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Abstract

Knowledge tracing—where a machine models the knowledge of a student as they
interact with coursework—is a well established problem in computer supported
education. Though effectively modeling student knowledge would have high ed-
ucational impact, the task has many inherent challenges. In this paper we explore
the utility of using Recurrent Neural Networks (RNNs) to model student learning.
The RNN family of models have important advantages over previous methods
in that they do not require the explicit encoding of human domain knowledge,
and can capture more complex representations of student knowledge. Using neu-
ral networks results in substantial improvements in prediction performance on a
range of knowledge tracing datasets. Moreover the learned model can be used for
intelligent curriculum design and allows straightforward interpretation and dis-
covery of structure in student tasks. These results suggest a promising new line of
research for knowledge tracing and an exemplary application task for RNNs.

1 Introduction

Computer-assisted education promises open access to world class instruction and a reduction in the
growing cost of learning. We can develop on this promise by building models of large scale student
trace data on popular educational platforms such as Khan Academy, Coursera, and EdX.

Knowledge tracing is the task of modelling student knowledge over time so that we can accurately
predict how students will perform on future interactions. Improvement on this task means that re-
sources can be suggested to students based on their individual needs, and content which is predicted
to be too easy or too hard can be skipped or delayed. Already, hand-tuned intelligent tutoring sys-
tems that attempt to tailor content show promising results [28]. One-on-one human tutoring can
produce learning gains for the average student on the order of two standard deviations [5] and ma-
chine learning solutions could provide these benefits of high quality personalized teaching to anyone
in the world for free. The knowledge tracing problem is inherently difficult as human learning is
grounded in the complexity of both the human brain and human knowledge. Thus, the use of rich
models seems appropriate. However most previous work in education relies on first order Markov
models with restricted functional forms.

In this paper we present a formulation that we call Deep Knowledge Tracing (DKT) in which we
apply flexible recurrent neural networks that are ‘deep’ in time to the task of knowledge tracing. This
family of models represents latent knowledge state, along with its temporal dynamics, using large
vectors of artificial ‘neurons’, and allows the latent variable representation of student knowledge to
be learned from data rather than hard-coded. The main contributions of this work are:

1. A novel way to encode student interactions as input to a recurrent neural network.
2. A 25% gain in AUC over the best previous result on a knowledge tracing benchmark.
3. Demonstration that our knowledge tracing model does not need expert annotations.
4. Discovery of exercise influence and generation of improved exercise curricula.
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Figure 1: A single student and her predicted responses as she solves 50 Khan Academy exercises. She seems to
master finding x and y intercepts and then has trouble transferring knowledge to graphing linear equations.

The task of knowledge tracing can be formalized as: given observations of interactions x0 . . .xt

taken by a student on a particular learning task, predict aspects of their next interaction xt+1 [6].
In the most ubiquitous instantiation of knowledge tracing, interactions take the form of a tuple of
xt = {qt, at} that combines a tag for the exercise being answered qt with whether or not the exercise
was answered correctly at. When making a prediction, the model is provided the tag of the exercise
being answered, qt and must predict whether the student will get the exercise correct, at. Figure 1
shows a visualization of tracing knowledge for a single student learning 8th grade math. The student
first answers two square root problems correctly and then gets a single x-intercept exercise incorrect.
In the subsequent 47 interactions the student solves a series of x-intercept, y-intercept and graphing
exercises. Each time the student answers an exercise we can make a prediction as to whether or not
she would answer an exercise of each type correctly on her next interaction. In the visualization
we only show predictions over time for a relevant subset of exercise types. In most previous work,
exercise tags denote the single “concept” that human experts assign to an exercise. Our model
can leverage, but does not require, such expert annotation. We demonstrate that in the absence of
annotations the model can autonomously learn content substructure.

