, because it depends on the choice of an orientation on L.
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3.4. Decompositions. Inside the path space P(L0, L1), we have the constant paths cx for
every x ∈ L0∩L1. Recall that π2(x,y) denotes the set of relative homotopy classes of Whitney
disks from x to y, i.e., relative homotopy classes of paths from cx to cy in P(L0, L1). There
is a concatenation operation:

∗ : π2(x,y)× π2(y, z) → π2(x, z).

In case P(L0, L1) is disconnected, some of the sets π2(x,y) could be empty. We define an
equivalence relation on L0 ∩ L1 by

(22) x ∼ y ⇐⇒ π2(x,y) ̸= ∅.

We let S be the set of equivalence classes. Then, the Lagrangian Floer complex splits into a
direct sum

CF ∗(L0, L1) =
⊕
s∈S

CF ∗(L0, L1, s),

where

CF ∗(L0, L1, s) =
⊕
x∈s

o(x)

with the differential as in (17).

3.5. Twisted coefficients. There is a well-known variant of Lagrangian Floer homology,
which uses twisted coefficients. In the context of Heegaard Floer theory, this was introduced
by Ozsváth and Szabó in [29, Section 8]. We present it here in a more general framework.

We keep the set-up from Sections 3.2 and 3.4. Fix s ∈ S and a base intersection point
x0 ∈ s. Let

G := π1(P(L0, L1), cx0) = π2(x0,x0).

We denote the elements of the group ring Z[G] by eψ, where ψ ∈ G.

Definition 3.15. A complete set of paths for s is a choice of relative homotopy classes
θx ∈ π2(x0,x), one for each x ∈ s.

Let A be a Z[G]-module, and fix a complete set of paths {θx} for s. Then, for any x,y ∈ s,
we get an identification

(23) π2(x,y)
∼=−→ G, ϕ 7→ θx ∗ ϕ ∗ θ−1

y .

Using this identification, for every ϕ ∈ π2(x,y), we can make sense of the action of an element
eϕ ∈ Z[π2(x,y)] on A.

We define the Lagrangian Floer complex with coefficients in A by

CF ∗(L0, L1, s;A) =
⊕
x∈s

o(x)⊗Z A,

with the differential

∂(ωx ⊗ a) =
∑
y∈s

∑
ϕ∈π2(x,y)
µ(ϕ)=1

(
#M̂(ϕ)

)
· ωy ⊗ (eϕ · a).

The moduli spaces M̂(ϕ) are oriented just as in Section 3.2. The resulting Floer homology
with twisted coefficients is denoted HF ∗(L0, L1, s;A).
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Remark 3.16. A more canonical way of defining Floer complexes with twisted coefficients in
A, without choosing a complete set of paths (but still choosing the basepoint x0), is to set

CF can
∗ (L0, L1, s;A) =

⊕
x∈s

o(x)⊗Z
(
Z[π2(x0,x)]⊗Z[G] A

)
,

where Z[π2(x0,x)] is the free abelian group generated by π2(x0,x). The group ring Z[G] =
Z[π2(x0,x0)] acts on Z[π2(x0,x)] via concatenation of paths. We denote a typical generator
of CF can

∗ (L0, L1, s;A) by ωx ⊗ (eψ ⊗ a), where ωx ∈ o(x), ψ ∈ π2(x0,x), and a ∈ A. Then,
the differential on CF ∗(L0, L1, s;A) is given by

∂(ωx ⊗ (eψ ⊗ a)) =
∑
y∈s

∑
ϕ∈π2(x,y)
µ(ϕ)=1

(
#M̂(ϕ)

)
· ωy ⊗ (eψ∗ϕ ⊗ a).

The complete set of paths determines an isomorphism between Z[π2(x0,x)] and Z[G], and
hence between CF can

∗ (L0, L1, s;A) and CF ∗(L0, L1, s;A). In particular, this shows that the
complexes CF ∗(L0, L1, s;A), for different complete sets of paths, are all isomorphic.

Remark 3.17. When A = Z is the trivial Z[G]-module, the complex CF ∗(L0, L1, s;Z) becomes
the usual Lagrangian Floer complex. On the other hand, CF can

∗ (L0, L1, s;Z) is only non-
canonically isomorphic to CF ∗(L0, L1, s;Z); the isomorphism depends on the complete sets
of paths. For our purposes, it is clearer to just choose such a complete set of paths from the
very beginning, and work with the non-canonical complexes CF ∗(L0, L1, s;A).

We will mostly be interested in the following kind of modules A. Let

(p0, p1) : P(L0, L1) → L0 × L1

be the map taking a path to its endpoints. Given η ∈ H1(L0;Z/2) and ζ ∈ H1(L1;Z/2),
the pull-backs p∗0η and p∗1ζ are elements of H1(P(L0, L1);Z/2) or, equivalently, morphisms
G → Z/2. We let Aη,ζ be the Z[G]-module which is Z as an abelian group, and such that

elements eψ ∈ Z[G] act on Aη,ζ by multiplication with

(24) (−1)p
∗
0η(ψ) · (−1)p

∗
1ζ(ψ) ∈ {±1}.

We can define these modules for any s ∈ S, so we could combine the resulting Floer
complexes into one:

CF ∗(L0, L1;Aη,ζ) =
⊕
s∈S

CF ∗(L0, L1, s;Aη,ζ).

These twisted coefficients govern the changes in Pin structures on the Lagrangians.

Proposition 3.18. Fix s ∈ S. For η ∈ H1(L0;Z/2), let Lη0 denote the Lagrangian L0 with its

Pin structure changed from P#
0 to P#

0 ⊗ η. Similarly, for ζ ∈ H1(L1;Z/2), let Lζ1 denote L1

with its Pin structure changed from P#
1 to P#

1 ⊗ ζ. Then, we have a canonical isomorphism
of Floer complexes

CF ∗(L
η
0, L

ζ
1, s)

∼= CF ∗(L0, L1, s;Aη,ζ).

Proof. For simplicity, let us just consider a change in the Pin structure on L0; i.e., we assume
ζ = 0, and we denote Aη,0 by Aη. (The effect of a change on the Pin structure on L1 can be
analyzed in a similar way.)

Recall that we have a base point x0 ∈ s. We fix an isomorphism between the restrictions

of the Pin structures P#
0 and P#

0 ⊗ η to Tx0L0.
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Recall that

(25) CF ∗(L0, L1, s) =
⊕

x∈L0∩L1

o(x)⊗Z Aη.

On the other hand,

(26) CF ∗(L
η
0, L1, s) =

⊕
x∈L0∩L1

oη(x),

where oη(x) is the orientation space at x coming from the determinant index bundle det(∂̄ηx)

associated to the new Pin structure P#
0 ⊗ η. To construct an isomorphism from the chain

complex (25) to (26), we need isomorphisms

(27) Ψx : o(x)⊗Z Aη → oη(x)

for all x ∈ S.
Let ωx ∈ o(x), a ∈ Aη, and ωηx ∈ oη(x). Note that a is just an integer, although the

elements of Z[G] act on it nontrivially. We set

(28) Ψx(ωx ⊗ a) = σx · a · ωηx,

with the sign σx ∈ {±1} is determined as follows. As part of the complete set of paths, we
have a class θx ∈ π2(x0,x). Let D∂̄(θx) be the linearized Cauchy-Riemann operator for a
path in that class. By Lemma 3.8, we have isomorphisms:

det(∂̄x0)⊗ det(D∂̄(θx)) ∼= det(∂̄x),(29)

det(∂̄ηx0
)⊗ det(D∂̄(θx)) ∼= det(∂̄ηx).

Our identification of the Pin structures on Tx0L0 gives an isomorphism between det(∂̄x0) and
det(∂̄ηx0). We obtain an isomorphism

(30) det(∂̄x) ∼= det(∂̄ηx).

We let the sign σx in (28) be +1 if ωx gets taken to ωηx under this isomorphism, and we let
it be −1 otherwise.

Let us check that the isomorphisms Ψx commute with the chain complex differentials.
Consider the contribution of a generator ωy to ∂ωx in CF ∗(L0, L1, s) coming from moduli
spaces in a class ϕ ∈ π2(x,y), and compare it to the contribution of some ωηy to ∂ωηx in
CF ∗(L

η
0, L1, s) from the same ϕ. Let ψ = θx∗ϕ∗θ−1

y ∈ π2(x0,x0) be the class that corresponds
to ϕ under the identification (23). Because the differential on CF ∗(L0, L1, s) involves twisted

coefficients, it picks up a sign of (−1)p
∗
0η(ψ). Thus, what we need to check is that the diagram

det(∂̄x)⊗ det(D∂̄(ϕ))
∼= //

∼=
��

det(∂̄ηx)⊗ det(D∂̄(ϕ))

∼=
��

det(∂̄y)
∼= // det(∂̄ηy)

commutes up to the sign (−1)p
∗
0η(ψ). In this diagram, the top horizontal isomorphism is the

one in (30), using the class θx; the bottom horizontal isomorphism is its analogue using the
class θy, tensored with the identity on the det(D∂̄(ϕ)) factors; the vertical isomorphisms are
from Lemma 3.8 and use the class ϕ.
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Going back to the definition of the horizontal isomorphisms from (29), we see that we can
consider instead the diagram

(31) det(∂̄x0)⊗ det(D∂̄(ψ))
∼= //

∼=
��

det(∂̄ηx0)⊗ det(D∂̄(ψ))

∼=
��

det(∂̄x0)
∼= // det(∂̄ηx0)

where the horizontal maps come from the identification of the Pin structures at x0, and the
vertical isomorphisms use Lemma 3.8 for the class ψ. We are left to show that (31) commutes

up to the sign (−1)p
∗
0η(ψ).

The left vertical isomorphism in (31) is induced by the original Pin structures on the
Lagrangians, and the right one by the new Pin structures (where the structure on L0 is
tensored with η). The construction of the isomorphisms in Lemma 3.8 is based on identifying
the orientation spaces o(y) (where in our case y = x0) coming from ∂̄newy and ∂̄y. This relies

on Proposition 3.5, which identifies orientation spaces associated to paths in Gr†(V ) with
fixed endpoints and fixed index. In our setting, we compare two such paths from Tx0L0 to
Tx0L1. These differ by concatenating with a loop from Tx0L0 to itself, and whether this loop

is nontrivial in π1(Gr†(Tx0L0) is determined by the sign (−1)p
∗
0η(ψ). If the sign is positive, the

two paths are homotopic and produce the same isomorphism, so the diagram (31) commutes.
If the sign is negative, Lemma 3.4 shows that the isomorphisms differ by −1, so the diagram
(31) anti-commutes.

We have now shown that the formula (27) produces an isomorphism of chain complexes.
Recall that we started our construction by choosing an isomorphism between the restrictions

of the Pin structures P#
0 and P#

0 ⊗ η to Tx0L0. There is a connected space of such isomor-
phisms, so this choice will not affect the canonical nature of the final isomorphism between
chain complexes, which is a discrete object. □

Corollary 3.19. Let s ∈ S and α ∈ H1(M ;Z/2). Consider the inclusions ι0 : L0 ↪→M and
ι1 : L1 ↪→M . For i ∈ {0, 1}, let Lαi denote the Lagrangian Li with its Pin structure changed
by tensoring with ι∗iα. Then, there is a canonical isomorphism:

CF ∗(L0, L1, s) ∼= CF ∗(L
α
0 , L

α
1 , s).

Proof. This is a consequence of Proposition 3.18, by taking η = ι∗0α and ζ = ι∗1α. Indeed,
note that in the formula (24) we have π∗0η(ψ) = π∗1ζ(ψ), so the module Aη,ζ is Z with the
trivial Z[G]-action. □

Corollary 3.19 shows that orientations of the moduli spaces in Floer theory are induced by
Pin structures on the Lagrangians modulo those coming from the ambient space; that is, by
an affine space on the cokernel of the map

H1(M ;Z/2) → H1(L0;Z/2)⊕H1(L1;Z/2).

3.6. Polygon maps. Our discussion of orientations on moduli spaces extends to holomorphic
polygons, much as in Seidel’s book [40]. We state the results here, and leave the proofs to
the reader.

For m ≥ 2, suppose we have monotone Lagrangians L0, L1, . . . , Lm ⊂ M , equipped with
Pin structures. We also assume that we are given coupled orientations on the pairs (L0, L1),
(L1, L2), . . . , (Lm−1, Lm). These induce a coupled orientation on (L0, Lm). We define a map

(32) fL0,...,Lm : CF ∗(L0, L1)⊗ CF ∗(L1, L2)⊗ · · · ⊗ CF ∗(Lm−1, Lm) → CF ∗(L0, Lm)
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by

fL0,...,Lm(ωx1 ⊗ ωx2 ⊗ · · · ⊗ ωxm) =
∑

y∈L0∩Lm

∑
ϕ∈π2(x1,x2,...,xm,y)

µ(ϕ)=0

(
#M(ϕ)

)
· ωy.

Here, xi ∈ Li−1 ∩ Li for i = 1, . . . ,m, and y ∈ L0 ∩ Lm. Also, ωxi ∈ o(xi) and ωy ∈
o(y) are orientations for the respective determinant lines. The notation π2(x1,x2, . . . ,xm,y)
indicates the set of (relative) homotopy classes of (k + 1)-gons in M with boundaries on
L0, L1, . . . , Lm and vertices at x1,x2, . . . ,xm,y, in clockwise order. (See Conventions 3.1.)
The moduli space M(ϕ) consists of holomorphic polygon maps in the class ϕ, of index
µ(ϕ) = 0. Its orientation is induced from the Pin structures and coupled orientations, using
a straightforward generalization of Lemma 3.8.

When m = 1, we let fL0,L1 denote the differential ∂ on the complex CF ∗(L0, L1).
Let us adjust the signs to define

f̃L0,...,Lm(ωx1 ⊗ · · · ⊗ ωxm) = (−1)gr(xm)+2 gr(xm−1)+···+m gr(x1)fL0,...,Lm(ωx1 ⊗ · · · ⊗ ωxm).

Then, these new polygon maps satisfy the A∞ relations:∑
0≤i<j≤m

(−1)∗f̃L0,...,Li,Lj ,...,Lm

(
ωx1⊗· · ·⊗ωxi⊗f̃Li,Li+1,...,Lj (ωxi+1⊗· · ·⊗ωxj )⊗ωxj+1⊗· · ·⊗ωxm

)
= 0

where ∗ = gr(xj+1) + · · ·+ gr(xm) + (m− j). Note that the signs are slightly different from
those in [40], because we use homological rather than cohomological conventions.

When m = 1, the A∞ relation says that ∂2 = 0 on CF ∗(L0, L1). When m = 2, it says that

fL0,L1,L2 : CF ∗(L0, L1)⊗ CF ∗(L1, L2) → CF ∗(L0, L2)

is a chain map. Hence, it induces a product map on Floer homology:

(33) FL0,L1,L2 : HF ∗(L0, L1)⊗HF ∗(L1, L2) → HF ∗(L0, L2).

In Section 3.4 we decomposed the Floer complexes according to equivalence classes of
intersection points. Pick such equivalence classes si ⊂ Li−1 ∩ Li for i = 1, . . . ,m, and
t ⊂ L0∩Lm. We then define an equivalence relation on tuples (x1, . . . ,xm,y, ϕ) with xi ∈ si,
y ∈ t, and ϕ ∈ π2(x1, . . . ,xm,y), where

(x1, . . . ,xm,y, ϕ) ∼ (x′
1, . . . ,x

′
m,y

′, ϕ′)

if ϕ′ differs from ϕ by concatenation with classes in π2(x1,x
′
1), . . . , π2(xm,x

′
m) and π2(y,y

′).
We let S be the set of such equivalence classes. For every s ∈ S, we have a polygon map

f sL0,...,Lm
: CF ∗(L0, L1, s1)⊗ · · · ⊗ CF ∗(Lm−1, Lm, sm) → CF ∗(L0, Lm, t)

which counts only polygons in classes ϕ such that [(x1, . . . ,xm,y, ϕ)] = s ∈ S. The map (32)
splits as the sum of these maps, over all s ∈ S.

There is also a variant of the polygon maps with twisted coefficients; compare [29, Section
8.2]. It can be described using bimodule tensor products in the formalism of Remark 3.16,
but we present instead the explicit definition: Fix base intersection points xi,0 ∈ si for
i = 1, . . . ,m, as well as y0 ∈ t. Let

Gi = π1(P(Li−1, Li), cxi,0) = π2(xi,0,xi,0), i = 1, . . . ,m

and let also
G = π1(P(L0, Lm), cy0) = π2(y0,y0).

Denote by S = π2(x1,0, . . . ,xm,0,y0). Observe that S is the quotient of S by the actions of
all the groups Gi and G; for s ∈ S, we let S(s) ⊂ S be its equivalence class.
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Fix also complete sets of paths for all si and t, as in Definition 3.15. These induce identifica-
tions between S and π2(x1, . . . ,xm,y), for all xi ∈ si and y ∈ t. Given ϕ ∈ π2(x1, . . . ,xm,y),
we let s(ϕ) denote the corresponding element in S.

Fix s ∈ S. Suppose we have modules Ai over Z[Gi]. These induce a module As over Z[G]
given by

(34) As =
{(a1, . . . , am, s) ∈ A1 × · · · ×Am × S(s)}

(a1, . . . , am, s) ∼ (eψ1a1, . . . , eψmam, (ψ1 × · · · × ψm)s)

where ψi are arbitrary elements of Gi for i = 1, . . . ,m. For ψ ∈ G, the element eψ ∈ Z[G]
acts on [(a1, . . . , am, s)] by taking it to [(a1, . . . , am, ψs)].

We get a polygon map

(35) f sL0,...,Lm
: CF ∗(L0, L1, s1;A1)⊗ · · · ⊗ CF ∗(Lm−1, Lm, sm;Am) → CF ∗(L0, Lm, t;A

s)

given by

f sL0,...,Lm

(
(ωx1 ⊗ a1

)
⊗ · · · ⊗ (ωxm ⊗ am)

)
=∑

y∈t

∑
s∈S(s)

∑
ϕ∈π2(x1,x2,...,xm,y)
[(x1,...,xm,y,ϕ)]=s

µ(ϕ)=0

(
#M(ϕ)

)
·
(
ωy ⊗ [(a1, . . . , am, s(ϕ))]

)
.

These polygon maps satisfy A∞ relations just like the untwisted ones. In particular,
the triangle maps give chain maps and hence maps on the Floer homology with twisted
coefficients.

