
Handwritten Code Recognition for Pen-and-Paper CS Education
Md Sazzad Islam∗

sazzad14@stanford.edu
Stanford University
Palo Alto, CA, USA

Moussa Koulako Bala Doumbouya∗
moussa@stanford.edu

GNCode
Fria, Guinea

Stanford University
Palo Alto, CA, USA

Christopher D. Manning
manning@stanford.edu
Stanford University
Palo Alto, CA, USA

Chris Piech
piech@cs.stanford.edu
Stanford University
Palo Alto, CA, USA

ABSTRACT
Teaching Computer Science (CS) by having students write programs
by hand on paper has key pedagogical advantages: It allows focused
learning and requires careful thinking compared to the use of Inte-
grated Development Environments (IDEs) with intelligent support
tools or "just trying things out". The familiar environment of pens
and paper also lessens the cognitive load of students with no prior
experience with computers, for whom the mere basic usage of com-
puters can be intimidating. Finally, this teaching approach opens
learning opportunities to students with limited access to computers.
However, a key obstacle is the current lack of teaching methods
and support software for working with and running handwritten
programs. Optical character recognition (OCR) of handwritten code
is challenging: Minor OCR errors, perhaps due to varied handwrit-
ing styles, easily make code not run, and recognizing indentation
is crucial for languages like Python but is difficult to do due to
inconsistent horizontal spacing in handwriting. Our approach inte-
grates two innovative methods. The first combines OCR with an
indentation recognition module and a language model designed for
post-OCR error correction without introducing hallucinations. This
method, to our knowledge, surpasses all existing systems in hand-
written code recognition. It reduces error from 30% in the state of
the art to 5% with minimal hallucination of logical fixes to student
programs. The second method leverages a multimodal language
model to recognize handwritten programs in an end-to-end fash-
ion. We hope this contribution can stimulate further pedagogical
research and contribute to the goal of making CS education univer-
sally accessible. We release a dataset of handwritten programs and
code to support future research 1.

∗Equal contribution; more junior author listed first.
1https://github.com/mdoumbouya/codeocr

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’24, July 18–20, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0633-2/24/07
https://doi.org/10.1145/3657604.3662027

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; • Human-centered computing→ Accessibility
systems and tools; Interactive systems and tools; • Applied com-
puting → Interactive learning environments; Collaborative
learning.

KEYWORDS
Artificial intelligence; Machine learning; CS Education;
Handwriting OCR

ACM Reference Format:
Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Man-
ning, and Chris Piech. 2024. Handwritten Code Recognition for Pen-and-
Paper CS Education. In Proceedings of the Eleventh ACM Conference on
Learning @ Scale (L@S ’24), July 18–20, 2024, Atlanta, GA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3657604.3662027

1 INTRODUCTION
Handwriting-based computer programming teaching tools have
the potential to increase the accessibility and effectiveness of el-
ementary CS education programs. However, to date, there aren’t
any usable software tools to support this pedagogy.

Handwriting-based elementary CS curricula, in contrast to those
based on the use of integrated development environments (IDE), are
advantageous in several ways. First, they reduce children’s exposure
to screens, which has been linked to adverse outcomes [21, 32].
Second, they offer a more familiar and less intimidating learning
environment for students with no prior experience with computers
and teachers with limited experience in computer science [7]. Third,
they allow students to become more intimately familiar with code
syntax as handwriting is more optimal for learning [30], particularly
for young children [26]. Finally, they are less costly to implement
and accessible to most schools and students.

However, to be effective, such curricula require a handwritten
code recognition and execution tool that allows the student to
quickly execute and test their handwritten programs. Automated
optical handwritten code recognition is challenging because of vari-
ations in individual student handwriting features, which include
character shapes, line slants, and vertical spacings [31]. For pro-
gramming languages in which indentations are lexemes, such as

200

https://orcid.org/0009-0002-6512-7419
https://orcid.org/0000-0002-5655-4489
https://orcid.org/0000-0001-6155-649X
https://orcid.org/0000-0001-5140-0467
https://github.com/mdoumbouya/codeocr
https://doi.org/10.1145/3657604.3662027
https://doi.org/10.1145/3657604.3662027
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657604.3662027&domain=pdf&date_stamp=2024-07-15

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Manning, & Chris Piech

Python, variations in the horizontal width of indentation units pose
additional recognition challenges.

In this work, we compare various approaches to addressing the
above challenges. On the one hand, we employ modular systems
that include distinct modules for optical character recognition, dis-
crete indentation level recognition, and language-model-based post-
correction. On the other hand, we employ a multimodal language
model that performs handwritten code recognition in an end-to-end
fashion. We discuss the successes and limitations of the approaches
we tried, including tradeoffs between recognition fidelity and lan-
guage model-induced hallucinations.