2 Related Work

The task of modelling and predicting how human beings learn is informed by fields as diverse
as education, psychology, neuroscience and cognitive science. From a social science perspective
learning has been understood to be influenced by complex macro level interactions including affect
[21], motivation [10] and even identity [4]. The challenges present are further exposed on the micro
level. Learning is fundamentally a reflection of human cognition which is a highly complex process.
Two themes in the field of cognitive science that are particularly relevant are theories that the human
mind, and its learning process, are recursive [12] and driven by analogy [13].

The problem of knowledge tracing was first posed, and has been heavily studied within the intelligent
tutoring community. In the face of aforementioned challenges it has been a primary goal to build
models which may not capture all cognitive processes, but are nevertheless useful.

2.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) is the most popular approach for building temporal models
of student learning. BKT models a learner’s latent knowledge state as a set of binary variables,
each of which represents understanding or non-understanding of a single concept [6]. A Hidden
Markov Model (HMM) is used to update the probabilities across each of these binary variables, as a
learner answers exercises of a given concept correctly or incorrectly. The original model formulation
assumed that once a skill is learned it is never forgotten. Recent extensions to this model include
contextualization of guessing and slipping estimates [7], estimating prior knowledge for individual
learners [33], and estimating problem difficulty [23].

With or without such extensions, Knowledge Tracing suffers from several difficulties. First, the
binary representation of student understanding may be unrealistic. Second, the meaning of the
hidden variables and their mappings onto exercises can be ambiguous, rarely meeting the model’s
expectation of a single concept per exercise. Several techniques have been developed to create and
refine concept categories and concept-exercise mappings. The current gold standard, Cognitive Task
Analysis [31] is an arduous and iterative process where domain experts ask learners to talk through
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their thought processes while solving problems. Finally, the binary response data used to model
transitions imposes a limit on the kinds of exercises that can be modeled.

2.2 Other Dynamic Probabilistic Models

Partially Observable Markov Decision Processes (POMDPs) have been used to model learner be-
havior over time, in cases where the learner follows an open-ended path to arrive at a solution [29].
Although POMDPs present an extremely flexible framework, they require exploration of an expo-
nentially large state space. Current implementations are also restricted to a discrete state space,
with hard-coded meanings for latent variables. This makes them intractable or inflexible in practice,
though they have the potential to overcome both of those limitations.

Simpler models from the Performance Factors Analysis (PFA) framework [24] and Learning Factors
Analysis (LFA) framework [3] have shown predictive power comparable to BKT [14]. To obtain
better predictive results than with any one model alone, various ensemble methods have been used
to combine BKT and PFA [8]. Model combinations supported by AdaBoost, Random Forest, linear
regression, logistic regression and a feed-forward neural network were all shown to deliver superior
results to BKT and PFA on their own. But because of the learner models they rely on, these ensemble
techniques grapple with the same limitations, including a requirement for accurate concept labeling.

Recent work has explored combining Item Response Theory (IRT) models with switched nonlinear
Kalman filters [20], as well as with Knowledge Tracing [19, 18]. Though these approaches are
promising, at present they are both more restricted in functional form and more expensive (due to
inference of latent variables) than the method we present here.

2.3 Recurrent Neural Networks

Recurrent neural networks are a family of flexible dynamic models which connect artificial neurons
over time. The propagation of information is recursive in that hidden neurons evolve based on both
the input to the system and on their previous activation [32]. In contrast to hidden Markov models
as they appear in education, which are also dynamic, RNNs have a high dimensional, continuous,
representation of latent state. A notable advantage of the richer representation of RNNs is their abil-
ity to use information from an input in a prediction at a much later point in time. This is especially
true for Long Short Term Memory (LSTM) networks—a popular type of RNN [16].

Recurrent neural networks are competitive or state-of-the-art for several time series tasks–for in-
stance, speech to text [15], translation [22], and image captioning [17]–where large amounts of
training data are available. These results suggest that we could be much more successful at tracing
student knowledge if we formulated the task as a new application of temporal neural networks.