As in Section 3.5, we are particularly interested in modules that govern the change in Pin
structures. Pick elements ηi ∈ H1(Li;Z/2) for i = 0, . . . ,m. From these we obtain modules
Ai := Aηi−1,ηi over Z[Gi] for i = 1, . . . ,m, as well as Aη0,ηm over Z[G]. For s ∈ S, let As be
as in (34).

Pick any (not necessarily holomorphic) polygon in a class in S(s) ⊂ π2(x1,0, . . . ,xm,0,y0),
and let Γ be its boundary. This consists of paths γi on Li from xi,0 to xi+1,0 for i =
1, . . . ,m − 1, as well as γ0 on L0 from y0 to x1,0 and γm on Lm from xm,0 to y0. Since the
class s is fixed, the homotopy class of Γ (relative to its vertices) is fixed up to concatenation
with boundaries of disks in Gi = π2(xi,0,xi,0) and G = π2(y0,y0).

For i = 0, . . . ,m, restriction to the part of the boundary in Li produces maps qi from
S = π2(x1,0, . . . ,xm,0,y0) to the set of relative homotopy classes of paths between the two
relevant basepoints on Li. The latter space can be identified with π1(Li) by concatenating
with the path γi. Viewing the class ηi as a morphism π1(Li) → Z/2, we obtain a map

ηi ◦ qi : S → Z/2.

We now define a map

(36) As → Aη0,ηm , [(a1, a2, . . . , am, s)] → a1a2 · · · am · (−1)
∑m

i=0(ηi◦qi)(s).

It is straightforward to check that this is well-defined, and a morphism of Z[G]-modules.
The morphism (36) induces a map CF ∗(L0, Lm, t;A

s) → CF ∗(L0, Lm, t;Aη0,ηm). Compos-
ing the polygon maps in (35) with this yields a map

f sL0,...,Lm
: CF ∗(L0, L1, s1;Aη0,η1)⊗· · ·⊗CF ∗(Lm−1, Lm, sm;Aηm−1,ηm) → CF ∗(L0, Lm, t;Aη0,ηm).

Proposition 3.20. For i = 0, . . . ,m, let Lηii denote Li with its Pin structure changed by ten-
soring with ηi. Under the identifications from Proposition 3.18, the map f sL0,...,Lm

corresponds
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to the ordinary polygon map

f s
L
η0
0 ,...,Lηm

m
: CF ∗(L

η0
0 , L

η1
1 , s1)⊗ · · · ⊗ CF ∗(L

ηm−1

m−1 , L
ηm
m , sm) → CF ∗(L

η0
0 , L

ηm
m , t).

The proof is routine (along the same lines as that of Proposition 3.18), so we omit it.

3.7. Examples. We give a few simple examples of sign counts of polygons, starting with the
case when M is a surface, and the Lagrangians are curves. Recall from Definition 2.11 that
in this case, there are canonical Lie group Pin structures on the Lagrangians (not just up to
isomorphism).

If V is a one-dimensional vector space, we denote by |V | the abelian group generated by
orientations ω on V , modulo the relation ω̄ = −ω.
Lemma 3.21. Let M be a two-dimensional symplectic manifold, and L0, L1 ⊂M be curves
equipped with their Lie group Pin structures and a coupled orientation. Let x ∈ L0 ∩L1 be a
transverse intersection point.

(a) If gr(x) = 1 ∈ Z/2, then the orientation space o(x) from (16) has a canonical trivial-
ization.

(b) If gr(x) = 0, then o(x) is canonically identified with |TxL0|.
Proof. (a) The condition gr(x) = 1 means that the orientation on TxL0 ⊕ TxL1 agrees with
the one on TxM . Up to isotopy, there is a unique linear isomorphism from TxM to C taking
TxL0 to R and TxL1 to iR (respecting the coupled orientation). In view of Remark 3.2,
the ∂̄ operator on the cap H with boundary conditions interpolating from R to iR via eiθR,
θ ∈ [0, π/2] is equivalent to the one discussed in [40, proof of Lemma 11.11], where it is shown
to be bijective. Hence, its determinant index bundle can be trivialized by picking the positive
generator.

(b) If gr(x) = 0, then the orientation on TxL0 ⊕ TxL1 disagrees with the one on TxM .
We can again identify o(x) with a standard orientation space, this time using Lagrangians
interpolating from iR to R. This is the reverse of the path considered in (a). By Equation
(11.27) in [40], the orientation space differs from the one in part (a) by tensoring with
|TxL0|. □

Remark 3.22. In view of Lemma 3.21, when dim(M) = 2 and the Lagrangians have the
Lie groups Pin structures, choosing an orientation on L0 (or, equivalently, on L1, in a way
compatible with the coupled orientation) allows us to trivialize o(x) for all intersection points
x ∈ L0 ∩ L1. We can then view the Lagrangian Floer complex CF ∗(L0, L1) as generated by
the intersection points: we identify each x with the positive generator of o(x) ∼= R.
Example 3.23. We review Example 13.5 in [40], using our Convention 3.1. LetM ∼= S1× [0, 1]
be an open annulus, which we view as the complement of a small disk D2(ϵ) in C. Let α be
the unit circle, and β a Hamiltonian translate of α intersecting it in two points, as in Figure 2.
Equip α and β with the Lie group Pin structures. Pick also counterclockwise orientations
on α and β as in the figure. The resulting coupled orientation on (α, β) gives gr(x) = 1 and
gr(y) = 0.

Following Remark 3.22, the Floer complex CF ∗(α, β) is generated by the intersection points
x and y. We have

∂x = ±y ± y,

where the two signs come from the bigons A and B in Figure 2. By Proposition 3.13, we know
that HF ∗(α, β) ∼= H∗(S

1), so we must have ∂x = 0. Thus, the two bigons A and B must
come with opposite signs. In fact, it is computed in [40, Example 13.5] that A contributes
+1 and B contributes −1.
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βα

A B

x

y

Figure 2. Two circles in an annulus.

(a)

x α

βγ

(b)

α′

β′γ′

(c)

α′

β′γ′

Figure 3. (a) A trivial triangle at a triple intersection. (b), (c): Its pertur-
bations.

Example 3.24. Let M be any surface, and consider three curves α, β, γ ⊂M , having a triple
intersection point x. Suppose α, β, γ appear in this cyclic order around x, counterclockwise.
We equip them with the Lie group Pin structures. There is a trivial α-β-γ triangle of index
0 that contributes to the polygon map

fα,β,γ : CF ∗(α, β)⊗ CF ∗(β, γ) → CF ∗(α, γ).

Suppose we choose orientations on α, β, γ either as in Figure 3 (a) or all three opposite to
those shown there. This is equivalent to asking that the induced coupled orientations on
each pair (α, β), (β, γ) and (α, γ) are such that gr(x) = 1 ∈ Z/2 in all three Floer complexes.
Then, the triangle map takes the form

fα,β,γ(x⊗ x) = ±x+ · · ·
where ±x is the contribution of the trivial triangle. We claim that its sign is positive. This
can be checked explicitly by following the definitions. Alternatively, we can determine the
sign from a specific example: embed the picture into one with three circles in the annulus,
all Hamiltonian translates of the other. Then, under the PSS isomorphism, the generators x
become identified with [S1] ∈ H∗(S

1), and the triangle map becomes the intersection product
on homology:

H∗(S
1)⊗H∗(S

1) → H∗(S
1).

See for example [1] (where this is stated in terms of cohomology, with the triangle map
becoming the cup product) or [45]. The intersection of [S1] and [S1] is [S1], with a positive
sign.

Example 3.25. If α, β, γ are as in Example 3.24, we can slightly perturb them to get a
triple α′, β′, γ′ as in Figure 3 (b) or (c). The small α′-β′-γ′ triangle between the curves is a
deformation of the trivial triangle from (a), so it also contributes positively to the polygon
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map. Note that the two triangles in Figure 3(b) and (c) are, in fact, isomorphic. They differ
by a 180◦ rotation, which reverses the orientations on the curves; but what matter are only
the coupled orientations, which stay the same.

Remark 3.26. If α, β, γ are as in Example 3.24, except in the cyclic order α, γ, β, then
the trivial α-β-γ triangle is obstructed, and thus does not contribute to the polygon map.
Indeed, a slight perturbation of one of the curves produces a small α-γ-β triangle instead of
an α-β-γ one.

Example 3.27. Suppose we have two symplectic manifolds M and M ′ (of dimensions 2n and
2n′) and two pairs of Lagrangians as in Section 3.2: (L0, L1) in M , and (L′

0, L
′
1) in M

′. We
obtain a product pair (L0 × L′

0, L1 × L′
1) in M ×M ′.

Unfortunately, Pin structures do not behave well with respect to products; see Remark 2.15.
We will use Spin structures instead. Assume L0, L1, L

′
0, L

′
1 come equipped with Spin struc-

tures (and, in particular, are oriented). We consider the product Spin structures on L0 × L′
0

and L1×L′
1. Note that Spin structures on a pair of Lagrangians produce both Pin structures

and orientations, hence coupled orientations, so the Floer chain complex is well-defined.
With this in mind, we consider the Floer chain complexes CF ∗(L0, L1), CF ∗(L

′
0, L

′
1) and

CF ∗(L0 × L′
0, L1 × L′

1). Given intersection points x ∈ L0 ∩ L1 and x′ ∈ L′
0 ∩ L′

1, there is
an intersection point x × x′ ∈ (L0 × L′

0) ∩ (L1 × L′
1). Given index problems on the factors,

their direct sum is the index problem on the product. Thus, we have identifications between
the orientation spaces o(x × x′) ∼= o(x) ⊗ o(x′). We also have an identification between the
moduli spaces M(ϕ × ϕ′) ∼= M(ϕ) × M(ϕ′). It follows that CF ∗(L0 × L′

0, L1 × L′
1) is the

tensor product of the chain complexes CF ∗(L0, L1) and CF ∗(L
′
0, L

′
1). (See [42, 2].)

More generally, if we have an (m+1)-tuple of Spin Lagrangians onM and an (m+1)-tuple
of Spin Lagrangians on M ′, the moduli space of holomorphic polygons on the product is the
fiber product of the moduli spaces of holomorphic polygons on the factors over the abstract
moduli spaces of (m+ 1)-polygons. In particular, for m = 2, it is simply a product.

4. Three-manifold invariants

We present here a construction of Heegaard Floer homology, following [30], but with two
departures from the original. The first (which is our main point) is that we define the signs
in the differential using canonical orientations instead of coherent orientations. The second is
that we apply Perutz’s work [32] to equip the symmetric product with a symplectic form so
that the Heegaard tori are Lagrangians, rather than only totally real as in [30]. This allows
us to be in the setting of Section 3. An alternative would have been to extend the results
from that section to the totally real case; this can indeed be done, because the totally real
Grassmannian deformation retracts onto the Lagrangian one. However, Perutz’s perspective
will also be useful to us when we discuss handleslides in Section 4.8.

4.1. Heegaard Floer homology: a preliminary version. Let Y be a closed, connected,
oriented 3-manifold and z ∈ Y a basepoint. A (pointed) Heegaard diagram for Y consists of
the data

H = (Σ,α = {α1, . . . , αg},β = {β1, . . . , βg}, z)
where Σ is a surface of genus g containing z, and splitting Y into two handlebodies Uα and
Uβ. Further, α is a collection of g disjoint simple closed curves on Σ that are attaching curves
for Uα, in the sense that we obtain Uα by attaching disks with boundaries on the curves αi,
and then a 3-ball. Similarly, β is a collection of attaching curves for Uβ. We assume that the
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alpha and beta curves intersect transversely, and are disjoint from z. Note that Uα and Uβ
inherit orientations from Y . We orient Σ as ∂Uα = −∂Uβ.

We consider the symmetric product

M = Symg(Σ) = Σ×g/Sg,

where Sg is the symmetric group. Inside H2(Symg(Σ);Z) we have a class η Poincaré dual to
{z} × Symg−1(Σ). For each oriented simple closed curve γ on Σ, we also have a class ⟨γ⟩ in
H1(Symg(Σ);Z), dual to γ× Symg−1(Σ). If we pick curves γ1, . . . , γg and duals γ∗1 , . . . , γ

∗
g so

that they produce a symplectic basis of H1(Σ), the class

θ :=

g∑
i=1

⟨γi⟩⟨γ∗i ⟩ ∈ H2(Symg−1(Σ);Z)

is invariant under the action of the mapping class group of Σ.
For ϵ > 0 sufficiently small, Perutz [32] constructs a symplectic form ω on Σ in the class

η + ϵθ, such that the tori

Tα = α1 × · · · × αg, Tβ = β1 × · · · × βg

are Lagrangians with respect to ω. As an aside, we note that c1(TM) = η − θ.
In [29, Section 10.4], Ozsváth and Szabó define an absolute grading on the Heegaard

Floer groups and hence on the generators x ∈ Tα ∩ Tβ. We will denote their grading by
grHF(x) ∈ Z/2.

Let A and B be the subspaces of H1(Σ;R) spanned by the alpha and beta curves respec-
tively. We have canonical isomorphisms

(37) A = ker(H1(Σ;R) → H1(Uα;R)) ∼= H1(Tα;R),

(38) B = ker(H1(Σ;R) → H1(Uβ;R)) ∼= H1(Tβ;R).

Further, A can be canonically identified with the tangent space to Tα at any point, and B to
the tangent space to Tβ at any point.

We define orientations on the moduli spaces M̂(ϕ) as in Section 3.2, by making the fol-
lowing choices:

• We choose Lie group Pin structures on the tori Tα and Tβ, as in Example 2.14.
To specify these, it suffices to choose them on the tangent spaces to Tα and Tβ at

arbitrary points; i.e., we need Pin structures P#
α on A and P#

β on B. For now, we let

P#
α and P#

β be arbitrary;

• For the coupled orientation on (Tα,Tβ), we choose it so that the resulting Z/2-
grading gr on the Heegaard Floer complex (constructed as in Section 3.2) is given by
the formula:

(39) gr(x) = grHF(x) + g + b1(Y ) (mod 2).

The intersection points x ∈ Tα ∩ Tβ decompose according to Spinc structures on the 3-
manifold Y . A subset of those, S ⊆ Spinc(Y ), is the set of equivalence classes described
in Section 3.4. (Not all the Spinc structures have to be represented in a given Heegaard
diagram.)

Fix s ∈ Spinc(Y ). We assume that the Heegaard diagram is strongly s-admissible in
the sense of [30, Definition 4.10]. There are several versions of the Heegaard Floer complex,
differing in how we keep track of the basepoint z. A preliminary infinity version CF∞

prel(H, s) =



30 MOHAMMED ABOUZAID AND CIPRIAN MANOLESCU

CF∞
prel(Tα,Tβ, s) is generated by pairs [ωx, i], where ωx is an orientation of det(∂̄x) for x ∈

s ⊂ Tα ∩ Tβ, and i ∈ Z. The differential is given by

∂[ωx, i] =
∑
y∈s

∑
ϕ∈π2(x,y)
µ(ϕ)=1

(
#M̂(ϕ)

)
· [ωy, i− nz(ϕ)].

Here, nz(ϕ) denotes the intersection product of ϕ with the class of the divisor {z}×Symg−1(Σ).
There is a Z[U ]-action on the complex, given by U · [ωx, i] = [ωx, i− 1].

Other Heegaard Floer complexes are:

• CF−
prel(H, s), the subcomplex of CF∞

prel(H, s) generated by [ωx, i] with i < 0;

• CF+
prel(H, s), the corresponding quotient complex, generated by [ωx, i] with i ≥ 0;

• ĈFprel(H, s), generated directly by ωx and counting only disks in classes ϕ with
nz(ϕ) = 0.

To ensure that the differentials are finite, we need to impose a strong admissibility condition
on the Heegaard diagram, as in [30, Section 4.2]. If we only care about CF+

prel(H, s) and

ĈFprel(H, s), a weaker admissibility condition is sufficient; see [30, Theorem 4.15].
To show that the differentials square to zero, Ozsváth and Szabó prove that the con-

tributions from disk and sphere bubbles are zero; see [30, Section 3.7]. Their proof uses
degeneration arguments and the fact that the counts of 0-dimensional moduli spaces of bub-
bles are constant in families. As such, the proof works just as well for any signed counts with
this property; in particular, for those induced by Pin structures as in Section 3.3.

From here, we obtain preliminary Heegaard Floer homology groups:

HF∞
prel(H, s), HF−

prel(H, s), HF+
prel(H, s), ĤFprel(H, s).

4.2. The absolute Z/2-grading. Before moving forward, let us make some comments about
the absolute Z/2-grading grHF used in (39). In [29, Section 10.4], this grading is defined by
asking that a version of Heegaard Floer homology with twisted coefficients, HF∞, is supported
in even degrees.

To see that the argument is not circular, note that it suffices to first define and compute
HF∞ without signs (i.e., using F2 instead of Z). This still defines the absolute Z/2-grading,
and hence a sign on the intersection points Tα ∩ Tβ and a coupled orientation on (Tα,Tβ).
We then use it to upgrade the Floer complex to Z coefficients.

For the purpose of studying naturality, we shall however need a more concrete definition
of the absolute Z/2 grading grHF, which makes no reference to the calculation of HF∞; see
[8, Section 2.4] and [33, Section 3]. An orientation of Tα is equivalent to one of A, and one
of Tβ to one of B. Thus, to define grHF it suffices to specify a coupled orientation on (A,B).

By associating to each alpha or beta curve the disk it bounds in the respective handlebody,
and combining this with Lefschetz duality, we get canonical isomorphisms

A ∼= H2(Uα, ∂Uα;R) ∼= H1(Uα;R),(40)

B ∼= H2(Uβ, ∂Uβ;R) ∼= H1(Uβ;R).(41)

Therefore, A is the dual vector space to H1(Uα;R) and B to H1(Uβ;R). We have a Mayer-
Vietoris sequence

(42) 0 → H2(Y ;R) → H1(Σ;R) → H1(Uα;R)⊕H1(Uβ;R) → H1(Y ;R) → 0.

An orientation on a vector space determines one on its dual. SinceH2(Y ;R) andH1(Y ;R) are
related by Poincaré duality, there is a coupled orientation on them. Furthermore, H1(Σ;R)
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is a symplectic vector space and has a canonical orientation. Combining these, we obtain
an orientation on H1(Uα;R) ⊕ H1(Uβ;R) and hence on A ⊕ B. This produces a coupled
orientation on (A,B) using Lemma 2.18 and Conventions 2.22. (In [8, Section 2.4], at the

end they multiply the orientation on A ⊕ B by (−1)g(g−1)/2. This final sign change is the
same as that needed to go from the concatenated to the shuffled orientation; see Section 2.2.
In our context, the sign change is automatically implemented by the transition to a coupled
orientation, by Convention 2.22.)