The main contributions of this paper are:
(1) Provide two first-of-their-kind public benchmark datasets for

handwritten student-code recognition and a methodology
for measuring the correctness of a given recognition method.

(2) Contribute two novel methods of indentation recognition
for handwritten Python code.

(3) Provide a novel methodology of incorporating OCR for hand-
written student code with LLMs to achieve a 5% error rate,
an improvement from the state-of-the-art 30% error.

1.1 Related Work
Over the years, several attempts have been made to address the
challenges of making computer science education more accessible.
Additionally, recognizing and digitizing handwritten texts, particu-
larly code, has been a subject of study with its unique challenges.

Computer Science Education without Computers. Several initia-
tives have explored the teaching of computer science principles
without the need for physical computers. Approaches such as the
popular CS Unplugged [4, 5] curriculum use off-computer activities
to teach core concepts [17, 33]. This is especially the case for young
children [28]. However, the lack of an execution environment re-
mains a challenge.

Handwriting Recognition and Digitization. Optical Character Rec-
ognition (OCR) systems have been worked on since as early as 1912
when Emanuel Goldberg presented a machine that could convert
characters into telegraph code [14] and 1913 when Dr. Edmund
Fournier d’Albe created the Optophone [11]. OCR became a well-
studied area for computing in the 1980s [23, 24] where much of
the focus was on identifying computer-printed characters. OCR for
handwritten characters is an especially difficult OCR task [2, 22].
The introduction of the famous MNIST dataset [9] in 2013 became
a popular application of deep learning algorithms which in turn led
to a sharp rise in accuracy when recognizing single handwritten
characters [16]. Since then OCR of handwriting has been applied
to multiple languages [18] as well as ancient scripts [25]. However,
until 2020 long form, OCR remained relatively inaccurate, unless an
algorithm was given a large sample of a particular person’s hand-
writing. Integrating Large Language Models (LLMs) [1, 6] with OCR
for post-correction has created excitement and new advances in
accuracy for OCR [19] especially using large multi-modal models
such as GPT-4V [15, 29]. These models have been recently devel-
oped and to the best of our knowledge have not been incorporated
into state-of-the-art available OCR tools. While they are promising
for OCR in general, the use of LLMs needs intentional study in the

Dataset Num Photos Correct Annotated

Correct Student Dataset 44 100% ✓
Logical Error Dataset 11 0% ✓

Table 1: Two evaluation datasets that we open source. The
correct column is the % of programswith no logical errors. All
programs are annotated with what the OCR should produce.

context of student code, as LLMs may start solving student coding
tasks while performing OCR.

OCR for Student Code. While there has been a lot of work on
OCR in general, and a small amount of work on OCR applied to
recognizing computer printed code [20] there is a surprising lack
of work on handwritten code, let alone student handwritten code.
The problem was first introduced in 2012 in the paper CodeRunner
[12]. Perhaps because of a lack of a public dataset, little progress
has been made. A project, Handwritten Code Scanner from 2021
could not progress because of how surprisingly hard it was to get
standard handwritten OCR packages to work for student code [34].

2 THE STUDENT-CODE OCR CHALLENGE
The Student-Code Optical Character Recognition (OCR) challenge
is to convert images of handwritten student code into a digital string
representation. This process presents a significant challenge, partic-
ularly for languages like Python where indentation plays a crucial
semantic role. The advent of Large Language Models (LLMs) for
post-processing has ushered in an exciting era for OCR technology,
enhancing its effectiveness and accuracy. However, the transcrip-
tion of student code introduces distinct challenges. It is imperative
that the OCR process avoids introducing or "hallucinating" logical
corrections or fixes. This is true regardless of whether the OCR
is conducted by teachers for assessment purposes or by students
during their learning process.

We contribute two novel benchmark datasets as well as evalu-
ation methodology. The Correct Student Dataset is created by 40
real students in, Code In Place[27], an international, free, online
intro to Python course. The students wrote answers to a provided
task. The Python coding tasks included grid-world, console, and
graphics challenges from the introductory computer science course
CS-106A, at Stanford. We augment the dataset with the Logical
Error Dataset that has a range of mistakes that you would expect to
see in an introduction to coding class. While some of the images in
the Logical Error Dataset were from real students, the majority were
written by the authors. We open-source both datasets. Using these
two datasets we can then run both the Edit Distance Test to measure
how accurately a student-code OCR algorithm captures what the
student had written as well as the Logical Fix Hallucination Test to
measure how many corrections the OCR method injects.