3 Deep Knowledge Tracing

We believe that human learning is governed by many diverse properties – of the material, the context,
the timecourse of presentation, and the individual involved – many of which are difficult to quantify
relying only on first principles to assign attributes to exercises or structure a graphical model. Here
we will apply two different types of RNNs – a vanilla RNN model with sigmoid units and a Long
Short Term Memory (LSTM) model – to the problem of predicting student responses to exercises
based upon their past activity.

3.1 Model

Traditional Recurrent Neural Networks (RNNs) map an input sequence of vectors x1, . . . ,xT , to
an output sequence of vectors y1, . . . ,yT . This is achieved by computing a sequence of ‘hidden’
states h1, . . . ,hT which can be viewed as successive encodings of relevant information from past
observations that will be useful for future predictions. See Figure 2 for a cartoon illustration. The
variables are related using a simple network defined by the equations:

ht = tanh (Whxxt +Whhht−1 + bh) , (1)
yt = σ (Wyhht + by) , (2)
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Figure 2: The connection between variables in a simple recurrent neural network. The inputs (xt) to the
dynamic network are either one-hot encodings or compressed representations of a student action, and the
prediction (yt) is a vector representing the probability of getting each of the dataset exercises correct.

where both tanh and the sigmoid function, σ (·), are applied elementwise. The model is parame-
terized by an input weight matrix Whx, recurrent weight matrix Whh, initial state h0, and readout
weight matrix Wyh. Biases for latent and readout units are given by bh and by .

Long Short Term Memory (LSTM) networks [16] are a more complex variant of RNNs that often
prove more powerful. In LSTMs latent units retain their values until explicitly cleared by the action
of a ‘forget gate’. They thus more naturally retain information for many time steps, which is believed
to make them easier to train. Additionally, hidden units are updated using multiplicative interactions,
and they can thus perform more complicated transformations for the same number of latent units.
The update equations for an LSTM are significantly more complicated than for an RNN, and can be
found in Appendix A.

3.2 Input and Output Time Series

In order to train an RNN or LSTM on student interactions, it is necessary to convert those interac-
tions into a sequence of fixed length input vectors xt. We do this using two methods depending on
the nature of those interactions:

For datasets with a small number M of unique exercises, we set xt to be a one-hot encoding of
the student interaction tuple ht = {qt, at} that represents the combination of which exercise was
answered and if the exercise was answered correctly, so xt ∈ {0, 1}2M . We found that having
separate representations for qt and at degraded performance.

For large feature spaces, a one-hot encoding can quickly become impractically large. For datasets
with a large number of unique exercises, we therefore instead assign a random vector nq,a ∼
N (0, I) to each input tuple, where nq,a ∈ RN , and N � M . We then set each input vector
xt to the corresponding random vector, xt = nqt,at . This random low-dimensional representation
of a one-hot high-dimensional vector is motivated by compressed sensing. Compressed sensing
states that a k-sparse signal in d dimensions can be recovered exactly from k log d random linear
projections (up to scaling and additive constants) [2]. Since a one-hot encoding is a 1-sparse signal,
the student interaction tuple can be exactly encoded by assigning it to a fixed random Gaussian input
vector of length ∼ log 2M . Although the current paper deals only with 1-hot vectors, this technique
can be extended easily to capture aspects of more complex student interactions in a fixed length
vector.

The output yt is a vector of length equal to the number of problems, where each entry represents
the predicted probability that the student would answer that particular problem correctly. Thus the
prediction of at+1 can then be read from the entry in yt corresponding to qt+1.

3.3 Optimization

The training objective is the negative log likelihood of the observed sequence of student responses
under the model. Let δ(qt+1) be the one-hot encoding of which exercise is answered at time t + 1,
and let ` be binary cross entropy. The loss for a given prediction is `(yT δ (qt+1) , at+1), and the
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loss for a single student is:

L =
∑
t

`(yT δ (qt+1) , at+1) (3)

This objective was minimized using stochastic gradient descent on minibatches. To prevent over-
fitting during training, dropout was applied to ht when computing the readout yt, but not when
computing the next hidden state ht+1. We prevent gradients from ‘exploding’ as we backpropagate
through time by truncating the length of gradients whose norm is above a threshold. For all models
in this paper we consistently used hidden dimensionality of 200 and a mini-batch size of 100. To
facilitate research in DKTs we have published our code and relevant preprocessed data1.