It is not hard to see that this definition of grHF can be rephrased more simply as follows.
Since A and B are Lagrangian subspaces in the vector space H1(Σ;R), equipping the latter
with an inner product produces an isomorphism

τA,B : A → B

as in Lemma 2.34 (1). The coupled orientation on (A,B) is obtained by choosing any ori-
entation on A and pairing it with its image under τA,B. We will take this as the working
definition of grHF in our paper.

Remark 4.1. There is also an absolute Z/2 grading on monopole Floer homology, defined by
Kronheimer and Mrowka in [19, Subsection 22.4]. This corresponds to grHF+b1(Y ), which
is an expression that will appear naturally in the statement of Proposition 4.7 below.

4.3. Adjusting the definition. The isomorphism classes of the preliminary Heegaard Floer
groups turn out to be three-manifold invariants. However, in the definition we had to choose

Pin structures P#
α on A and P#

β on B. To make the Heegaard Floer groups themselves into

canonical invariants, we need to get rid of their dependence on this data. We will do this by
tensoring with certain lines (rank one free abelian groups).

Let us make use of the concept of a coupled Spin structure defined in Section 2.3. We
view the vector spaces A and B as vector bundles over a point. Since they are Lagrangian
subspaces of H1(Σ;R), Lemma 2.34 (2) gives a canonical coupled Spin structure on (A,B);
we denote this structure by S#

can.
In Section 4.1 we also introduced a coupled orientation on (A,B): the one defining the

grading grHF. Given the description in Section 4.2, we see that the coupled Spin structure S#
can

produces this coupled orientation on (A,B), under the natural map Spin(g, g) → SO(g, g).
As noted in Remark 2.28, once we fix the coupled orientation, a pair of Pin structures

P#
α on A and P#

β on B gives rise to a coupled Spin structure on (A,B), which we denote

simply by (P#
α , P

#
β ). The space of coupled Spin structures on (A,B) compatible with the

given coupled orientation is homotopy equivalent to RP∞. Since π1(RP∞) = Z/2, there are

exactly two homotopy classes of paths from (P#
α , P

#
β ) to S#

can. If these classes are denoted

γ1 and γ2, we let ℓ(P#
α , P

#
β ) be the rank one abelian group generated by γ1 and γ2 modulo

the relation γ1 = −γ2.
For ◦ ∈ {̂,+,−,∞}, we define the chain complex

CF ◦(H, s) = CF ◦
prel(H, s)⊗ ℓ(P#

α , P
#
β )

with homology

HF ◦(H, s) = HF ◦
prel(H, s)⊗ ℓ(P#

α , P
#
β ).

As we shall soon see, these groups are natural invariants of the three-manifold and the
Spinc structure. We will often denote them by HF ◦(Y, s).

For now, let us prove the first step towards naturality.
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Proposition 4.2. For ◦ ∈ {̂,+,−,∞}, the homology groups HF ◦(H, s) are independent of

the choice of Pin structures P#
α and P#

β , up to canonical isomorphism.

Proof. We will prove this at the level of chain complexes. Let (R#
α , R

#
β ) be another choice for

the pair of Pin structures on (A,B). We claim that the complexes CF ◦(H, s) defined from

(P#
α , P

#
β ) are canonically isomorphic to those from (R#

α , R
#
β ).

Pick paths of Pin structures γ from P#
α to R#

α and η from P#
β to R#

β . They induce

an isomorphism of orientation spaces o(x) from those defined using P#
α and P#

β to those

defined using R#
α and R#

β . The isomorphism is compatible with the differentials, so we

get an isomorphism between the corresponding preliminary Heegaard Floer chain groups
CF ◦

prel(H, s). Moreover, combining γ and η we obtain a path (γ, η) of coupled Spin structures

from (P#
α , P

#
β ) to (R#

α , R
#
β ). Using concatenation with the paths to S#

can, this gives an

isomorphism of lines ℓ(P#
α , P

#
β ) ∼= ℓ(R#

α , R
#
β ). Altogether, we get the desired isomorphism

between the respective CF ◦(H, s).
We need to show that this last isomorphism does not depend on the choices of γ and η.

Since the space of Pin structures has π1 = Z/2 (cf. Remark 2.13), up to homotopy there
are only two possible choices for γ and two for η. Changing such a choice results in a sign
change for the isomorphism on orientation spaces and hence on CF ◦

prel(H, s) (see Lemma 3.4),

but this is cancelled by another sign change for the isomorphism between ℓ(P#
α , P

#
β ) and

ℓ(R#
α , R

#
β ). □

Convention 4.3. We will sometimes drop the Spinc structure s from notation and con-
sider preliminary chain groups CF ◦

prel(H) = CF ◦
prel(Tα,Tβ) with homology HF ◦

prel(H) =

HF ◦
prel(Tα,Tβ), as well as adjusted chain groups CF ◦(H) = CF ◦(Tα,Tβ) with homology

HF ◦(H) = HF ◦(Tα,Tβ). By these we always mean the direct sum over the set S of Spinc

structures that are represented by intersection points in the diagram H. Thus, HF ◦(Tα,Tβ)
may be different from HF ◦(Y ), the latter being the direct sum of HF ◦(Y, s) over all Spinc

structures s.

4.4. More on Pin structures. Our definition of Heegaard Floer homology relies on Pin

structures P#
α and P#

β . Although in Proposition 4.2 we showed that in the end different

choices produce canonically isomorphic groups, in practice it is useful to work with concrete
Pin structures. One way to produce them is as follows.

Definition 4.4. Choose some additional data a, consisting of an ordering of the alpha curves
together with an orientation of each. This trivializes the tangent space TxTα, and lets us

define a trivial Spin structure S#
a on Tα. We can think of it as the product of the trivial Lie

group Spin structures on each αi (with the product taken in the given order). We let P#
a be

the Pin structure on A induced from S#
a .

Similarly, we let P#
b be the Pin structure on B obtained from data b that consists of an

ordering of the beta curves together with an orientation of each.

Remark 4.5. Data a and b as above also specifies orientations of A and B, and hence a coupled
orientation. It is convenient to choose a and b so that this agrees with the coupled orientation
described in Section 4.2.

Going back to the case of general Pin structures, it is worth emphasizing the following
fact.



CANONICAL ORIENTATIONS IN HEEGAARD FLOER THEORY 33

Proposition 4.6. Let (P#
α , P

#
β ) and (R#

α , R
#
β ) be two pairs of Pin structures that represent

the same coupled Spin structure on (A,B). Then, for each x ∈ Tα ∩Tβ, the orientation lines

o(x) constructed from (P#
α , P

#
β ) and (R#

α , R
#
β ) are canonically isomorphic.

Proof. In the proof of Proposition 4.2 we argued that the groups o(x)⊗ℓ(P#
α , P

#
β ) are canon-

ically isomorphic, for any choices of Pin structures. In the particular case when the Pin

structures produce the same coupled Spin structure, the lines ℓ(P#
α , P

#
β ) are canonically

isomorphic by definition. Thus, the same holds for o(x). □

Since the isomorphisms in Proposition 4.6 are compatible with the differentials, it follows
that the preliminary groups CF ◦

prel(H, s) constructed from those pairs are canonically iso-

morphic. Thus, what matters in the construction of CF ◦
prel(H, s) is only the coupled Spin

structure, not its Pin representatives.

4.5. Describing some generators. Observe that the generators of CF ◦(H, s) are elements

of the lines o(x)⊗ ℓ(P#
α , P

#
β ) for x ∈ Tα ∩ Tβ. The following result will be useful.

Proposition 4.7. If x ∈ Tα ∩ Tβ has gr(x) = g (mod 2), i.e. grHF(x) = b1(Y ) (mod 2),

then the line o(x)⊗ ℓ(P#
α , P

#
β ) admits a canonical trivialization.

Proof. In view of the definition of gr(x) in Section 3.2, the condition gr(x) = g (mod 2)
means that the orientation on TxTα ⊕ TxTβ (coming from the coupled orientation) agrees
with the one on TxM . Suppose x = {x1, . . . , xg} with xi ∈ αi ∩ βσ(i), for some permutation
σ. We view each pair (αi, βσ(i)) as Lagrangians in Σ and we choose the coupled orientation
on them so that it agrees with the one on Σ; that is, so that gr(xi) = 1 for all i. The product
of these coupled orientations gives the coupled orientation on (Tα,Tβ).

Let us now choose some additional data a as in Definition 4.4, consisting of an ordering
of the alpha curves together with an orientation of each. With our x fixed, the data a
produces a similar data b on the beta curves, consisting of an ordering of them together with
orientations. Indeed, for the ordering, we simply transplant the ordering of the alpha curves
using the permutation σ (determined by the generator x). For the orientations, we choose
them so that we get the coupled orientation on each (αi, βσ(i)) that we already specified. As

in Definition 4.4, let P#
a and P#

b be the Pin structures induced from a and b.
Let us first prove the lemma in the case where the groups are defined from Pin structures

P#
α = P#

a and P#
β = P#

b for some data a (and the induced data b). In that case, recall that

the orientation space o(x) is associated to an index problem on the cap H, with boundary
conditions interpolating between TxTα and TxTβ. This is the direct sum of the index problems
corresponding to each xi, and therefore o(x) can be canonically identified with the tensor
product of the orientation spaces o(xi) for i = 1, . . . , g; compare Example 3.27. (Since we
trivialized the tangent spaces, we have Spin and not just Pin structures, so Example 3.27
is applicable here.) Because gr(xi) = 1, Lemma 3.21 gives a canonical trivialization for
each of o(xi). Tensoring them together we get a trivialization of o(x). Furthermore, using
Remark 2.36 about the behavior of canonical Spin structures under direct sum, we deduce

that (P#
a , P

#
b ) represents the canonical coupled Spin structure on (A,B). Thus, by choosing

the constant path we trivialize the line ℓ(P#
a , P

#
b ).

Let us now consider the case where P#
α and P#

β are arbitrary. From the proof of Proposi-

tion 4.2 we know that there is a canonical isomorphism between the line o(x)⊗ℓ(P#
α , P

#
β ) and
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the similar line defined using (P#
a , P

#
b ). Since the latter line is trivialized, so is the former.

However, we need to make sure that this trivialization does not depend on the chosen data
a; that is, if we have two sets of data a and a′, their canonical trivializations (defined in the
previous paragraph) are related by the isomorphism from the proof of Proposition 4.2.

If the change in a comes from a change in the orientation of one of the curves αi, note
that there must be a corresponding change in the orientation of the curve βσ(i). Overall, the
coupled orientation and the coupled Spin structure on the pair (αi, βσ(i)) are preserved. It
follows that we are in the situation of Proposition 4.6: The coupled Spin structure being fixed,
the spaces o(xi) (before and after we made the orientation changes) are canonically identified.
The origin of these identifications is the same as that in the proof of Proposition 4.2, so
everything is compatible.

It remains to study the case of a change in the ordering of the alpha curves. It suffices
to consider a transposition, say changing the ordering (α1, α2) to (α2, α1), which must come
in tandem with changing (βσ(1), βσ(2)) to (βσ(2), βσ(1)). This produces a genuine change in
the Pin structures. We obtain a local problem near x, and we can restrict attention to small
neighborhoods of each xi = αi ∩ βσi in Σ, whose product is a neighborhood of x in Symg(Σ),
away from the diagonal. Furthermore, without loss of generality, we can assume that σ is
the identity, and that we are in two dimensions (that is, we focus on the neighborhoods of
x1 and x2, as the rest is not affected by the ordering change).

The problem we are left with is the following. For i = 1, 2, we are given curves αi and βi in
C ∼= R2, intersecting transversely at xi. We may as well assume αi and βi are lines through
xi = 0. We denote x = (0, 0) ∈ C2, Tα = α1 × α2, Tβ = β1 × β2. Because the coupled
orientations are fixed, and we are otherwise free to choose orientations on αi, we can assume
that (α1, β1) and (α2, β2) are both positive bases of R2. Let a and be the data consisting
of the chosen orientations of the curves, together with the ordering (α1, α2); let a

′ be the

similar data with the ordering (α2, α1). These produce Pin structures P#
a and P#

a′ on TxTα.
Similarly, the orderings (β1, β2) and (β2, β1) give data b and b′ and produce Pin structures

P#
b and P#

b′ on TxTβ. The lines o(x)⊗ ℓ(P#
α , P

#
β ) defined using (P#

a , P
#
b ) and (P#

a′ , P
#
b′ ) are

related by two isomorphisms, and our problem is to show that these isomorphisms are the
same.

Specifically, one isomorphism comes from viewing o(x) as a tensor product in two different

ways: o(x1)⊗ o(x2) ∼= o(x2)⊗ o(x1). We combine this with the identity on ℓ(P#
α , P

#
β ), as the

coupled Spin structure is the same for both orderings.
The other isomorphism is described in the proof of Proposition 4.2, where we had to choose

paths γ from P#
a to P#

a′ and η from P#
b to P#

b′ . We let γ be given by the Pin structures
coming from the trivializations of

TxTα ∼= Tx1α1 ⊕ Tx2α2
∼= R2

using the bases

((cos t, sin t), (− sin t, cos t)), t ∈ [0, π/2].

Similarly, we let η come from the trivializations of

TxTβ ∼= Tx1β1 ⊕ Tx2β2
∼= R2

using the same bases as above. The coupled Spin structure is kept constant throughout this

process, so ℓ(P#
α , P

#
β ) is trivialized with the constant path. Furthermore, following these

paths we see decompositions of o(x) as products of two lines, starting with o(x1)⊗ o(x2) and
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ending with o(x2)⊗ o(x1). In other words, we get the same isomorphism as the first one we
described. □

4.6. The homology action. Following [30, Section 4.2.5], we can equip our Heegaard Floer
homology groups HF ◦(Y, s) with an action of the exterior algebra Λ∗(H1(Y ;Z)/Tors). We
have an isomorphism

H1(P(Tα,Tβ);Z) ∼= Z⊕ (H1(Y ;Z)/Tors).

Given a cocycle ζ ∈ Z1(P(Tα,Tβ);Z), we define its action on the preliminary Floer complex
CF∞

prel(H, s) by

∂[ωx, i] =
∑
y∈s

∑
ϕ∈π2(x,y)
µ(ϕ)=1

ζ(ϕ) ·
(
#M̂(ϕ)

)
· [ωy, i− nz(ϕ)].

The same proof as in [30, Proposition 4.17] shows that Aγ is a chain map, depends only
on the homology class of γ, and satisfies A2

γ = 0 on homology. Restricting to [γ] in the

H1(Y ;Z)/Tors yields an action of Λ∗(H1(Y ;Z)/Tors) on HF∞
prel(H, s), which we then tensor

with the identity on ℓ(P#
α , P

#
β ) to get one on HF∞(Y, s). The actions on the other versions

HF ◦(Y, s) are constructed similarly.

4.7. Twisted coefficients. There are yet more variants of Heegaard Floer homology that
can be considered; e.g., with twisted coefficients, as in Section 3.5. In the Heegaard Floer
setting, the group G = π2(x0,x0) maps into Z⊕H1(Y ;Z), and this map is an isomorphism
for g > 1; see [30, Proposition 2.15]. The Z summand captures the quantity nz(ϕ), and is not
relevant, because in the differential we already keep track of this quantity. The more relevant
group is π̂2(x0,x0), which only includes classes ϕ such that nz(ϕ) = 0. This group maps to
H1(Y ;Z), and produces genuine twisted coefficients. Thus, we obtain groups

HF∞(Y, s;A), HF−(Y, s;A), HF+(Y, s;A), ĤF (Y, s;A)

for any module A over Z[H1(Y ;Z)]. Compare [29, Section 8].
In particular, we can consider changes in the Pin structures on the Lagrangians, which

correspond to twisting coefficients by modules of the form Aη,ζ , as in Proposition 3.18. As
explained at the end of Section 3.5, different systems of orientations on the moduli spaces
are parametrized by an affine space on

(43) coker
(
H1(M ;Z/2) → H1(Tα;Z/2)⊕H1(Tβ;Z/2)

)
.

Let M ′ = Symg(Σ − {z}). We have π1(ΩM
′) = π2(M

′) = H2(M
′) = 0, and π1(M

′) =

π1(M) = H1(Σ) = Z2g. Let also P̂(Tα,Tβ) be the space of homotopy classes of Whitney

disks inside M ′. This has π1(P̂(Tα,Tβ)) ∼= H1(Y ;Z) for g > 1.
We have the short exact sequence of a fibration

0 = π1(ΩM
′) → π1(P̂(Tα,Tβ)) → π1(Tα × Tβ) → π1(M

′) → 0.

After we abelianize, the exact sequence splits, because H1(M) = Z2g is free. Therefore we
can dualize it and get a short exact sequence

0 → H1(M ;Z/2) → H1(Tα × Tβ;Z/2) → H1(P̂(Tα,Tβ);Z/2) → 0

so the cokernel in (43) is (at least for g > 1)

H1(P̂(Tα,Tβ);Z/2) ∼= Hom(π1(P̂(Tα,Tβ)),Z/2) ∼= Hom(H1(Y ;Z),Z/2).
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β1
γ1

γ2 γi
β2 βi

θ1 θ2 θi

Figure 4. A handleslide. We draw the β circles in blue and the γ circles in
green. The gray disks are feet of handles that can be connected to other parts
of the diagram.

This exactly corresponds to the different coherent orientation systems considered by Ozsváth
and Szabó in [30, Section 4.2.4]. It was observed there that such systems form an affine space
over Hom(H1(Y ;Z),Z/2).

Thus, on a 3-manifold Y , there are 2b1(Y ) orientation systems. Our choice of coupled Spin
structures picks up a particular one. In [29, Theorem 10.12], Ozsváth and Szabó also choose a
particular one, but in a different way, using their study of HF∞ as a Z[H1(Y ;Z)]-module. We
do not attempt to show that our orientation system corresponds to theirs in general. Rather,
let us focus on the case Y = #g(S1 × S2), which will become relevant to us in Section 5.

For #g(S1 × S2), we have a Heegaard diagram with the β curves isotopic to the α curves;
see [30, Lemma 9.1]. There, they choose the orientation system so that

(44) ĤF (#g(S1 × S2)) ∼= H∗(T
g;Z).