2.1 Measuring OCR Error
Understanding how closely the digitalization from a Student-Code
OCR algorithm approximates the true gold label digitalization is
crucial. For the 55 programs in both the Correct Student Dataset
and the Logical Error Dataset combined, we measure the average

201

Handwritten Code Recognition for Pen-and-Paper CS Education L@S ’24, July 18–20, 2024, Atlanta, GA, USA

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2

Relative

AbsoluteNone

LM Post-
Correction

3

Simple

COTNone

Figure 1: Processing a student’s handwritten program. (1) The OCR module produces bounding boxes and noisy transcriptions
for each line of code. (2) High-fidelity reconstruction of the student’s intended discrete indentation levels. (3) Post-correction
using chain-of-thought prompting of a language model. A key challenge is to reconstruct the student’s work by correcting
transcription errors (e.g. missing underscores on lines 11 and 13, dash on lines 2, 8, and 9, capitalization and inserted space on
line 6) without introducing artifacts (e.g. removed comment on line 8).

Levenshtein distance, normalized by the length of the student pro-
grams. The Levenshtein distance quantifies the minimal number of
single-character edits (i.e., insertions, deletions, or substitutions)
required to change the predicted student program into the annota-
tion of what they actually meant to write [35]. Lower values of the
edit distance indicate that the algorithm’s output is closer to what
the student intended. By normalizing the Levenshtein distance by
the number of characters in the test we have a metric that is more
interpretable. It is approximately, the % of characters for which the
algorithm made a mistake. Mathematically, the normalized Leven-
shtein distance (𝐿norm) is defined as follows:

𝐿norm =
𝐿(𝑠𝑡𝑟1, 𝑠𝑡𝑟2)

|𝑠𝑡𝑟1 |
× 100%

where: 𝐿(𝑠𝑡𝑟1, 𝑠𝑡𝑟2) is the Levenshtein distance between the
ground truth string 𝑠𝑡𝑟1 and the OCR output string 𝑠𝑡𝑟2. |𝑠𝑡𝑟1 | de-
notes the length of the ground truth string. The OCR Error metric
is the average 𝐿norm across all student handwritten programs.

2.2 Logical Fix Hallucination Test
One of the primary concerns in integrating AI systems that possess
vast knowledge of coding is the potential risk of the system inad-
vertently providing answers to the students. Take, for example, a
scenario wherein a student is attempting to write a solution to the
Fibonacci sequence, a rather standard programming task. An AI
system, especially one equipped with a language model, might un-
intentionally rectify conceptual errors in the student’s code, leading
to what we term as "logical fix hallucination". This not only risks
undermining the student’s learning process but also doesn’t repre-
sent a good faith translation of the student’s original intention. To
safeguard against this and to accurately measure the extent of solu-
tion hallucination, a robust testing method is essential. In response
to this need, we introduced the Logical Error Dataset. This dataset
comprises a curated selection of typical student errors, thereby
serving as a benchmark to determine whether the AI recognition
algorithm tends to hallucinate fixes.

The Logical Error Dataset includes 11 programs. Each program
has an image of the program handwritten, the correct digitalization,
and the error description (see Table 4 for description). The dataset
contains a spectrum of errors such as Fence Post Errors, Arithmetic
Errors, Control Flow Errors, and Scope Errors. These errors focus
on logical, or semantic, errors rather than syntactic errors (such
as misspelling a variable or forgetting a colon). This is for a peda-
gogical reason: syntactic issues are often ones that a teacher may
teach by showing the correction. Logical errors are ones where the
teacher may want the student to find the solution on their own.

3 METHODS
We consider two methods for OCR of student code: An algorithm
that uses LLMs as post-processing as well as a multimodal LLM.
In the former algorithm, we decompose the task into three phases.
(1) In the first phase we apply an off-the-shelf OCR method, such
as Azure or Google OCR. (2) In the second phase we apply an
Indentation Recognition algorithm and (3) in the third and final
phase we use an LLM for Post Correction.

3.1 Initial OCR
The initial phase involved digitizing the handwritten code, for
which we employed four leading Optical Character Recognition
(OCR) technologies: Google Cloud Vision, Microsoft Azure OCR,
AWS Textract, and MathPix. These platforms established our base-
line for accuracy assessment. As demonstrated in Table 2, the error
rates were significantly high, underscoring the challenges of OCR
in the given context. Minor typographical errors, inherent to the
OCR process, rendered the codes non-executable, highlighting the
critical need for precise transcription in coding applications.

This observation prompted further investigation into two key ar-
eas: recognition of indentation patterns, essential for understanding
code structure, and the development of a post-correction mecha-
nism to rectify OCR-induced errors. Given the comparative analysis,
Microsoft Azure OCR was selected for subsequent phases due to
its superior accuracy among the evaluated platforms.