4 Educational Applications

The training objective for knowledge tracing is to predict a student’s future performance based on
their past activity. This is directly useful – for instance formal testing is no longer necessary if a
student’s ability undergoes continuous assessment. As explored experimentally in Section 6, the
DKT model can also power a number of other advancements.

4.1 Improving Curricula

One of the biggest potential impacts of our model is in choosing the best sequence of learning items
to present to a student. Given a student with an estimated hidden knowledge state, we can query
our RNN to calculate what their expected knowledge state would be if we were to assign them a
particular exercise. For instance, in Figure 1 after the student has answered 50 exercises we can test
every possible next exercise we could show her and compute her expected knowledge state given that
choice. The predicted optimal next problem for this student is to revisit solving for the y-intercept.

We use a trained DKT to test two classic curricula rules from education literature: mixing where
exercises from different topics are intermixed, and blocking where students answer series of exer-
cises of the same type [30]. Since choosing the entire sequence of next exercises so as to maximize
predicted accuracy can be phrased as a Markov decision problem we can also evaluate the benefits
of using the expectimax algorithm (see Appendix) to chose an optimal sequence of problems.

4.2 Discovering Exercise Relationships

The DKT model can further be applied to the task of discovering latent structure or concepts in the
data, a task that is typically performed by human experts. We approached this problem by assigning
an influence Jij to every directed pair of exercises i and j,

Jij =
y (j|i)∑
k y (j|k)

, (4)

where y (j|i) is the correctness probability assigned by the RNN to exercise j on the second timestep,
given that a student answered exercise i correctly on the first. We show that this characterization of
the dependencies captured by the RNN recovers the pre-requisites associated with exercises.

5 Datasets

We test the ability to predict student performance on three datasets: simulated data, Khan Academy
Data, and the Assistments benchmark dataset. On each dataset we measure area under the curve
(AUC). For the non-simulated data we evaluate our results using 5-fold cross validation and in all
cases hyper-parameters are learned on training data. We compare the results of Deep Knowledge
Tracing to standard BKT and, when possible to optimal variations of BKT. Additionally we compare
our results to predictions made by simply calculating the marginal probability of a student getting a
particular exercise correct.

1https://github.com/chrispiech/DeepKnowledgeTracing
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Overview AUC

Dataset Students Exercise Tags Answers Marginal BKT BKT* DKT

Simulated-5 4,000 50 200 K ? 0.54 - 0.75
Khan Math 47,495 69 1,435 K 0.63 0.68 - 0.85
Assistments 15,931 124 526 K 0.62 0.67 0.69 0.86

Table 1: AUC results for all datasets tested. BKT is the standard BKT. BKT* is the best reported result from
the literature for Assistments. DKT is the result of using LSTM Deep Knowledge Tracing.

Simulated Data: We simulate virtual students learning virtual concepts and test how well we can
predict responses in this controlled setting. For each run of this experiment we generate two thou-
sand students who answer 50 exercises drawn from k ∈ 1 . . . 5 concepts. For this dataset only, all
students answer the same sequence of 50 exercises. Each student has a latent knowledge state “skill”
for each concept, and each exercise has both a single concept and a difficulty. The probability of
a student getting a exercise with difficulty β correct if the student had concept skill α is modelled
using classic Item Response Theory [9] as: p(correct|α, β) = c + 1−c

1+eβ−α
where c is the probabil-

ity of a random guess (set to be 0.25). Students “learn” over time via an increase to the concept
skill which corresponded to the exercise they answered. To understand how the different models
can incorporate unlabelled data, we do not provide models with the hidden concept labels (instead
the input is simply the exercise index and whether or not the exercise was answered correctly). We
evaluate prediction performance on an additional two thousand simulated test students. For each
number of concepts we repeat the experiment 20 times with different randomly generated data to
evaluate accuracy mean and standard error.