We check that our construction produces the same answer.

Lemma 4.8. Equation (44) holds for the Heegaard Floer groups defined over Z in our setting,

with ĤF (#g(S1 × S2)) equipped with the grHF grading.

Proof. In the genus g diagram where the αi curve is Hamiltonian isotopic to βi, the Lagrangian
tori Tα is Hamiltonian isotopic to Tβ. Further, this isotopy preserves the Lie group Pin

structures. Thus, we are simply computing ĤF (Tα,Tα), which is isomorphic to H∗(Tα;Z)
by Proposition 3.13. This proves the statement as relatively graded groups. The absolutely
graded version also holds, because we know from [29] that it does so when we work with Z/2
coefficients. □

4.8. Handleslides. In proving the invariance of Heegaard Floer homology, a key role will
be played by the maps induced by handleslides, which we discuss here.

There are two kinds of handleslides: among the alpha curves, and among the beta curves.
We will describe the maps associated to beta handleslides; those associated to alpha han-
dleslides are similar. Furthermore, we focus on the minus version of HF for concreteness.

Following [30, Section 9], a beta handleslide consists of replacing a curve collection β =
{β1, . . . , βg} by another collection γ = {γ1, . . . , γg} such that:

• The curve γ1 is obtained from β1 by sliding it over β2;
• For i > 1, the curves γi is obtained from βi by a small Hamiltonian isotopy;
• For all i, the curve γi intersects βi in two points, and does not intersect any other
beta curve.

See Figure 4. We let Tγ = γ1 × · · · × γg denote the resulting Lagrangian torus.
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Recall that in the construction of the preliminary groups HF−
prel(Tα,Tβ) we used Lie group

Pin structures on Tα and Tβ, coming from Pin structures P#
α and P#

β on the vector spaces

A and B from (37) and (38). Since the handleslide does not change the Heegaard splitting
(only the diagram), the same vector space B can be identified with the tangent space to Tγ ,
and we will use the same Pin structure P#

β to get one on Tγ .
In [32], Perutz shows that a handleslide induces a Hamiltonian isotopy ψ :M →M taking

Tβ to Tγ . The following lemma shows that our chosen Pin structures on the Lagrangian tori
are preserved by ψ.

Lemma 4.9. The Hamiltonian isotopy ψ induced by a handleslide takes the Lie group Pin

structure on Tβ from P#
β on B to the Lie group Pin structure on Tγ coming from the same

P#
β (up to canonical homotopy of Pin structures).

Proof. Pick a point pi on each curve βi, so that p = p1 × · · · × pg is a basepoint on Tβ. From
the description of ψ in [32], we can arrange so that in a neighborhood of each pi, the curve γi
is a small translate of the corresponding βi (including for i = 1); and the isotopy ψ is locally
given by the product of these translations. Thus, if we identify TpTβ and Tψ(p)Tγ to B, we
see that the Pin structures on these two tangent spaces both come from P#

β . To obtain the

Lie group Pin structures on the whole Lagrangians Tβ and Tγ , we translate the ones at the
given points.

Let us identify each βi to a curve (still denoted βi) on Tβ, namely the product of βi and
the basepoints {zj} for j ̸= i. For i = 1, . . . , g, let β′i ⊂ Tγ be the image of βi ⊂ Tβ under
the Hamiltonian isotopy ψ. The collection of curves {β′i} differ from {γi} by a linear shear L
on Tγ . The transformation L takes translations on the torus to other translations, and the
image of the Pin structure on Tβ under ψ is invariant under these translations, just like the

given Pin structure on Tγ (the one coming from P#
β ). Since these two Pin structures on Tγ

agree at a point, they agree everywhere. □

Remark 4.10. The fact that we chose Lie group Pin structures on the alpha and beta curves
was key in the proof of handleslide invariance. Consider for example the alternative of equip-
ping the Lagrangian tori with the Pin structure induced by the product of bounding Spin
structures on each curve. (Recall that we can take products of Spin but not Pin structures;
see Remark 2.15.) This “bounding Pin structure” would not have been invariant under
reparametrizations of the torus by linear maps L ∈ GL(n,Z). For example, up to isomor-
phism, the bounding Pin structure on T 2 differs from the Lie group Pin structure (which we
know is independent of reparametrization) by the class (1, 1) ∈ H1(T 2;Z/2) = Z/2 ⊕ Z/2.
Clearly, this class is not preserved by the action of GL(n,Z); e.g. the shear (x, y) 7→ (x, x+y)
takes it to (1, 0).

Since handleslides give Hamiltonian isotopies of the Lagrangian tori, we can associate con-
tinuation maps to them, which are isomorphisms on Floer homology. In our case, a priori we
get isomorphisms on the preliminary Heegaard Floer homology groups from Section 4.1. To

get the adjusted groups from Section 4.3, we tensor the preliminary groups with ℓ(P#
α , P

#
β ).

Since this line is the same after doing the handleslide (the space B stays fixed), we can simply

tensor the preliminary map with the identity on ℓ(P#
α , P

#
β ) and obtain an isomorphism

Γα
β→γ : HF−(Tα,Tβ, s)

∼=−→ HF−(Tα,Tγ , s).
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Nevertheless, for the proofs in the rest of the paper, it will be helpful to make a closer
connection to the current Heegaard Floer literature. Therefore, we will work with triangle
maps instead of continuation maps. Triangle maps are used in the original proof of handleslide
invariance, in [30, Section 9].

The treatment of handleslides in [30, Section 9] starts by showing that

HF−(Tβ,Tγ , s0) ∼= Z[U ]⊗H∗(T
g;Z),

and picking a generator Θβ,γ of the top degree part of this group. (Here, s0 is the torsion
Spinc structure. This is the only Spinc supported by the β-γ diagram, so we can drop it from
the notation, following Convention 4.3.) Then, we consider the product map

FTα,Tβ ,Tγ : HF−(Tα,Tβ, s)⊗HF−(Tβ,Tγ) → HF−(Tα,Tγ , s)

as in (33). We define the following map associated to the handleslide:

(45) Ψα
β→γ : HF−(Tα,Tβ, s) → HF−(Tα,Tγ , s), x 7→ FTα,Tβ ,Tγ (x⊗Θβ,γ).

It is shown in [30, Section 9] that this map is an isomorphism (for suitable coherent orientation
systems).

Let us construct Ψα
β→γ in our setting, with the signs coming from Lie group Pin struc-

tures. The work of Perutz [32] shows that Tγ is Hamiltonian isotopic to Tβ. Therefore, by
Proposition 3.13 (keeping track of the basepoint as in HF−), we have canonical isomorphisms

(46) HF−
prel(Tβ,Tγ) ∼= HF−

prel(Tβ,Tβ) ∼= Z[U ]⊗H∗(Tβ; |λtopTTβ|) ∼= Z[U ]⊗H∗(T
g).

To go from the preliminary to the adjusted Heegaard Floer groups, we tensor them with

ℓ(P#
β , P

#
β ). Note that the pair (P#

β , P
#
β ) gives exactly the canonical coupled Spin structure

S#
can on (B,B). It follows that the line ℓ(P#

β , P
#
β ) is canonically trivialized (by the constant

path), so we also have canonical isomorphisms

(47) HF−(Tβ,Tγ) ∼= HF−(Tβ,Tβ) ∼= Z[U ]⊗H∗(Tβ; |λtopTTβ|) ∼= Z[U ]⊗H∗(T
g).

Further, note that (Σ,β,γ) is a Heegaard diagram for the manifold #g(S1 × S2) with
b1 = g, and the absolute mod 2 grading grHF on its Heegaard Floer homology coincides with
that on Z[U ] ⊗H∗(T

g) under the above isomorphisms. (This follows from the definition of
the mod 2 grading in terms of HF∞ in [29, Section 10.4].) Moreover, in this case formula
(39) implies gr = grHF.

The chain complex CF−
∗ (Tβ,Tγ) has 2g generators, the same as its homology, so the

differential must be zero. Consider the intersection point in the top homological degree:

Θβ,γ = {θ1, . . . , θg}

with θi ∈ βi ∩ γi as in Figure 4. Since gr(Θβ,γ) = g, Proposition 4.7 tells us that the line

o(Θβ,γ)⊗ ℓ(P#
β , P

#
β )

is canonically trivialized. Since we already know the same about ℓ(P#
β , P

#
β ), we get that

o(Θβ,γ) is canonically trivialized. Therefore, we can identify Θβ,γ with the positive generator

of this orientation space, and thus view it as a generator of the Floer homology HF−
prel(Tβ,Tγ).

We pick this Θβ,γ to define the handleslide map on preliminary groups as a triangle map, as

in (45). We then tensor it with the identity on ℓ(P#
α , P

#
β ) to get the true handleslide map

(48) Ψα
β→γ : HF−(Tα,Tβ, s) → HF−(Tα,Tγ , s).
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Remark 4.11. In general, triangle maps are defined only on preliminary Heegaard Floer
groups (following the recipe in Section 3.6). To define them on the adjusted groups HF−, we
would need maps

ℓ(P#
α , P

#
β )⊗ ℓ(P#

β , P
#
γ ) → ℓ(P#

α , P
#
γ ).

A natural definition of these maps only exists in certain cases, for example when P#
β = P#

γ

as in our situation.

Convention 4.12. By a slight abuse of notation, when discussing handleslides, from now on
we will not focus on the distinction between preliminary and adjusted Heegaard Floer groups.

Since ℓ(P#
β , P

#
β ) is canonically trivialized we will write Θβ,γ for the generator of HF

−(Tβ,Tγ)
as well, and describe the map in (48) as

Ψα
β→γ = FTα,Tβ ,Tγ (· ⊗Θβ,γ).

The fact that we define it like this on the preliminary groups and then tensor with the identity
is implicit.

Proposition 4.13. The map Ψα
β→γ from (48) is an isomorphism.

Proof. This appears as Theorem 9.5 in [30]. We do not repeat the proof, but rather explain
what needs to be modified when we use canonical orientations instead of coherent orientations.
To show that Ψα

β→γ is an isomorphism, Ozsváth and Szabó construct an inverse

Ψα
γ→δ : HF−(Tα,Tγ , s) → HF−(Tα,Tδ, s), x 7→ FTα,Tγ ,Tδ

(x⊗Θγ,δ),

where δ is a collection of curves Hamiltonian isotopic to β (as in Figure 5), and HF−(Tα,Tδ)
is identified with HF−(Tα,Tδ) using this isotopy. Showing that Ψα

γ→δ ◦ Ψα
β→γ = id boils

down to proving the relation

(49) FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = Θβ,δ

which involves counting index zero holomorphic triangles in the diagram in Figure 5. There
is only one such triangle (in the symmetric product), which is the product of the g darkly
shaded triangles on the Heegaard surface.

Let us choose counterclockwise orientations on each of the β, γ, and δ curves in Figure 5.
We also order the curves in each set with those indexed by 1 and 2 being the ones involved in
the handleslide, again as shown in Figure 5. This equips the Lagrangians with orientations,
in a way compatible with their existing coupled orientations coming from the grading. In
fact, we now have data that specifies a Pin structure (and even a Spin structure) on each
Lagrangian, as in Definition 4.4. Furthermore, each curve becomes an oriented Lagrangian
on the Heegaard surface, which we also endow with its Lie group Spin structure. Using the
given ordering of the curves, we get product Spin structures on the tori. Then, all the vertices
of the darkly shaded triangles have gr = 1. In the setting of coherent orientations, we know
from Example 3.25 that each of the darkly shaded triangles gets a sign of +1; see Figure 3
(b), with α′, β′ and γ′ replaced by βi, γi, δi, in this order. Since the three triangles come with
a positive sign, so does their product; see Example 3.27. Relation (49) follows from here. □

This concludes the description of the triangle map induced by a beta handleslide on HF−.
The case of an alpha handleslide (changing α into a new curve collection γ) is similar, with
the triangle map

Ψα→γ
β : HF−(Tα,Tβ, s) → HF−(Tγ ,Tβ, s), x 7→ FTγ ,Tα,Tβ

(Θγ,α ⊗ x)

involving the top degree generator Θγ,α ∈ HF−(Tγ ,Tα).
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β1

γ1

γ2 γi

β2 βi

δ1 δ2 δi

Figure 5. An index zero holomorphic triangle contributing +1.

The maps on the other versions of HF are defined similarly. In the case of HF∞ and

ĤF , in Equation 47 we need to replace Z[U ] with Z[U,U−1] and Z, respectively, and use
the corresponding Θ elements. In the case of HF+, we still use the Θ element on HF− to
construct the triangle map; see Theorem 8.12 and Section 9 in [30].

4.9. Stabilizations. We now turn to maps induced by stabilizations. The stabilization move
involves replacing a Heegaard diagram H = (Σ,α,β) with H′ = (Σ′,α′,β′), where Σ′ is the
connected sum of Σ with a (two-dimensional) torus E, and the curve collections α′, β′ are
obtained from α resp. β by adding two new curves on E: αE and βE , intersecting in a single
point xE . (Since here we work with embedded Heegaard diagrams, E is a torus inside Y ,
disjoint from Σ, and we take their connect sum inside Y .) We equip the new curves with the
coupled orientation induced from the one on E ∼= αE × βE . We also equip them with the Lie

group Pin structures P#
α,E and P#

β,E (recall that canonical choices of Lie group Pin structures

exist in dimension 1). Together, the coupled orientation and Pin structures produce the

canonical coupled Spin structure S#
can,E on (αE , βE). It follows that the line ℓ(P#

α,E , P
#
β,E) is

canonically trivialized.

Starting from Pin structures P#
α and P#

β in the setting before stabilization, we can take

the product of the coupled Spin structure (P#
α , P

#
β ) with S#

can,E and obtain a coupled Spin

structure (P#
α′ , P

#
β′ ) after stabilization. Since canonical coupled Spin structures are preserved

by products (cf. Remark 2.36), we have canonical isomorphisms

(50) ℓ(P#
α′ , P

#
β′ ) ∼= ℓ(P#

α , P
#
β )⊗ ℓ(P#

α,E , P
#
β,E)

∼= ℓ(P#
α , P

#
β ).

Recall from Proposition 4.6 that the orientation spaces o(x) depend on Pin structures only
through their combined coupled Spin structure. Coupled Spin structures behave well with
regard to products, and in fact we have isomorphisms

o(x)⊗ o(xE) ∼= o(x× xE),

for all x ∈ Tα ∩ Tβ. (Compare Example 3.27.)
The proof of stabilization invariance in [30, Section 10] is based on a neck stretching

argument. Ultimately, we identify the J-holomorphic strips on Symg+1(Σ′) (contributing to
the Heegaard Floer group defined from H′) with products of those on Symg(Σ) (contributing
to the Heegaard Floer group defined from H) and on E (with boundaries on αE and βE).
We end up in the situation of Example 3.27 and obtain an isomorphism

(51) HF−
prel(Tα′ ,Tβ′) ∼= HF−

prel(Tα,Tβ)⊗Z[U ] HF
−
prel(αE , βE).

Strictly speaking, to be in the setting of Example 3.27 one needs to lift the coupled Spin to
Spin structures; but the resulting isomorphism does not depend on this lift.
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Combining (51) with (50), we also get an isomorphism

HF−(Tα′ ,Tβ′) ∼= HF−(Tα,Tβ)⊗Z[U ] HF
−(αE , βE).

Observe that (E,αE , βE) is a Heegaard diagram for S3. The group HF−(αE , βE) ∼=
HF−(S3) is a rank one free module over Z[U ] supported in grading grHF = 0, which by

formula (39) corresponds to gr = 1. Lemma 3.21 (a) says that the line o(xE)⊗ ℓ(P#
α,E , P

#
β,E)

is canonically trivialized; so we can view HF−(αE , βE) as being generated by xE . (Compare
Proposition 4.7.) We obtain the desired stabilization isomorphism:

(52) S = · ⊗ xE : HF−(Tα,Tβ)
∼=−→ HF−(Tα′ ,Tβ′).

The stabilization isomorphisms for the other variants of HF are constructed similarly.

4.10. Invariance. We are now ready to prove a weak version of Theorem 1.1: we establish
the existence of isomorphisms between Heegaard Floer homologies associated to different
Heegaard diagrams for the same 3-manifold. We leave the proof that this isomorphisms are
canonical for the next section.

For simplicity, we will denote by HF ◦ any of the variants of Heegaard Floer homology,
◦ ∈ {̂,+,−,∞}.

Proposition 4.14. Let Y be a closed, oriented 3-manifold equipped with a basepoint z ∈ Y
and a Spinc structure s. Then, the isomorphism class of the Heegaard Floer homology HF ◦

(defined using Pin structures on the Lagrangian tori) is an invariant of the pair (Y, s).

Proof. Following [30], we have to prove invariance under three kinds of moves on Heegaard
diagrams: Hamiltonian isotopies of the alpha and beta curves, handleslides of the alpha and
beta curves, and stabilizations.

Hamiltonian isotopies of the alpha and beta curves induce Hamiltonian isotopies of the
Lagrangian tori, and these preserve the Lie group Pin structures. Then, as usual in Floer
theory, continuation maps associated to Hamiltonian isotopies give rise to isomorphisms
between the Floer homologies.

Handleslides were discussed in Section 4.8. We associate to them triangle maps of the form
Ψα

β→γ , and Proposition 4.13 shows that these are isomorphisms. Similarly, to stabilizations
we associate the isomorphisms S defined in Section 4.9.

So far we have only discussed pointed Heegaard moves, i.e. those supported away from the
basepoint z. It is shown in [30, Proposition 7.1] that any two Heegaard diagrams representing
the same Y (possibly with different basepoints) become diffeomorphic after a finite sequence
of pointed Heegaard moves. It follows that the isomorphism class of HF ◦ is independent of
z. □

Remark 4.15. If we were only interested in Proposition 4.14 (and not in the naturality results
discussed in the next section), there would be no need of coupled Spin structures or of
adjusting the preliminary Heegaard Floer groups as in Section 4.3. We could have chosen any
Lie group Pin structures on the Lagrangian tori, and worked with the preliminary Heegaard
Floer groups. Indeed, up to (non-canonical) isomorphism, these are the same as the adjusted
groups.

5. Naturality

To complete the proof of Theorem 1.1, it remains to show that the isomorphisms induced
by (pointed) Heegaard moves on HF ◦ are natural. In other words, if we go from one Heegaard
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diagram H to another diagram H′ by a sequence of moves, the resulting isomorphism between
the Heegaard Floer homologies of H and H′ does not depend on the sequence of moves we
chose.

In [16], Juhász, Thurston and Zemke gave a list of conditions that need to be checked to
ensure that naturality holds for a 3-manifold invariant defined from Heegaard diagrams. We
review here some of their set-up. While they work with sutured manifolds, we will restrict
here to based 3-manifolds, for simplicity; this is the class Sman in their notation.

Remark 5.1. When talking about naturality, it is important to fix the basepoint z. Even
over F2, when one moves z to another basepoint z′ by following a path on Y , there is an
isomorphism between the Floer homologies that depends on this path. See [49], [46].

5.1. Strong Heegaard invariants. We define an isotopy diagram to be an equivalence
class of Heegaard diagrams (for based 3-manifolds), where two diagrams are equivalent if the
underlying Heegaard surfaces are the same, their alpha curves differ by isotopies, and their
beta curves differ by isotopies. Further, we say that two isotopy diagrams are α-equivalent
if they differ by a sequence of α-handleslides. We define β-equivalence similarly. (Of course,
all isotopies and handleslides here are supposed to avoid the basepoint.)

We let G be the oriented (multi-)graph whose vertices are all isotopy diagrams, and whose
edges are associated to diagram moves: α-equivalences, β-equivalences, stabilizations, desta-
bilizations, and diffeomorphisms. If we restrict to only one kind of these moves, we denote
the respective subgraphs (with the same vertices as G) by Gα, Gβ, Gstab and Gdiff .

Definition 5.2. A distinguished rectangle in G is a subgraph

H1

f
��

e // H2

g

��

H3
h // H4

such that one of the following holds:

(1) Both e and h are α-equivalences, whereas f and g are β-equivalences;
(2) Both e and h are equivalences of the same type (α or β), whereas f and g are

stabilizations;
(3) Both e and h are equivalences of the same type, while f = g is a diffeomorphism.
(4) All of e, f , g and h are stabilizations, with e and h both consisting of replacing the

same disk D1 in the Heegaard surface with the same punctured torus T1, and similarly
f and g both consisting of replacing a disk D2 with a punctured torus T2. We require
that D1 ∩D2 = ∅ and T1 ∩ T2 = ∅;

(5) Both e and h are stabilizations, whereas f and g are diffeomorphisms, taking one
stabilization to the other.

We also need the notion of a simple handleswap, which is a triangle in G consisting of an α-
equivalence (a handleslide), a β-equivalence (another handleslide), and a diffeomorphism, all
being the identity except on a punctured genus two surface, where they look like in Figure 6.

Definition 5.3. Let C be a category. A strong Heegaard invariant is an assignment F : G → C
that takes the vertices of G (isotopy diagrams) to objects in C, and edges of G to isomorphisms
in C, with the following properties:

(1) Functoriality: The restrictions of F to Gα, Gβ, and Gdiff are functors. Further, if e
is a stabilization and e′ the corresponding destabilization, then F (e′) = F (e)−1.
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α2

α1

β2

β1

β′
2

α′
1

H1

H2 H3

diffeomorphism α-handleslide

β-handleslide

Figure 6. A simple handleswap. We reproduce here Figure 4 in [16]. The
dashed curve is the boundary of a genus two surface obtained by identifying
the boundaries of the grayed circles in pairs. (In each diagram, the circles at
the same height are identified via reflection in a vertical axis). The α circles
are in red and the β circles in blue.

(2) Commutativity: For every distinguished rectangle in G, applying F yields a com-
mutative diagram in C;

(3) Continuity: If e is an edge in G associated to a diffeomorphism ψ from the same
diagram to itself, and ψ is isotopic to the identity, then F (e) is the identity;

(4) Handleswap invariance: For every simple handleswap

H1

e

!!

H3

g

OO

H2
f
oo

the composition F (g) ◦ F (f) ◦ F (e) is the identity.

Juhász, Thurston and Zemke proved that strong Heegaard invariants are natural:

Theorem 5.4 (Theorem 2.38 in [16]). Let F : G → C be a strong Heegaard invariant. If two
isotopy diagrams H1 and H2 are related by a path of arrows in G, then the isomorphism from
F (H1) to F (H2) induced by composing the morphisms along the path is independent of the
choice of this path.

In [16, Theorem 2.33 (2)], they further proved that the HF− for ◦ ∈ {̂,+,−,∞}, defined
without signs, are strong Heegaard invariants into the category of F2[U ]-modules. We need
to show the same thing with signs, i.e., that they are strong Heegaard invariants into the
category of Z[U ]-modules. (A weaker version of this claim, in the projective category of
Z[U ]-modules where morphisms are defined up to a sign, was proved by Gartner in [12].)

5.2. Loops of handleslides. In our context it is helpful to decompose each α- and β-
equivalence f into a sequence of handleslides, and define F (f) as the composition of maps
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associated to those handleslides. In [16, Appendix A], Juhász, Thurston and Zemke describe
a set of conditions that produce a strong Heegaard invariant, using maps induced by han-
dleslides instead of equivalences. More details for their proofs appear in the work of Qin
[35].

First, if f is an equivalence, to prove that the map F (f) is well-defined (that is, it does not
depend on how we present f as a composition of handleslides), we would need to show that a
loop of handleslides produces the identity. Definition A.3 and Proposition A.5 in [16] give a
finite set of types of such loops that generate all others. To describe them, let us first define
an attaching set on a based surface (Σ, z) to be an isotopy class of an unordered collection of
g disjoint simple closed curves β1, . . . , βg on Σ \ {z} that are linearly independent in H1(Σ).
For example, the collections α and β in a Heegaard diagram are attaching sets. (Unlike in
[16], here we pick β instead of α as the notation for a typical attaching set. This is because
β-handleslides, where we fix the α curves, are more commonly considered in Heegaard Floer
theory; e.g. in [30] and in Section 4.8 of this paper. Of course, this convention is of little
importance.)

Definition 5.5. A handleslide loop is one of the following sequences of attaching sets on Σ
connected by handleslides:

(1) A slide triangle, formed of three attaching sets of the form

{β1, β2} ∪ β⃗ {β2, β3} ∪ β⃗

{β1, β3} ∪ β⃗

where β1, β2, β3 bound a pair-of-pants, and β⃗ is a fixed collection of g − 2 curves.
(2) A commuting slide square, formed of four attaching sets of the form

{β1, β2, β3, β4} ∪ β⃗ {β′1, β2, β3, β4} ∪ β⃗

{β1, β2, β′3, β4} ∪ β⃗ {β′1, β2, β′3, β4} ∪ β⃗

where β′1 is obtained by sliding β1 over β2, and β
′
3 is obtained by sliding β3 over β4.

Here, β⃗ is a fixed collection of g − 4 curves.
(3) A square of the form

{β1, β2, β3} ∪ β⃗ {β′1, β2, β3} ∪ β⃗

{β′′1 , β2, β3} ∪ β⃗ {β′′′1 , β2, β′3, β4} ∪ β⃗

where β′1 is obtained by sliding β1 over β2, whereas β
′′
1 is obtained by sliding β1 over

β3, and β′′′1 is obtained by sliding β′1 over β3 (or, equivalently, sliding β′′1 over β2).

Here, β⃗ is a fixed collection of g − 3 curves.
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(1) (2)

(5) (6)

(3) (4)

β′′
1

β2
β1 β3

β1

β2
β3

β4

β′
3

β′
1

β1 β1

β2

β2

β3
β′
1

β′
1

β′′
1 β′′′

1

β′′′
1

β2

β3 β′
1

β′
3

β1

β2 β3

β′
1

β′′
1

β′
2

β1

Figure 7. The six types of handleslide loops.
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(4) A square of the form

{β1, β2, β3} ∪ β⃗ {β′1, β2, β3} ∪ β⃗

{β1, β2, β′3} ∪ β⃗ {β′1, β2, β′3} ∪ β⃗

where β′1 is obtained by sliding β1 over β2, and β
′
3 is obtained by sliding β3 over β2,

so that the two slides are happening along arcs that reach β2 from opposite sides.

Here, β⃗ is a fixed collection of g − 3 curves.
(5) A square of the form

{β1, β2} ∪ β⃗ {β′1, β2} ∪ β⃗

{β′′1 , β2} ∪ β⃗ {β′′′1 , β2} ∪ β⃗

where β′1 and β′′1 are both obtained by sliding β1 over β2, but from opposite sides;

and β′′′1 is obtained from β′1 by doing both of these slides over β2. Here, β⃗ is a fixed
collection of g − 2 curves.

(6) A pentagon of the form

{β1, β2, β3} ∪ β⃗

{β′1, β2, β3} ∪ β⃗ {β1, β′2, β3} ∪ β⃗

{β′′1 , β2, β3} ∪ β⃗ {β′′1 , β′2, β3} ∪ β⃗

where β′1 is obtained from β1 by sliding over β2, whereas β
′
2 is obtained from β2 by

sliding it over β3, and β
′′
1 is obtained from β′1 by sliding it over β3 (or, equivalently,

from β1 by sliding it over β′2). Here, β⃗ is a fixed collection of g − 3 curves.

See Figure 7, which is based on Figures 21 and 22 in [16].

We also need one other loop, which involves stabilizations in addition to handleslides.
This is the stabilization slide from [16, Definition 7.7]. It was described there as a triangle
where two edges are stabilizations, and one is an equivalence. Since that equivalence is the
composition of two handleslides, in our context the triangle becomes a square.

Definition 5.6. A stabilization β-slide is a square composed of four Heegaard diagrams that
differ locally as in Figure 8. A stabilization α-slide is similar, with the alpha and beta curves
reversed.

We let G′ be the oriented (multi-)graph whose vertices are all isotopy diagrams, and whose
edges are associated to diagram moves: α-handleslides, β-handleslides, stabilizations, desta-
bilizations, and diffeomorphisms. Note that G′ is a subgraph of G, with the same vertices but
fewer edges.
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stabilization

stabilization

β-handleslide

β-handleslide

Figure 8. A stabilization slide. The two handleslides are performed along
the same β-curve, but the second is done through the handle.

Theorem 5.7 (Theorem A.6 in [16]; Theorem 1.3 in [35]). Let C be a category. Suppose we
are given an assignment F : G′ → C that takes the vertices of G (isotopy diagrams) to objects
in C, and edges of G′ to isomorphisms in C, with the following properties:

(1) Functoriality: The restriction of F to Gdiff (which is a subgraph of G′) is a functor.
Further, if e is a stabilization and e′ the corresponding destabilization, then F (e′) =
F (e)−1.

(2) Commutativity along distinguished rectangles: For every distinguished rectan-
gle in G′ (i.e., such that the only equivalences involved are handleslides), applying F
yields a commutative diagram in C;

(3) Continuity: condition (3) in Definition 5.3;
(4) Handleswap invariance: condition (4) in Definition 5.3;
(5) Commutativity along handleslide loops: F ′ commutes along any of the han-

dleslide loops in Definition 5.5;
(6) Commutativity along stabilization slides: F ′ commutes along any stabilization

slide (see Definition 5.6).

Then, F ′ extends uniquely to a strong Heegaard invariant F : G → C.

Remark 5.8. The original stabilization slide from [16, Definition 7.7] is an example of a
distinguished rectangle in G, where one horizontal edge is trivial, the other is the composition
of the two handleslides, and the vertical edges are the stabilizations. Since one edge is a
composition of two handleslides rather than a single handleslide, the stabilization slide does
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not count as a distinguished rectangle in G′. This is the reason for listing it separately from
condition (2).

5.3. Heegaard Floer homology as a strong Heegaard invariant.

Proof of Theorem 1.1. We focus on the minus version. In view of Theorem 5.4, it suffices
to show that HF− is a strong Heegaard invariant. Juhász, Thurston and Zemke did this
in [16, Theorem 2.33 (2)] for HF− as an F2[U ]-module, by directly checking the conditions
in Definition 5.3. Here we work with Z[U ]-modules, and we will check the conditions in
Theorem 5.7 instead.

We view HF− as an assignment from G′ to Z[U ]-modules. Notice that in Section 4.1, HF−

is defined on (admissible) Heegaard diagrams, rather than isotopy diagrams. We define it on
an isotopy diagram as the colimit of the transitive system of Heegaard Floer homologies over
all admissible Heegaard diagrams that produce the given isotopy diagram; see [16, Definition
9.19]. To construct the colimit we use the continuation maps defined in [30, Section 7.3],

which we denote by Γα
β→β′ or Γα→α′

β .

To have a well-defined colimit, we further need to ensure that the continuation maps relat-
ing Heegaard Floer homologies give rise to a transitive system in the sense of [16, Definition
1.1]; i.e., that loops of isotopies induce the identity on Heegaard Floer homology. We can
decompose such loops into smaller (triangular) loops such that the quadruple Heegaard dia-
gram for each loop is admissible; this can be done as in the proofs of Lemmas 9.7, 9.10, 9.12
in [16], which in turn are based on Lemma 9.5 in [16]. A typical such triangular loop is

(Σ,α,β, z) // (Σ,α,β′, z)

ww

(Σ,α,β′′, z)

gg

where the quadruple diagram (Σ,α,β,β′,β′′, z) is admissible. We claim that

(53) Γα
β′′→β ◦ Γα

β′→β′′ ◦ Γα
β→β′ = id .

For a punctured surface (Σ, z) of genus g > 0, the identity component of its diffeomorphism
group is contractible; see [4], [5]. It follows that the composition of isotopies taking β →
β′ → β′′ → β is homotopic to the identity. Admissibility ensures that we can associate a
continuation map to this homotopy, which induces a chain homotopy between the maps on
Heegaard Floer complexes and the identity; passing to homology, we obtain (53).

The other kind of triangular loop, where the alpha curves vary, is entirely analogous. This
completes the proof that we have a transitive system, and therefore HF− is well-defined on
isotopy diagrams.

Remark 5.9. In [16, Section 9.1], to define HF− over F2[U ] for isotopy diagrams, the authors
proceeded differently: they assigned triangle maps to isotopies, and they also showed that
these triangle maps are the same as continuation maps. They proved that the triangle maps
form a transitive system by making use of the uniqueness of top degree generators of the form
Θβ,β′ or Θα,α′ over F2[U ]. Over Z[U ], for arbitrary isotopies, it is unclear which triangle maps
to consider, because there are two choices (differing by a sign) for the top degree generators.

Next, we need to assign maps to the edges in G′ (i.e. to moves between isotopy diagrams).
For an α- or β-handleslide, we use the maps Ψα→γ

β and Ψα
β→γ , constructed in Section 4.8. To

a diffeomorphism between diagrams we assign the obvious identification of Floer homologies.
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To a stabilization we assign the map S from Equation (52), and to a destabilization its
inverse.

Convention 5.10. Throughout this proof, when discussing Heegaard moves appearing in a
multiple Heegaard diagram, we will draw pictures where each curve is oriented, and there is
an ordering of the curves in each attaching set. The orientation choices will be made carefully,
so as to be compatible with how the coupled orientations for handleslides and stabilizations
were defined in Sections 4.8 and 4.9. (Reversing all the orientations at the same time would
produce an equally valid picture.) We will then have data to specify Spin structures on each
Lagrangian, as in Definition 4.4. This will enable us to appeal to the product principle from
Example 3.27, just as we did in the proof of Proposition 4.13.

We now proceed to check the conditions in Theorem 5.7.

(1) Functoriality: This is immediate from the definitions.

(2) Commutativity along distinguished rectangles: There are five types of such rect-
angles to check; see Definition 5.2. Type (1) is commutation between α- and β-handleslides,
i.e., a relation of the form

Ψα→α′

β′ ◦Ψα
β→β′ = Ψα′

β→β′ ◦Ψα→α′
β .

This follows from the A∞ relations for polygon maps; compare [16, Proposition 9.10 (3)]. The
proofs of commutativity along the other four types of distinguished rectangles are just as in
[16, Section 9.2]. The arguments are based on choosing specific almost complex structures
suitable for diffeomorphisms and stabilizations, and do not involve the signs in an essential
way. The only thing of note is for type (4), which is the commutation of two stabilizations;
there, we use the fact that coupled Spin structures behave well with regard to direct sums
(see Remark 2.36), and in particular that the result of two direct sums does not depend on
their order.

(3) Continuity: The proof of this over F2[U ] in [16, Proposition 9.27] is based on relating
continuation maps to changes in the almost complex structure, and works just as well over
Z[U ].

(4) Handleswap invariance: The proof of invariance under a simple handleswap in
[16, Section 9.3] (over F2[U ]) is based on degenerations (neck-stretching) to reduce it to
calculations in the genus 2 picture in Figure 6. The degenerations involve passing to Lipshitz’s
cylindrical reformulation of Heegaard Floer homology [21]. These degeneration arguments
can be extended to the signed case (over Z[U ]); for an explanation, see Section 5.4 below.

This reduces the problem to several curve counts in the genus 2 picture. They involve
understanding the effect of the two handleslides in Figure 6. Let us discuss the α-handleslide.
(The β-handleslide is treated similarly.) The α-handleslide is shown in Figure 9, which is
based on Figure 59 in [16]. We have a triple pointed Heegaard diagram (Σ0,α

′
0,α0,β0, p0),

where Σ0 is a surface of genus two with basepoint p0 and three attaching sets:

α′
0 = {α′

1, α
′
2}, α0 = {α1, α2}, β0 = {β1, β2}.

Let

a = {a1, a2} = Tα0 ∩ Tβ0 , b = {b1, b2} = Tα′
0
∩ Tβ0 .

Let also Θ = {θ1, θ2} ∈ Tα′
0
∩ Tα0 be the maximal degree generator, as shown in Figure 9.

We equip the curves on Σ0 with orientations and orderings as shown in the figure, following
Convention 5.10.
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β2

β1

α2
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α′
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Figure 9. The α-handleslide from Figure 6.

The triangle map for the α-handleslide is computed (mod 2) in Proposition 9.31 of [16].
We claim that the same calculation holds over Z. In the F2 calculation, there are three points
at which explicit moduli spaces are counted (mod 2). We discuss them in turn, explaining
how to refine the counts to get the answer in Z.