Khan Academy Data: We used a sample of anonymized student usage interactions from the eighth
grade Common Core curriculum on Khan Academy. The dataset included 1.4 million exercises
completed by 47,495 students across 69 different exercise types. It did not contain any personal
information. Only the researchers working on this paper had access to this anonymized dataset, and
its use was governed by an agreement designed to protect student privacy in accordance with Khan
Academy’s privacy notice [1]. Khan Academy provides a particularly relevant source of learning
data, since students often interact with the site for an extended period of time and for a variety of
content, and because students are often self-directed in the topics they work on and in the trajectory
they take through material.

Benchmark Dataset: In order to understand how our model compared to other models we evaluated
models on the Assistments 2009-2010 “skill builder” public benchmark dataset2 . Assistments is an
online tutor that simultaneously teaches and assesses students in grade school mathematics. It is, to
the best of our knowledge, the largest publicly available knowledge tracing dataset [11].

6 Results

On all three datasets Deep Knowledge Tracing substantially outperformed previous methods. On
the Khan dataset using an LSTM neural network model led to an AUC of 0.85 which was a notable
improvement over the performance of a standard BKT (AUC = 0.68), especially when compared to
the small improvement BKT provided over the marginal baseline (AUC = 0.63). See Table 1 and
Figure 3(b). On the Assistments dataset DKT produced a 25% gain over the previous best reported
result (AUC = 0.86 and 0.69 respectively) [23]. The gain we report in AUC compared to the marginal
baseline (0.24) is more than triple the largest gain achieved on the dataset to date (0.07).

The prediction results from the synthetic dataset provide an interesting demonstration of the capac-
ities of deep knowledge tracing. Both the LSTM and RNN models did as well at predicting student
responses as an oracle which had perfect knowledge of all model parameters (and only had to fit the
latent student knowledge variables). See Figure 3(a). In order to get accuracy on par with an oracle
the models would have to mimic a function that incorporates: latent concepts, the difficulty of each
exercise, the prior distributions of student knowledge and the increase in concept skill that happened

2https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
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Figure 3: Left: Prediction results for (a) simulated data and (b) Khan Academy data. Right: (c) Predicted
knowledge on Assistments data for different exercise curricula. Error bars are standard error of the mean.

after each exercise. In contrast, the BKT prediction degraded substantially as the number of hidden
concepts increased as it doesn’t have a mechanism to learn unlabelled concepts.

We tested our ability to intelligently chose exercises on a subset of five concepts from the Assistment
dataset. For each curricula method, we used our DKT model to simulate how a student would
answer questions and evaluate how much a student knew after 30 exercises. We repeated student
simulations 500 times and measured the average predicted probability of a student getting future
questions correct. In the Assistment context the blocking strategy had a notable advantage over
mixing. See Figure 3(c). While blocking performs on par with solving expectimax one exercise
deep (MDP-1), if we look further into the future when choosing the next problem we come up with
curricula where students have higher predicted knowledge after solving fewer problems (MDP-8).

The prediction accuracy on the synthetic dataset suggest that it may be possible to use DKT models
to extract the latent structure between the assessments in the dataset. The graph of our model’s
conditional influences for the synthetic dataset reveals a perfect clustering of the five latent concepts
(see Figure 4), with directed edges set using the influence function in Equation 4. An interesting
observation is that some of the exercises from the same concept occurred far apart in time. For
example, in the synthetic dataset, where node numbers depict sequence, the 5th exercise in the
synthetic dataset was from hidden concept 1 and even though it wasn’t until the 22nd problem
that another problem from the same concept was asked, we were able to learn a strong conditional
dependency between the two. We analyzed the Khan dataset using the same technique. The resulting
graph is a compelling articulation of how the concepts in the 8th grade Common Core are related
to each other (see Figure 4. Node numbers depict exercise tags). We restricted the analysis to
ordered pairs of exercises {A,B} such that after A appeared, B appeared more than 1% of the
time in the remainder of the sequence). To determine if the resulting conditional relationships are a
product of obvious underlying trends in the data we compared our results to two baseline measures
(1) the transition probabilities of students answering B given they had just answered A and (2) the
probability in the dataset (without using a DKT model) of answering B correctly given a student
had earlier answered A correctly. Both baseline methods generated discordant graphs, which are
shown in the Appendix. While many of the relationships we uncovered may be unsurprising to an
education expert their discovery is affirmation that the DKT network learned a coherent model.