The first count appears in Lemma 9.52 in [16]. The lemma states that the differential on

ĈF (Σ0,α
′
0,α0, p0) vanishes. This is true in the signed case as well, because the rank of the

Floer homology is 4, according to Lemma 4.8.
Another explicit count is in Lemma 9.53 in [16], which states that the map

Ψ
α0→α′

0
β0

: ĈF (Σ0,α0,β0, p0) → ĈF (Σ0,α
′
0,β0, p0)

satisfies Ψ
α0→α′

0
β0

(a) = b. There is a unique holomorphic triangle (in the symmetric product)

connecting Θ,a and b, shown in Figure 9 as the product of the two darkly shaded triangles.
Each of these two triangles has edges oriented as in Figure 3 (b) (with α′

i, αi, βi playing
the roles of α′, β′, γ’), and therefore (according to Example 3.25) its sign is +1. It follows
from Example 3.27 that the product of the triangles has sign +1 as well, so we indeed have

Ψ
α0→α′

0
β0

(a) = b.

One last count is at the very end of the proof of Lemma 9.58 in [16]. There, the authors
compute that

(54) #M(a,a)(d) ≡ 1 (mod 2),

where M(a,a)(d) is the moduli space of Maslov index 2 holomorphic curves u on (Σ0,α0,β0)
satisfying u(d) = p0, with d ∈ [0, 1]× R being any fixed point. In our setting, we claim that

(55) #M(a,a)(d) = 1.

The proof of (54) in [16] is based on an argument from [21, Appendix A]. We adapt it here
to our purposes. We consider the Heegaard diagrams for S1×S2 shown in Figure 10. On the

left we have the class ϕ of a bigon, with M̂(ϕ) consisting of a single point; this can be positive
or negative, depending on the coupled orientations and Pin structures on the curves there.
On the right we have the double stabilization of ϕ, which we denote by ϕ′′. Stabilization
invariance (as discussed in the proof of Proposition 4.14) implies that

#M̂(ϕ′′) = #M̂(ϕ).
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(a) (b)

Figure 10. (a) A bigon on a diagram for S1×S2. (b) Its double stabilization.

β1

δ1

δ2

β2

γ1

γ2

β3

δ3

δ4

β4

γ3 γ4

Figure 11. A triple diagram appearing in a handleslide loop of type (2).

On the other hand, by stretching the neck in the cylindrical reformulation, we see that for
large neck length we must have

M̂(ϕ′′) = M(a,a)(d)× M̂(ϕ).

This proves (55).
The rest of the arguments in the proof of handleswap invariance go through just as in [16,

Section 9.3].

(5) Commutativity along handleslide loops: We need to check each of the six types
of loops from Figure 7. The first type is the most complicated, so we discuss the others first.

Consider a loop of type (2). We change the four attaching sets appearing in the commuting
square by small isotopies, so that each curve intersects the curves obtained from it by isotopies
or handleslides transversely at two points. After this change we re-label the attaching sets as

(56) β γ

ϵ δ

so that

β = {β1, β2, β3, β4} ∪ β⃗, γ ≈ {β′1, β2, β3, β4} ∪ β⃗

ϵ ≈ {β1, β2, β′3, β4} ∪ β⃗, δ ≈ {β′1, β2, β′3, β4} ∪ β⃗,
where ≈ denotes isotopy. Figure 11 shows the relevant part of the Heegaard surface with the
curves in the systems β, γ, and δ. (We do not show ϵ.)
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β1

γ1

δ2

β2

γ2

δ3

β3

γ3

δ1

Figure 12. A triple diagram appearing in a handleslide loop of type (3).

There are top degree intersection points Θβ,γ , Θβ,ϵ, Θγ,δ and Θϵ,δ, which are used to define
the respective handleslide maps. The commutativity of the handleslide loop can be written
as

Ψα
γ→δ ◦Ψα

β→γ = Ψα
ϵ→δ ◦Ψα

β→ϵ.

Using the A∞ relations for polygon maps, this would follow if we can prove that

(57) FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = FTβ ,Tϵ,Tδ

(Θβ,ϵ ⊗Θϵ,δ).

Even though the attaching sets β and δ do not differ by a single handleslide, observe that
we still have a unique top degree intersection point

Θβ,δ ∈ Tβ ∩ Tδ.

We claim that Equation (57) holds true because both sides are equal to Θβ,δ. We will check
this for the left hand side; the right hand side is similar.

To show that

(58) FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = Θβ,δ,

observe that there is a unique holomorphic triangle of index zero connecting the three inter-
section points. This is the product of g triangles on the Heegaard surface, four of which are
shown darkly shaded in Figure 11. If we orient all the curves in the figure counterclockwise,
we obtain the required coupled orientations in each handleslide. It follows from Examples 3.25
and 3.27 that the triangle comes with a positive sign; see Figure 3(c), with α′, β′, γ′ replaced
by βi, γi, δi. Therefore, the relation (58) holds.

The handleslide loops of types (3), (4) and (5) are very similar to type (2). We isotope and
then re-label each of the four attaching sets as in (56), in the order given in Definition 5.5
for the respective type of loop. In each case we claim that the relation (57) holds, and we
prove it by establishing (58). The latter relation follows by exhibiting a unique holomorphic
triangle, which appears with sign +1 according to the analysis in Example 3.25. Figures 12,
13 and 14 show the relevant triangles. Each darkly shaded triangle is oriented as in Figure 3,
either (b) or (c).
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γ2

β2

δ1

β1

γ1

γ3
β3

δ3

δ2

Figure 13. A triple diagram appearing in a handleslide loop of type (4).

γ1

δ1

β2

γ2

β1 AA

δ2

Figure 14. A triple diagram appearing in a handleslide loop of type (5). The
two disks labeled A co-bound a handle.

The handleslide loop of type (6) is also somewhat similar. In this case we have a pentagon.
We isotope and re-label the attaching sets from Definition 5.5 as

β

ϵ ζ

γ δ

We want to show that

(59) Ψα
γ→δ ◦Ψα

ϵ→γ ◦Ψα
β→ϵ = Ψα

ζ→δ ◦Ψα
β→ζ .

Even though the attaching set β differs from γ by two handleslides (rather than one), there
is still a unique top degree intersection point Θβ,γ ∈ Tβ ∩ Tγ , which defines a map Ψα

β→γ .

Similarly, there is an intersection point Θβ,δ ∈ Tβ ∩Tδ defining a map Ψα
β→δ. To prove (59),

we will show that

Ψα
ϵ→γ ◦Ψα

β→ϵ = Ψα
β→γ , Ψα

ζ→δ ◦Ψα
β→ζ = Ψα

β→δ, Ψα
γ→δ ◦Ψα

β→γ = Ψα
β→δ.
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β1

ζ1

δ2

β2

ζ2

δ3

β3

ζ3

δ1

Figure 15. A triple diagram appearing in a handleslide loop of type (6).

β1

γ1 δ2

β2

γ2

δ3

β3

γ3

δ1

Figure 16. Another triple diagram appearing in a handleslide loop of
type (6).

which in turn follow from the relations:

FTβ ,Tϵ,Tγ (Θβ,ϵ ⊗Θϵ,γ) = Θβ,γ ,(60)

FTβ ,Tζ ,Tδ
(Θβ,ζ ⊗Θζ,δ) = Θβ,δ,(61)

FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = Θβ,δ.(62)

Relation (60) is the same as the one proved in the study of a handleslide of type (3) (see
Figure 12), because it comes from a curve handlesliding over two other curves. Relations (61)
and (62) follow from investigating the unique holomorphic triangles in Figures 15 and 16,
which both come with positive signs.

Finally, let us discuss handleslide loops of type (1), i.e., slide triangles. After an isotopy,
we denote the three attaching sets appearing in the triangle by

β γ

δ

Figure 17 shows the resulting triple Heegaard diagram. Note that, because of admissibility
issues, we cannot arrange for all three attaching sets to be in the standard position for
handleslides from Figure 4. We did arrange this for the (β,γ) and (β, δ) pairs, but not for
the (γ, δ) pair. Nevertheless, there is a unique top degree intersection point in Tγ ∩Tδ, which
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β1

γ1

δ2

δ1

γ2

β2

Figure 17. The triple diagram from a handleslide loop of type (1).

γ1

δ2

δ1

γ2

γ′1

δ′2

δ′1 γ′2

Figure 18. An isotopy to get a standard handlebody diagram.

we denote by Θγ,δ; this induces a map

Ψα
γ→δ : HF−(Tα,Tγ) → HF−(Tα,Tδ).

The holomorphic triangle darkly shaded in Figure 17 comes with positive sign, showing that

FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = Θβ,δ

and therefore

(63) Ψα
γ→δ ◦Ψα

β→γ = Ψα
β→δ.

However, we are not done! The map Ψα
γ→δ is not a handleslide map like those in Section 4.8,

where maps were defined from diagrams of the kind shown in Figure 4. We can obtain a
diagram of that kind by isotoping the curves γ2 and δ1 as in Figure 18, so that they intersect
each other and no longer intersect δ2 and γ1. We let γ ′ and δ′ denote the new attaching sets,
where:

• For i ̸= 2, the curve γ′i is obtained from γi by a small Hamiltonian isotopy so that γ′i
intersects γi in two points, and does not intersect γj for any j ̸= i;

• For i ̸= 1, the curve δ′i is obtained from δi by a small Hamiltonian isotopy so that δ′i
intersects δi in two points, and does not intersect δj for any j ̸= i;

• The curves γ′2 and δ′1 are as in Figure 18.

Even so, the orderings and orientations of the curves γ ′ in Figure 18 differ from those
chosen for a handleslide in Figure 5. To get to the standard picture, we should switch the
ordering of γ′1 and γ′2, and also the orientation on γ′2 (i.e., on the new γ′1). The two changes
have the combined effect of preserving orientation on the torus Tγ′ , and hence preserving the
coupled orientation. They do change the Pin structure, since we are using two different sets
of data in Definition 4.4. The two Pin structures come from trivializations of TTγ′ that differ



56 MOHAMMED ABOUZAID AND CIPRIAN MANOLESCU

γ2

δ2

δ1

γ1

γ′2

δ′2

δ′1 γ′1

Figure 19. Figure 18 with new orderings and orientations.

by replacing the ordered pair (γ′1, γ
′
2) with (γ′2,−γ′1). Let us relate them by the homotopy

given by 90◦ rotation in the (γ′1, γ
′
2) plane. This gives a homotopy between the Pin structures,

which allows us to identify the respective Θ generators. Therefore, let us implement these
changes for γ ′, and also make the corresponding changes for the set γ. The result consists in
replacing Figure 18 with Figure 19.

In the new picture (just as in the old), the attaching set γ ′ represents the same isotopy
diagram as γ, so there is a continuation map Γα

γ→γ′ . Similarly, δ′ represents the same isotopy
diagram as δ, and we have a continuation map Γα

δ′→δ
. These continuation maps are used in

the colimit that defines HF− for an isotopy diagram. Moreover, the handleslide map between
our two isotopy diagrams was defined as Ψα

γ′→δ′
. Thus, to deduce the commutativity of the

slide triangle from (63), it suffices to prove the following lemma.

Lemma 5.11. We have Ψα
γ→δ = Γα

δ′→δ
◦Ψα

γ′→δ′
◦ Γα

γ→γ′ .

Proof. In the Heegaard diagram (Σ,γ,γ ′, z), there is a unique top degree intersection point
Θγ,γ′ , which produces a triangle map Ψα

γ→γ′ . This map is the same as the continuation
map Γα

γ→γ′ , because at the chain level we can interpolate between the two maps by counting

monogons as in [21, Proposition 11.4].
Similarly, there is a top degree intersection point Θδ′,δ that defines a triangle map Ψα

δ′→δ
=

Γα
δ′→δ

. We are left to show that

(64) Ψα
γ→δ = Ψα

δ′→δ ◦Ψ
α
γ′→δ′ ◦Ψ

α
γ→γ′ .

We can further find a unique top degree intersection point Θγ,δ′ , defining a map Ψα
γ→δ′

.

We will deduce (64) from the relations

Ψα
γ→δ′ = Ψα

γ′→δ′ ◦Ψ
α
γ→γ′ , Ψα

γ→δ = Ψα
δ′→δ ◦Ψ

α
γ→δ′ .

In turn, to prove these it suffices to show that

(65) FTγ ,Tγ′ ,Tδ′ (Θγ,γ′ ⊗Θγ′,δ′) = Θγ,δ′

and

(66) FTγ ,Tδ′ ,Tδ
(Θγ,δ′ ⊗Θδ′,δ) = Θγ,δ.

Equation (65) follows from investigating the unique holomorphic triangle between the top
degree generators in Figure 20; this comes with a positive sign.

Equation (66) follows from a more involved analysis, based on Figure 21. There, the
homotopy class of triangles between theta elements that we need to consider is not made of
two bigons, but rather is the darkly shaded hexagon. This is still combined with g − 2 other
standard triangles in the rest of the triple diagram, not shown in the picture. The standard
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γ2

γ1

γ′2

δ′2

δ′1 γ′1

Figure 20. A triple diagram leading to Equation (65).

γ2

δ′2

δ′1 γ1

δ1

δ2

Figure 21. A triple diagram with a darkly shaded hexagon leading to Equa-
tion (66).

triangles come with a positive sign, so to deduce (66), it remains to prove that the count of
holomorphic triangles in the hexagon class (in the second symmetric product) is +1.

Let us re-draw the hexagon by itself in Figure 22 (a). To count its holomorphic repre-
sentatives, we use Lipshitz’s cylindrical picture from [21] and stretch the almost complex
structure along the dashed line in Figure 22. This kind of deformation was analyzed in [21,
Appendix A] and used at various places in the literature; see for example [28, Theorem 5.1],
[49, Section 14], or [47, Proposition 4.3]. In our case, the result of the neck stretching is
shown in Figure 21. (See Section 5.4 below for more about signs in the cylindrical picture.)

Let T be the standard 2-simplex (triangle), where we remove neighborhoods of the vertices
and attach three infinite half-strips instead. In the cylindrical picture, we are counting
holomorphic maps u : S → Σ×T , where S is a branched cover of ∆ (in our case, a hexagon).
Let

πT : Σ× T → T, πΣ : Σ× T → Σ

be the projections. We impose some boundary conditions on u: the edges of S should map
under πT ◦u to the edges of the triangle, and under πΣ ◦u to the edges of the hexagon shown
in Figure 22; further, vertices should map to the corresponding vertices. Let M(ψ) be the
moduli space of holomorphic maps of this form, in the hexagon class ψ from Figure 22.
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(a) (b)

p

q

ψ

ψ1

ψ2

Figure 22. (a) The hexagon from Figure 21. (b) Its degeneration.

Let us extend the dashed line in Figure 22 to a separating circle on Σ. After the degener-
ation, the surface Σ turns into the wedge sum of two surfaces Σ1 and Σ2, glued to each other
at points p ∈ Σ1 and q ∈ Σ2. The class ψ gets split into ψ1 and ψ2. For i = 1, 2, we have
moduli spaces M(ψi), consisting of holomorphic maps ui : T → Σi × T in the class ψi (with
the obvious boundary conditions). Consider the maps

ρ1 : M(ψ1) → R, ρ1 = πT ((πΣ ◦ u)−1(p)),

ρ2 : M(ψ1) → R, ρ2 = πT ((πΣ ◦ u)−1(q)).

(In principle, these maps should have image in T , but they land on the green edge of ∂T ,
which we identify with R by orienting it using the boundary orientation from T .)

For large enough neck length, the space M(ψ) is identified with the fiber product

(67) M(ψ1)×R M(ψ2) = {(u1, u2) ∈ M(ψ1)×M(ψ2) | ρ1(u1) + ρ2(u2) = 0},
and this identification preserves orientations. Since a triangle with three marked points on
the boundary has a unique automorphism, we see that M(ψ1) is a point, so its image under
ρ1 is also a fixed point in R. On the other hand, M(ψ2) is one-dimensional, because when
we apply the Riemann mapping theorem to construct a holomorphic representative, we can
vary the length of a slit along either the orange or the brown curve.

Thus, the fiber product in (67) is simply the preimage ρ−1
2 (t) for some t ∈ R. To count

its points (with sign), we can vary t at will. In the limit t → +∞, the class ψ2 splits
into a triangle and a bigon, as in Figure 23. The respective moduli spaces both consist of
a point with positive sign; see Examples 3.25 and 3.23. Therefore, the count of points in
M(ψ) ∼= ρ−1

2 (t) is +1. □

Remark 5.12. If we reverse the orientations of all the curves in Figures 21, 22 and 23, the
coupled Spin structures stay the same (cf. Convention 5.10), and the two triangles we consider
still come with positive sign. However, the bigon on the right of Figure 23 looks like the bigon
labeled B (rather than A) in Figure 2, so it comes with a negative sign. This sign is cancelled
by the fact that the orientation of the green curve is reversed, which changes the orientation
of the line R over which we take the fiber product in (67). Thus, the overall sign of the
hexagon is still +1.

An alternate way to think about this in Lipshitz’s cylindrical picture is that we orient the
moduli space of hexagons S that are double covers of the triangle T branched at a single
point. This moduli space is just the triangle T itself, because the hexagon is determined
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qq

Figure 23. The class ψ2 from Figure 22(b), in the limit when it splits along
the δ2 curve. (Note that, after breaking the orange δ2 segment in two, the
orientation on one half of the segment is reversed. This is as it should be: We
want the same coupled orientation between the green and orange curves at
the two sides of the breaking point.)

by the position of the branch point x ∈ T . The degeneration in Figure 22 corresponds to
sending x to an edge, and the one in Figure 23 corresponds to further sending it to a vertex.
In our discussion, we have conveniently chosen orientations of the moduli spaces compatible
with these degenerations: the triangle T is oriented as a subset of the plane, the green curve
is oriented as part of its boundary, and t→ +∞ is the positive end of R.

Now that Lemma 5.11 is proved, we have finished checking invariance under handleslide
loops. We continue with the last step in the proof of Theorem 1.1.

(6) Commutativity along stabilization slides: Let us denote the Heegaard diagrams
that appear in Figure 8 by

(Σ,α,β) Ψα
β→γ

))

(Σu,αu,βu)

S 44

S′ **

(Σ,α,γ)

Ψα
γ→δ

uu

(Σ,α, δ)

with Σu be the original (un-stabilized) surface, and Σ its stabilization. The two handleslide
maps on the right hand side are induced by top degree generators Θβ,γ and Θγ,δ.

Even though they differ by two handleslides rather than one, the attaching sets β and δ
still produce a unique top degree generator Θβ,δ, and a triangle map Ψα

β→δ. The holomorphic
triangle darkly shaded in Figure 24 comes with positive sign, which implies that

FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = Θβ,δ

and therefore Ψα
γ→δ ◦Ψα

β→γ = Ψα
β→δ.

It remains to show that

Ψα
β→δ ◦ S = S′.

This is a consequence of Theorem 10.4 in [29], which says that triangle maps commute with
stabilizations. In the un-stabilized diagram, the remaining β and δ curves are just small
Hamiltonian perturbations of the βu curves, so the respective triangle map is just the nearest
point map (which we can think of as the identity, once we identify the corresponding curves
by the small isotopy).

By applying Theorems 5.7 and 5.4, we deduce that HF− is a natural invariant of based
3-manifolds. The proof for the other versions is similar. □
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β2

γ2γ1 δ2

β1

δ1

Figure 24. A triple diagram appearing in the stabilization slide.

5.4. Signs in the cylindrical picture. In [21], Lipshitz reinterprets Heegaard Floer ho-
mology as follows. Instead of strips u : R× [0, 1] → Symg(Σ) with boundaries on Tα and Tβ,
he considers holomorphic curves

u : S → Σ× R× [0, 1]

where S is a smooth surface with boundary and infinite ends (of any genus), and the boundary
components of ∂S are mapped to Lagrangians of the form αi × {1} × R and βi × {1} × R.
(For the exact conditions on these curves, we refer to [21, Section 1].)

There is a tautological correspondence between the curves counted in Lipshitz’s setup
and the strips in the symmetric product that are counted in Ozsváth and Szabó’s original
construction. This correspondence is compatible with the determinant index bundles of D∂̄
operators, which allows Lipshitz to show that his theory is isomorphic to the original one
over Z. (See Section 13 in [21], particularly Proposition 13.7.) The cylindrical picture and
the tautological correspondence can also be extended to polygon maps.

In [21], the signs for the differential come from coherent orientations, just as in the original
[30]. In our context, the coupled Spin structure induces signs in the Ozsváth-Szabó picture,
and hence (via the tautological correspondence) in Lipshitz’s cylindrical picture.

In Heegaard Floer theory, it is common to move to the cylindrical picture when one studies
various degenerations. See for example [28, Section 5], [16, Section 9.3], [46, Section 6], or
what we did in the proofs of handleswap invariance and in Lemma 5.11 above. In such cases,
we need to know that the orientations of the moduli spaces of curves are compatible with
these degenerations. Transplanting orientations from the symmetric product picture is not
fully satisfactory, because the degeneration arguments are less clear there.

Instead, it suffices to note that one can also construct canonical orientations in Lipshitz’s
picture, and that these agree with those from the symmetric product. In all the situations we
encounter (such as in Lemma 5.11), we fix Spin structures as well as orderings on the alpha
curves, as well as on the beta curves. By taking the product of these with the canonical Lie
group Spin structure on R, we get Spin structures on Lagrangians such as αi × {1} × R and
βi × {1} × R, which give the boundary conditions in Lipshitz’s picture. Thus, we can apply
Seidel’s work [40] and get orientations on the moduli spaces of curves there. In particular,
we can construct orientation spaces o(x) for every x ∈ αi ∩ βj , and set

o(x) = o(x1)⊗ · · · ⊗ o(xg)
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for each x = {x1, . . . , xg} ∈ Tα ∩ Tβ. Since the Spin structures on Tα and Tβ are products
of those on the alpha and beta curves, respectively, we find that the orientation spaces o(x)
which generate the Floer complexes in the two pictures can be identified. Furthermore,
following the identification of the index bundles in [21, Section 13], we see that the signs
of differentials in the two pictures agree. A similar argument applies to the signs of higher
polygons.

Whenever we consider a degeneration of polygons in Lipshitz’s picture, the index bundles
are compatible with gluing, and therefore so are the orientations induced by Spin structures.
This justifies extending the degeneration arguments to Z, provided the Spin structures before
and after the degeneration are compatible. In fact, we always choose Lie group Spin structures
on the curves, which are canonical once an orientation is fixed. Therefore, in each situation
it suffices to describe orientations on the curves that are compatible with the degeneration.
(An example is in Figure 22.)

6. The surgery exact triangle

The surgery exact triangle is one of the most useful tools in Heegaard Floer theory. It
was originally proved in [29, Theorem 9.12], using Z coefficients from coherent orientations.
A different proof, using the triangle detection lemma from homological algebra, was given in
[27], with F2 coefficients. In this section we prove it over Z using our set-up with canonical
orientations.

A similar exact triangle exists in Lagrangian Floer homology, due to Seidel [39]; see also
[40, Theorem 17.16]. This applies to the case where one Lagrangian is obtained from the
other by a Dehn twist or, more generally, a fibered Dehn twist ([22], [43], [42]). Neither of
these is quite the situation in Heegaard Floer homology but, nevertheless, one could imagine
an extension of Seidel’s exact triangle that applies to Heegaard Floer theory. With regard to
orientations, an interesting point to note is that for Seidel’s exact triangle, one needs to choose
a bounding rather than a Lie group Pin structure on the circle; see [40, Example 17.15]. (In his
terminology, nontrivial means bounding.) In our situation, it is also the case that the simplest
exact triangle that can be constructed would involve bounding Pin structures. Nevertheless,
by using twisted coefficients, we can arrive at a triangle with orientations coming from Lie
group Pin structures.

We state the triangle here in the same generality as in monopole theory; compare [20,
Theorem 2.4].

Theorem 6.1. Let Y be a compact oriented 3-manifold with torus boundary, and let β, γ, δ
be three oriented simple closed curves on ∂Y , pairwise intersecting in a single point, with
intersection numbers

β · γ = γ · δ = δ · β = −1.

Let Yβ, Yγ, and Yδ be the closed three-manifolds obtained from Y by filling it with a solid
torus S1 × D2 such that {1} × ∂D2 is attached to the respective curve (β, γ or δ). Then,
there is an exact sequence

· · · → HF+(Yβ) → HF+(Yγ) → HF+(Yδ) → · · ·

Before proving the theorem, we recall the setup for the corresponding result in [29, Section
9], and explain why the naive strategy fails. We can choose an admissible pointed Heegaard
multi-diagram (Σ,α,β,γ, δ, z) such that:

• The Heegaard diagrams (Σ,α,β), (Σ,α,γ) and (Σ,α, δ) represent Yβ, Yγ , and Yδ
respectively;
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β

γ

δ

p

z

Θβ,γ Θδ,β

Θγ,δ

Figure 25. A pair of triangles on the torus. We use the point p to define
polygon maps with twisted coefficients.

• For i = 1, . . . , g − 1, the curves βi, γi and δi are small isotopic translates of each
other, each pairwise intersecting in a pair of transverse intersection points (with the
isotopies being supported away from z);

• We have βg = β, γg = γ, and δg = δ.

Thus, we can re-write the desired exact triangle as

(68) · · · → HF+(Tα,Tβ)
f1−→ HF+(Tα,Tγ)

f2−→ HF+(Tα,Tδ)
f3−→ · · ·

Note that, for the purposes of proving it, we do not need to worry about naturality issues.

We choose Lie group Pin structures P#
α , P#

β , P#
γ , P#

δ on Tα, Tβ, Tγ , Tδ, and also choose

arbitrary trivializations of the lines ℓ(P#
α , P

#
β ), ℓ(P#

α , P
#
γ ), ℓ(P#

α , P
#
δ ). This allows us to

identify the Heegaard Floer groups with the preliminary ones from Section 4.1, for which we
have well-defined polygon maps. (Compare Remark 4.11.)

As a first guess, we could try to define the maps in (68) by counting triangles:

f1(·) = FTα,Tβ ,Tγ (· ⊗Θβ,γ), f2(·) = FTα,Tγ ,Tδ
(· ⊗Θγ,δ), f3(·) = FTα,Tδ,Tβ

(· ⊗Θδ,β).

Here, Θβ,γ can be any of the two top-degree generators of the groupHF+(Tβ,Tγ) ∼= H∗(T
g−1)⊗

Z[U−1]; and similarly for Θγ,δ and Θδ,β. It does not matter which generator we choose, be-
cause they differ by a sign, and changing one of the maps in an exact triangle by −1 keeps it
exact.

However, defining the maps fi in this way does not make the double compositions be zero.
Indeed, for example, the proof that f2 ◦ f1 = 0 in [29, Section 9] reduces to showing that

(69) FTβ ,Tγ ,Tδ
(Θβ,γ ⊗Θγ,δ) = 0.

Proposition 9.5 in [29] shows that the relevant (index zero) holomorphic triangles between
Tβ,Tγ and Tδ come in pairs, with the triangles in each pair having basepoint multiplicity
nz = k(k − 1)/2 for k ≥ 1. This can be established by a degeneration argument to reduce
it to the genus 1 case, where triangles can be counted explicitly on the diagram. The two
triangles with k = 1 (so nz = 0) are shown in Figure 25. The triangles for higher k wrap
around the torus more times.

Observe that rotation by 180◦ around z takes the two triangles in a pair to each other.
Furthermore, the Lie group Pin structure on each circle is uniquely characterized as being
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preserved by translations, and this property is preserved by the 180◦ rotation. It follows that
the two triangles in a pair are related by a symplectomorphism of the torus that preserves
all the underlying structures, and therefore are counted with the same sign. This means that
they do not cancel out, so we cannot deduce Equation (69). (They would cancel out if we
had the bounding Pin structure on either one or three of the curves β, γ, δ, and the Lie group
Pin structure on the rest.)

We shall remedy this problem while keeping Lie group Pin structures on all Lagrangians,
by introducing twisted coefficients:

Proof of Theorem 6.1. Let ι : ∂Y → Y be the inclusion. By the “half lives, half dies” lemma,
the kernel of the map

ι∗ : H1(∂Y ;Z/2) → H1(Y ;Z/2)

is one-dimensional. Since β, γ and δ are simple closed curves on the torus ∂Y , they represent
non-trivial elements in H1(∂Y ;Z/2) ∼= (Z/2)2. By our hypotheses, their sum is zero (mod
2) in homology. Hence, the three curves represent the three distinct non-zero elements in
H1(∂Y ;Z/2). Exactly one of them must be in the kernel of ι∗; without loss of generality,
assume this is δ.

We pick a point p on δ (away from the other curves), and twist the Heegaard Floer groups
and maps based on boundary intersections with p, similarly to [29, Section 9.3] but only using
signs. Specifically, whenever we count some polygons in a class ϕ where one of the edges of
the polygon is on Tδ, we introduce a sign of

(−1)#(V ∩∂δϕ),

where ∂δϕ is the part of the boundary of ϕ on Tδ, and V = δ1×· · ·× δg−1×{p} ⊂ Symg(Tδ).
At the level of the Heegaard Floer groups, this changs HF+(Tα,Tδ) into HF+(Tα,Tδ;A)

where A is a module over Z[H1(Y ;Z)] as in Section 4.7. Precisely, A is Z as an abelian group,

and the action of an element c ∈ H1(Y ;Z) is given by (−1)c([δ]). Since [δ] = 0 ∈ H1(Y ;Z),
the action is actually trivial, and we obtain the same group HF+(Tα,Tδ). The same logic
applies to the groups HF+(Tγ ,Tδ) and HF+(Tδ,Tβ), so we can still keep the same elements
Θγ,δ, Θδ,β as before.

The groups HF+(Tα,Tβ) and HF+(Tβ,Tγ) are also unchanged, as they do not involve the
Lagrangian Tδ. The only difference is with regard to the maps FTα,Tγ ,Tδ

and FTα,Tδ,Tβ
, which

are now twisted, and produce new maps f2, f3 in (68). As in Section 3.5, the twisted maps
still satisfy the A∞ polygon relations. Checking that double compositions such as f2 ◦ f1 are
zero in (68) reduces to counting triangles between Tβ, Tγ and Tδ, but now the two triangles
in a pair with the same n2 come with the opposite signs, because one of the triangles has p
with odd multiplicity on its boundary.

It follows that with the new definitions, the sequence (68) is a chain complex. To check
exactness, either of the two proofs in the literature applies with no significant change. The

proof in [29, Section 9] uses energy filtrations, while the proof in [27] (stated there for ĤF ,
but applicable to HF+) uses that a count of holomorphic quadrilaterals is ±1; whether this
count is +1 or −1 is not relevant for the argument. □

Remark 6.2. In monopole Floer homology, the analogous surgery exact triangle was proved
over F2 in [20]. An extension to coefficients in Z[i] is developed in [7], which is based on
twisted coefficients. It is argued there that the same class of twistings (more limited than in
Heegaard Floer theory) cannot produce an extension to Z.
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7. Other invariants

We now explain how to generalize the canonical orientations in Heegaard Floer homology
to other related Floer homologies.

7.1. Sutured Floer homology. Juhász [15] developed a Floer homology theory for bal-
anced sutured manifolds. Let us recall a few concepts.

Definition 7.1 (Definition 2.2 in [15]). A balanced sutured manifold (M,γ) is a compact
oriented 3-manifold M together with a set γ ⊂ ∂M of pairwise disjoint annuli, and a de-
composition of its complement ∂M \ Int(γ) into two pieces R+ and R−, with the following
properties:

• Each annulus in γ has one boundary component in R+ and one in R−;
• The middle curve S1×{0} ⊂ S1× [−1, 1] in each annulus in γ is called a suture, and is
oriented as follows. We equip R+ with its orientation induced from M , and R− with
the opposite of the orientation induced fromM . Then, we ask that any component of
∂R+ or ∂R−, with its induced boundary orientation, represents the same homology
class in the respective annulus as the suture;

• The manifold M has no closed components, and the map π0(γ) → π0(∂M) is onto;
• The Euler characteristics of R+ and R− coincide.

Definition 7.2 (Definition 2.13 in [16]). A sutured Heegaard diagram (Σ,α,β) for the bal-
anced sutured manifold (M,γ) consists of an oriented surface Σ ⊂ M whose (oriented)
boundary is the union of sutures, and sets of attaching closed curves

α = {α1, . . . , αn}, β = {β1, . . . , βn},

such that:

• The components of α bound disks on the negative side of Σ, and compressing these
disks yields a surface isotopic to R− relative to γ;

• The components of β bound curves on the positive side of Σ, and compressing these
disks yields a surface isotopic to R+ relative to γ.

Given a sutured Heegaard diagram, one considers the Lagrangians Tα = α1×· · ·×αn and
Tβ = β1 × · · · × βn ⊂ Symn(Σ). Their Lagrangian Floer homology (taken over F2) is taken
as the definition of the sutured Floer homology SFH (M,γ), which Juhász proved to be an
invariant of the balanced sutured manifold [15].

This theory can be upgraded to Z coefficients along the same lines as we did with HF ◦.
We only point out the relevant differences.

First, the surface Σ is no longer closed, and its genus g does not have to be equal to the
number n of alpha (or beta) curves. Perutz’s work [32] was originally phrased for closed
surfaces and g = n. Nevertheless, we can fill in the boundary of Σ with disks to make it
closed, and only consider holomorphic disks that avoid the new disks. The construction of the
symplectic form on Symn(Σ) in [32, Section 7] is for any n. The argument about handleslides
corresponding to Hamiltonian isotopies can be adapted to any n.

Secondly, the surface Σ splits M not into handlebodies, but into two sutured compres-
sion bodies Uα and Uβ. We can still define A and B as before, and we have the canonical
isomorphisms (37) and (38). However, A and B are not Lagrangian subspaces of H1(Σ;R).

In [8], Friedl, Juhász and Rasmussen construct an absolute Z/2 grading on sutured Floer
homology, which is is determined by a homology orientation ω for the pair (M,R−): that is,
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by an orientation of the vector space

H∗(M,R−;R) = H1(M,R−;R)⊕H2(M,R−;R).
Observe that the alpha and beta curves correspond to 1- and 2-cells, respectively, in a relative
cell decomposition for (M,R−). Thus, there is an exact sequence

(70) 0 → H2(M,R−;R) → B → A → H1(M,R−;R) → 0.

It follows that fixing a homology orientation gives a coupled orientation on (A,B), and
this is how the absolute Z/2-grading is defined in [8]. For our purposes, we need more:
a coupled Spin structure on the same pair (A,B). To find one, apply Lemma 2.33 to the
same exact sequence (70). We deduce that it suffices to specify a coupled Spin structure on
(H1(M,R−;R), H2(M,R−;R)). By Lefschetz duality for triples, the space H2(M,R−;R) is
dual to H1(M,R+;R), so we can identify them using an inner product. This suggests the
following definition.

Definition 7.3. A homological coupled Spin structure on the sutured manifold (M,γ) is a
coupled Spin structure on the pair of vector spaces (H1(M,R−;R), H1(M,R+;R)).

In general, there is a Z/2×RP∞ worth of homological coupled Spin structures, where the
Z/2 comes from the two choices of homology orientation.

We have just seen that a homological coupled Spin structure S determines a coupled Spin
structure on the pair (A,B). Given a Spinc structure on (M,γ) as in [15, Section 4], this
allows us to define sutured Floer homology SFH (M,γ, s, S) over Z, in a manner similar to

how we defined Heegaard Floer homology in Section 4: We choose Pin structures P#
α and

P#
β on the Lagrangians, define preliminary Floer complexes, and then tensor them with lines

ℓ(P#
α , P

#
β ).

Proof of Theorem 1.2. The arguments are entirely similar to those for Heegaard Floer ho-
mology in Sections 4.10 and 5. With regard to Theorem 5.7, the fact that the same loops of
handleslides are sufficient in the sutured case follows from the work of Qin [35]. □

7.2. Heegaard Floer homology with multiple basepoints. Let us go back to a closed,
connected, oriented three-manifold Y . In [28, Section 4], Ozsváth and Szabó generalized
the definition of Heegaard Floer homology to allow for multiple basepoints instead of just
one. We follow the notation from that paper, letting w = {w1, . . . , wℓ} be the collection of
basepoints on Y .

There is a notion of an ℓ-pointed balanced Heegaard diagram for (Y,w). This consists of
a surface Σ ⊂ Y of genus g containing w, together with g + ℓ− 1 alpha curves and g + ℓ− 1
beta curves. We ask that:

• the surface Σ splits Y into two handlebodies Uα and Uβ;
• the alpha curves bound disks in Uα, and Σ \ α consists of ℓ planar surfaces, each
containing a basepoint;

• the beta curves bound disks in Uβ, and Σ \ β consists of ℓ planar surfaces, each
containing a basepoint.

In a certain sense, this set-up is a particular case of what we had in Section 7.1. Indeed,
to (Y,w) we can associate a sutured manifold (M,γ) as follows. We pick small disjoint balls
B1, . . . , Bℓ ⊂ Y , with Bi centered at the basepoint wi. We let γi be an annulus around the
equator for ∂Bi, and let R+,i and R−.i be the two components of Bi \ γi. We let

M = Y \ (B1 ∪ · · · ∪Bℓ),
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with γ the union of γi’s, and R+ resp. R− the union of all R+,i resp. R−.i. (See Example 2.3
in [15].) Furthermore, from an ℓ-pointed balanced Heegaard diagram for Y we get a sutured
diagram for (M,γ) by deleting disks around each wi.