7 Discussion

In this paper we apply RNNs to the problem of knowledge tracing in education, showing improve-
ment over prior state-of-the-art performance on the Assistments benchmark and Khan dataset. Two
particularly interesting novel properties of our new model are that (1) it does not need expert anno-
tations (it can learn concept patterns on its own) and (2) it can operate on any student input that can
be vectorized. One disadvantage of RNNs over simple hidden Markov methods is that they require
large amounts of training data, and so are well suited to an online education environment, but not a
small classroom environment.
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Figure 4: Graphs of conditional influence between exercises in DKT models. Above: We observe a perfect
clustering of latent concepts in the synthetic data. Below: A convincing depiction of how 8th grade math
Common Core exercises influence one another. Arrow size indicates connection strength. Note that nodes may
be connected in both directions. Edges with a magnitude smaller than 0.1 have been thresholded. Cluster
labels are added by hand, but are fully consistent with the exercises in each cluster.

The application of RNNs to knowledge tracing provides many directions for future research. Fur-
ther investigations could incorporate other features as inputs (such as time taken), explore other
educational impacts (such as hint generation, dropout prediction), and validate hypotheses posed in
education literature (such as spaced repetition, modeling how students forget). Because DKTs take
vector input it should be possible to track knowledge over more complex learning activities. An es-
pecially interesting extension is to trace student knowledge as they solve open-ended programming
tasks [26, 27]. Using a recently developed method for vectorization of programs [25] we hope to be
able to intelligently model student knowledge over time as they learn to program.

In an ongoing collaboration with Khan Academy, we plan to test the efficacy of DKT for curriculum
planning in a controlled experiment, by using it to propose exercises on the site.
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Appendix
A LSTM Equations

it = σ(Wixxt +Wihht−1 + bi) (5)
gt = σ(Wgxxt +Wghht−1 + bg) (6)
ft = σ(Wfxxt +Wfhht−1 + bf ) (7)
ot = σ(Woxxt +Wohht−1 + bo) (8)
ht = ot �mt (9)
mt = ft �mt−1 + it � gt (10)
zt = Wzmmt + bz (11)
yt = σ(zt) (12)

B Expectimax

Expectimax is a brute force, tree based, MDP search algorithm that calculates the expected utility
of each action under the assumption that the agent will always make a maximizing decision when
given a choice, and that after an action has been taken, the environment will produce a next state
using a stochastic process.

C Concept Clustering

Figure A.1: It is difficult to cluster concepts using model weights. Here is tSNE using the readout and reading
weights of the best RNN model trained on synthetic data with five hidden concepts (labeled).

D Model Insights
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Figure A.2: The Khan Academy exercise labels.
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Figure A.3: Exercise influence graph derived from student transitions between problems. Edges (a, b) represent
the probability of a student solving b after they solve a. Only transitions with probability > 0.1 are displayed.
These have less structure than the relationships derived in Figure. 4.

Figure A.4: Exercise influence graph using Equation 4, but based on the empirical conditional accuracy on
exercise j following correct performance on exercise i. Only edge weights > 0.1 are displayed. These have
less structure than the relationships derived in Figure 4.
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Figure A.5: How do the best students differ from below-average students? There seems to be much less variance
in their knowledge increase. The red curve shows the mean predicted accuracy for students closest to the 40th
percentile of the class after 50 questions, while the blue curve is for students closest to the 100th percentile of
the class after 50 questions.

Figure A.6: The parameter bz is easy to interpret. In general the ith element captures the marginal probability
of getting the ith exercise correct.
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