Let s be a Spinc structure on Y . In [28, Section 4], Ozsváth and Szabó define a version
of Heegaard Floer homology HF−(Y,w, s) with coefficients in the ring F2[U1, . . . , Uℓ]. By
setting U1 = · · · = Uℓ = 0 at the chain level, and then taking homology, they also get a hat

version ĤF (Y,w, s) over F2. Let us upgrade their constructions to Z instead of F2.

In the case of ĤF (Y,w, s), this is just the sutured Floer homology SFH (M,γ, s, S) which
we constructed in Section 7.1, with a dependence on the homological coupled Spin structure
S. In the case at hand, observe that both H1(M,R−;R) and H1(M,R+;R) are canonically
identified with H1(Y,w;R), by collapsing a hemisphere onto the center wi of the ball Bi. By
Lemma 2.31, there is a canonical coupled Spin structure on the pair

(H1(Y,w;R), H1(Y,w;R)).

This gives a canonical homological coupled Spin structure, and we use it to define ĤF (Y,w, s)
without any additional dependence.

The homological coupled Spin structure gives a coupled Spin structure on the pair (A,B),
which we can also use to define the minus Floer homology HF−, much as we did in the singly
based case in Section 4. When counting holomorphic strips in a class ϕ, we keep track of

their intersection nwi(ϕ) with {wi} × Symg+ℓ−2(Σ) by a factor of U
nwi (ϕ)
i . The one main

difference is that we now have boundary degenerations (disk bubbles), of the kind discussed
in Section 3.3. In [28, Theorem 5.5], Ozsváth and Szabó prove that for ℓ > 1 the count of
such bubbles with boundary on Tα is 1 (mod 2); and the same is true for those with boundary
on Tβ. Here is the refinement of that result with Z coefficients.

Proposition 7.4. Let Σ be a surface of genus g equipped with a set α of g+ ℓ− 1 attaching
circles for a handlebody, where ℓ > 1. Let M = Symg+ℓ−1(Σ) and Tα ⊂M be the product of
the alpha curves, equipped with a Lie group Pin structure. Suppose x ∈ Tα and ϕ ∈ π2(M,Tα)
is a relative homotopy class of disks as in (21), with index µ(ϕ) = 2 and such that the domain
of ϕ on Σ has only non-negative coefficients. Then the signed count of holomorphic disks in

the class ϕ is #N̂ (ϕ) = 1.

Proof. As noted in the proof of [28, Theorem 5.5], the conditions in the theorem imply that
ϕ must correspond to a domain D on Σ which is one of the connected components of Σ \α.
This is a planar surface with boundary, and by de-stabilization and gluing arguments one can
reduce the problem to the case where D is a disk with one marked point. In our setting, we
can choose orientations and orderings on the alpha curves (as in Definition 4.4) to view Tα
as the product of g+ ℓ− 1 circles, each of which equipped with the Lie group Spin structure.
The arguments in the proof over F2 go through over Z, and we are left with the moduli space
for a disk D whose boundary has the Lie group Spin structure. (In fact, once we reduced to
a single circle we only care about Pin.) The moduli space N (ϕ) is just Aut(D2, 1), and the

quotient N̂ (ϕ) is a point. The fact that this point is counted with a positive sign can be read
off the proof of Lemma 11.17 in [40], using the fact that the Pin structure on ∂D is the Lie
group one (or “trivial”, in the terminology of [40]). □

Of course, Proposition 7.4 applies equally well to the beta curves. When considering
∂2 for the minus Floer complex, we get contributions from both the alpha and the beta
degenerations. By Proposition 3.12, the beta degenerations actually come with negative
sign. Overall, we get ℓ contributions of +1 from the components of Σ\α, and ℓ contributions
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Figure 26. An index zero/three stabilization.

of −1 from the components of Σ \ β. Each component contains a single basepoint wi, so it
gets multiplied by a factor Ui. The two contributions from the domains containing wi cancel
out, implying that ∂2 = 0. We obtain a well-defined homology HF−(Y,w, s), with coefficients
in Z[U1, . . . , Uℓ].

Proposition 7.5. Let Y be a closed, connected, oriented 3-manifold equipped with a set of

basepoints w ∈ Y and a Spinc structure s. Then, the Heegaard Floer homologies ĤF and
HF− are natural invariants of the triple (Y,w, s).

Proof. Similar to that of Theorems 1.1 and 1.2. □

In [28, Theorem 4.4], Ozsváth and Szabó also investigate how the Heegaard Floer homology
depends on the basepoints, up to (non-canonical) isomorphism. Here is the analogue of their
result for Z coefficients.

Proposition 7.6. Let w = {w1, . . . , wℓ} ⊂ Y . Then, the actions of multiplication by Ui on
HF−(Y,w, s) for i = 1, . . . , ℓ are the same, giving it the structure of a Z[U ]-module (where
U is any Ui). Moreover, we have an isomorphism of Z[U ]-modules

HF−(Y,w, s) ∼= HF−(Y, s).

We also have an isomorphism of abelian groups

ĤF (Y,w, s) ∼= ĤF (Y, s)⊗H∗(T
ℓ−1).

Proof. The proof of [28, Theorem 4.4] proceeds by using Heegaard moves to reduce to the case
of a simple index zero/three stabilization. There, we have a Heegaard diagram (Σ,α,β,w)
and its connected sum

(Σ′,α′,β′,w′) = (Σ,α,β,w)#(S, α, β, v1, v2),

where S is a sphere with two great circles α and β intersecting at two points x and y, as in
Figure 26. The connected sum is taken at a basepoint w1 ∈ w on Σ, which gets identified with
v1 on S. The point v2 becomes a new basepoint wℓ+1, so that w′ = w∪{wℓ+1}. Degeneration
arguments show that we have an isomorphism of chain complexes

CF−(Σ′,α′,β′,w′) ∼= CF−(Σ,α,β,w)⊗ CF−(S, α, β, v1, v2)

where the tensor product is over F[U1] and the second factor is the mapping cone of U1 −
Uℓ+1. In our setting, after we equip each curve with the Lie group Spin structure, the same
arguments work over Z. Indeed, CF−(S, α, β, v1, v2) is generated by x and y, and in its
differential the two empty bigons from y to x come with opposite signs (as we have seen in
Example 3.23). The two bigons from x to y also come with opposite signs, and contribute
U1 − Uℓ+1. Thus, CF

−(Σ′,α′,β′,w′) is isomorphic to the mapping cone

CF−(Σ,α,β,w)[Uℓ+1]
U1−Uℓ+1−−−−−−→ CF−(Σ,α,β,w)[Uℓ+1].
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From here we deduce that the F[U1]-modules HF− for the two diagrams are isomorphic,

whereas the hat versions ĤF differ by tensoring with a H∗(S
1) factor. This suffices to

establish the desired results. (To see that the Ui actions on HF− are the same, we relate
them to a singly based diagram by Heegaard moves, using any of the Ui as the variable in
the coefficient ring.) □

7.3. Link Floer homology. Link Floer homology is an invariant of links in three-manifolds
developed by Ozsváth and Szabó in [28], with coefficients in F2. It generalizes the construction
for knots in [26], [36]. There are several versions of link Floer homology. We start by reviewing

ĤFL and HFL−, borrowing some terminology and notation from [28], [24], and [48].

Definition 7.7. Let Y be a closed oriented 3-manifold. A multi-based link in Y is a triple
L = (L,w, z) where L ⊂ Y is an embedded, oriented link, and w and z are disjoint collections
of basepoints on L with the following properties:

• every component of L has at least two basepoints, and
• as we traverse any component, the basepoints alternate between those in w and those
in z.

Definition 7.8. Fix (Y,L) as above. A multi-based Heegaard diagram (Σ,α,β,w, z) repre-
senting (Y,L) is a Heegaard diagram for Y with w, z ⊂ Σ\ (α∪β), such that after we attach
disks to the alpha and beta curves in their respective handlebody, the handlebodies are split
into balls; each ball should have exactly one w and one z basepoint on its boundary, and as
we join these two basepoints by an arc inside the ball, the union of these arcs should be the
link L. The orientation of L should be such that the arcs go from the w to the z basepoints
inside the alpha handlebody.

Let (Y,L) be a 3-manifold with a multi-based link, and s be a Spinc structure on Y \nbhd(L)
relative its boundary, as in [28, Section 3.2]. Suppose we havem basepoints of type w andm of
type z. Given a Heegaard diagram (Σ,α,β,w, z) representing (Y,L), we define HFL−(Y,L, s)
as the homology of a Floer complex over F2[U1, . . . , Um], where the Lagrangians are Tα and
Tβ as usual, and we only count holomorphic strips in classes ϕ such that

nz1(ϕ) = nz2(ϕ) = · · · = nzm(ϕ) = 0.

Further, when counting the strips we include a factor of

U
nw1 (ϕ)
1 U

nw2 (ϕ)
2 · · ·Unwm (ϕ)

m ,

just as we did in Section 7.2.

For ĤFL(Y,L, s), we set all Ui to be zero in the complex above and then take homology;
that is, we only count strips that do not go over any basepoints.

Let us upgrade these constructions to Z instead of F2. To imitate what we did for HF ◦

in Section 4, we need a coupled Spin structure on (A,B), where A and B are the spans of
the alpha and beta curves, respectively. Observe that to (Y,L) we can associate a sutured
manifold (M,γ) as follows. We let M be the complement Y ⊂ nbhd(L). Take meridians
µ(wi), µ(zi) ⊂ ∂M around the basepoints. Let the sutures γ be disjoint annuli around each
of these meridians in ∂M , and let R− and R+ be the remaining parts of ∂N that are in Uα
and Uβ, respectively. (Compare Example 2.4 in [15].)

We can now appeal to the results from Section 7.1. In fact, notice that ĤFL(Y,L, s) is
nothing else than the sutured Floer homology of (M,γ). A coupled Spin structure on (A,B)
is determined by a homological coupled Spin structure on (M,γ). In our setting, where
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the sutured manifold comes from a multi-based link, the pairs (M,R−) and (M,R+) are
homotopy equivalent, by an isotopy supported in a neighborhood of ∂M which slides each
annulus from R− into the next one from R+ by following the orientation of the link. Hence,
the spaces H1(M,R−;R) and H1(M,R+;R) are canonically identified, and by Lemma 2.31
we have a preferred homological coupled Spin structure.

Thus, we can define ĤFL(Y,L, s) without making any additional choices. The same goes
for HFL−(Y,L, s), because the spaces A and B are the same. Note that for these versions
of link Floer homology we do not have any contributions from disk bubbles, because their
domains would go through the zi basepoints and hence they are not counted. The resulting
theories are natural invariants of the multi-based link.

Proof of Theorem 1.3. Similar to those of Theorem 1.1, Theorem 1.2 and Proposition 7.5. □

We also have an analogue of Proposition 7.6, with a similar proof.

Proposition 7.9. Let (Y,L, s) be a 3-manifold with a multi-based link and a relative Spinc

structure. Then, the actions of multiplication by Ui on HFL−(Y,L, s) are the same for all
variables Ui corresponding to basepoints on the same component of the link. This gives
HFL−(Y,L, s) the structure of a module over a polynomial ring with one variable for each
link component. As such, HFL−(Y,L, s) is independent of the number and position of the
base points, up to (non-canonical) isomorphism.

In the case of HFL−(Y,L, s), if L = (L,w, z) and L′ = (L,w′, z′) are such that |w| = |z| =
m and |w| = |z| = m′ ≤ m, then we have a (non-canonical) isomorphism

ĤFL(Y,L, s) ∼= ĤFL(Y,L′, s)⊗H∗(T
m−m′

).

One can also consider more general versions of link Floer complexes, where we allow strips
that go over the z basepoints. For example, in [48], Zemke works with a curved chain
complex CFL−(Y,L, s) for s ∈ Spinc(Y ). This is a module over F2[U1, . . . , Um, V1, . . . , Vm],
and its differential counts holomorphic strips in a class ϕ with a coefficient of

U
nw1 (ϕ)
1 · · ·Unwm (ϕ)

m · V nz1 (ϕ)
1 · · ·V nzm (ϕ)

m .

To do this over Z[U1, . . . , Um, V1, . . . , Vm], we use our preferred homological coupled Spin
structure. We now have disk bubbles as in Section 7.2, and they no longer cancel. Rather,
there are positive contributions to ∂2 from disks on Tα, and negative ones from disks on Tβ.
We get

∂2 =

(
m∑
i=1

(UiVσ(i) − ViUτ(i))

)
· id,

where zσ(i) is the basepoint following wi as we go around the respective component of L (with

the given orientation), and wτ(i) is the basepoint following τ(i). The complex CFL−(Y,L, s)
is curved, so we cannot take its homology (unless we have exactly two basepoints per com-
ponent, in which case ∂2 = 0). Nevertheless, a variant of Theorem 1.3 still applies, saying
that CFL−(Y,L, s) form a transitive system of curved chain complexes in the sense of [48,
Definition 2.15].

Remark 7.10. In [38], Sarkar constructs 2ℓ−1 versions of link Floer homology over Z, where
the different choices correspond to whether, for each of the ℓ components of the link, it is the
alpha or the beta degenerations with basepoints on that component which get counted with
+1 (versus −1). Our canonical version corresponds to his where all the alpha degenerations
are counted with +1. This agrees with the signs from grid homology [25, Definition 4.1]. To
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get the other choices in [38], one can use twisted coefficients, or equip one or both of the
Lagrangians with a Pin structure different from the Lie group one. (Compare Section 4.7.)

7.4. Involutive Heegaard Floer homology. In [14], Hendricks and the second author
define an invariant of 3-manifolds called involutive Heegaard Floer homology. Let us review
that construction. Let H = (Σ,α,β, z) be a based Heegaard diagram representing a 3-
manifold Y . For simplicity, we focus on Spinc structures s that are self-conjugate, i.e.,
s = s̄. (This is the only interesting case.) Given such an s, there is a canonical conjugation
isomorphism between Heegaard Floer chain complexes:

η : CF ◦(H, s)
∼=−−→ CF ◦(H, s)

where H is the Heegaard diagram (−Σ,β,α, z) and ◦ ∈ {̂,+,−,∞}. Furthermore, since
H and H represent the same 3-manifold, there is a chain homotopy equivalence induced by
Heegaard moves

Φ(H,H) : CF ◦(H, s) ∼−−→ CF ◦(H, s).
We let

ι = Φ(H,H) ◦ η : CF ◦(H, s) → CF ◦(H, s).
The involutive Heegaard Floer homology HFI ◦(Y, s) is defined as the homology of the map-
ping cone

CF ◦(H, s) Q(1+ι)−−−−−−→ Q·CF ◦(H, s)[−1],

where Q is a formal variable and [−1] is a shift in degree.
We can repeat the same construction over Z, using the Floer complexes and maps from

Section 4.

Proposition 7.11. The isomorphism class of the involutive Heegaard Floer homology HFI ◦(Y, s),
as a graded Z[Q,U ]/(Q2)-module, is an invariant of the pair (Y, s).

Proof. This is similar to the proof of the analogous Theorem 1.1 in [14]. The key input is
that the map Φ(H,H) is invariant up to chain homotopy equivalence. This is a version of
naturality at the chain level, which in our context follows from the proofs in Section 5. □

There is also a naturality result for involutive Heegaard Floer homology (with F2 coeffi-
cients), proved in [13]: It says that HFI ◦ is a natural invariant of (Y, s, z, ξ), where ξ is a
framing of TzY . While we expect the same statement with Z coefficients, proving it is beyond
the scope of the current paper.
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[2] L. Amorim, The Künneth theorem for the Fukaya algebra of a product of Lagrangians, Internat. J. Math.,
28(2017), no. 4, 1750026, 38.

[3] P. Biran and O. Cornea, Quantum structures for Lagrangian submanifolds, preprint, arXiv:0708.4221,
2007.

[4] C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry,
3(1969), 19–43.

[5] C. J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry,
4(1970), 169–185.

[6] A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math.
Z., 212(1993), no. 1, 13–38.

[7] J. Freeman, The Surgery Exact Triangle in Monopole Floer Homology with Z[i] Coefficients, ProQuest
LLC, Ann Arbor, MI, thesis (Ph.D.)–Massachusetts Institute of Technology, 2021.

https://arxiv.org/pdf/0708.4221


CANONICAL ORIENTATIONS IN HEEGAARD FLOER THEORY 71

[8] S. Friedl, A. Juhász, and J. Rasmussen, The decategorification of sutured Floer homology, J. Topol.,
4(2011), no. 2, 431–478.

[9] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruc-
tion. Part I, volume 46 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society,
Providence, RI; International Press, Somerville, MA, 2009.

[10] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory: anomaly and obstruc-
tion. Part II, volume 46 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society,
Providence, RI; International Press, Somerville, MA, 2009.

[11] M. Furuta, Monopole equation and the 11
8
-conjecture, Math. Res. Lett., 8(2001), no. 3, 279–291.

[12] M. Gartner, Projective naturality in Heegaard Floer homology, Algebr. Geom. Topol., 23(2023), no. 3,
963–1054.

[13] K. Hendricks, J. Hom, M. Stoffregen, and I. Zemke, Naturality and functoriality in involutive Heegaard
Floer homology, preprint, arXiv:2201.12906, 2022.

[14] K. Hendricks and C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J., 166(2017), no. 7,
1211–1299.

[15] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol., 6(2006), 1429–1457.
[16] A. Juhász, D. Thurston, and I. Zemke, Naturality and mapping class groups in Heegard Floer homology,

Mem. Amer. Math. Soc., 273(2021), no. 1338.
[17] R. C. Kirby, The topology of 4-manifolds, volume 1374 of Lecture Notes in Mathematics, Springer-Verlag,

Berlin, 1989.
[18] R. C. Kirby and L. R. Taylor, Pin structures on low-dimensional manifolds, in Geometry of low-

dimensional manifolds, 2 (Durham, 1989), Cambridge Univ. Press, Cambridge, volume 151 of London
Math. Soc. Lecture Note Ser., pp. 177–242, 1990.

[19] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, volume 10 of New Mathematical Mono-
graphs, Cambridge University Press, Cambridge, 2007.
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