202

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Manning, & Chris Piech

3.2 Indentation Recognition
Indentation is a critical part of OCR for handwritten Python code.
In Python indentation has semantic meaning. However, raw OCR
results do not preserve the indentation structure intrinsic to the
ground truth. The OCR data does includes bounding box coordi-
nates for each line of text, providing spatial information that could
be leveraged to deduce indentation levels. We utilized this spatial
data through two different methods to ascertain the indentation
level for each line of code.

Absolute Indentation Clustering. Indentation recognition in
handwritten code can be formalized as a clustering challenge, pred-
icated on the assumption that lines with similar indentations would
align at comparable horizontal start points. The main task is to clus-
ter the x-coordinate of the top-left point of each line’s bounding
box, as identified by OCR, to identify distinct indentation levels.
This effectively transforms the problem into a straightforward one-
dimensional clustering task. We used Meanshift clustering as it
does not require a predefined number of clusters [8, 10]

Meanshift has a bandwidth hyperparameter, which defines the
range of influence of each cluster centroid. Across our datasets,
no bandwidth worked well for all images. To address this vari-
ability, we devised an adaptive bandwidth estimation formula:
Estimated Bandwidth = 1.5 × 1

𝑁

∑𝑁
𝑖=1 ℎ𝑖 , where ℎ𝑖 represents the

height of the 𝑖𝑡ℎ bounding box in the OCR output, and 𝑁 is the
total number of bounding boxes.

Relative Indentation Clustering. We hypothesize that when
students write code, the horizontal spacing of each line is influenced
by the spatial position of the immediately preceding lines. We
propose a method that uses the relative difference between lines.

In our relative indentation approach, we translate the OCR
bounding box outputs into "deltas" between each line’s minimum
"x" coordinate (See Figure 2, left side). So, for an image with 𝑛 lines
of code, we will have 𝑛−1 deltas. We normalize the deltas using the
image’s width. We observe from visual inspection that using these
deltas, it is much easier to differentiate between indentation and no
indentation. See Figure 2. If we consolidate the deltas with positive
values we notice that some positive delta values are large, corre-
sponding to an indentation. Others are close to zero, corresponding
to no indent.

The relative indentation method separates deltas into ones with
positive and negative values. Among the lines with positive in-
dentation, we classify the deltas as either being "single indent" or
"no indent". Among lines with a negative delta, we search for the
nearest ancestor. See Algorithm 1 for details.

To classify between indent and no-indent, we model the positive
deltas using a Gaussian Mixture Model (GMM). The GMM has
two Gaussians, one to represent the deltas for Indent and one to
represent deltas for No-Indent:

𝐷no-indent ∼ 𝑁 (𝜇1, 𝜎21)
𝐷indent ∼ 𝑁 (𝜇2, 𝜎22)

Our apriori assumption is that each Gaussian is equally likely.
Formally, that is equivalent to setting the mixture parameter 𝜏 = 0.5.
As such, to train our model we simply need to estimate the mean
(𝜇) and variance (𝜎) of the two Gaussians. We estimate the four

Algorithm 1 Relative Indentation Algorithm
For each line 𝐿𝑖 , starting from the second line (𝑖 = 2) to the last
line (𝑖 = 𝑛), the delta 𝛿𝑖 between its minimum x-coordinate and

that of the preceding line 𝐿𝑖−1 is examined:
(1) Positive Delta: If 𝛿𝑖 > 0, the line is evaluated for potential

indentation changes. If Cluster(𝛿𝑖) = Indent, the indentation
level of 𝐿𝑖 is incremented by one. If Cluster(𝛿𝑖) = No-Indent,
the indentation level of 𝐿𝑖 remains unchanged.

(2) Negative Delta: If 𝛿𝑖 < 0, the "Nearest Ancestor" technique
is applied:

(a) Form a dictionary 𝐷 by tracing upwards from line 𝐿𝑖 ,
recording the first line 𝐿𝑗 for each unique indentation level
encountered, until the beginning of the code is reached.

(b) The indentation level for 𝐿𝑖 is determined based on the
smallest absolute difference |𝛿𝑖, 𝑗 | between 𝐿𝑖 ’s minimum
x-coordinate and those of lines 𝐿𝑗 in 𝐷 , indicating the
closest horizontal alignment. Specifically, 𝐿𝑖 is aligned
with the indentation level of 𝐿𝑗 in 𝐷 that minimizes |𝛿𝑖, 𝑗 |.

parameters using LOOCV on a subset of manually annotated images
from our data. We fit the hyper-parameters of the GMM using
Maximum Likelihood Estimation (MLE) from the labelled data. This
produces the following estimates for the hyper-parameters:

Mean Standard Deviation

No-Indent 𝜇1 = 0.007 𝜎1 =0.008
Indent 𝜇2 = 0.078 𝜎2 =0.025

We can now classify if a delta pixels 𝛿 is an indentation using
Bayes’ Theorem. Let 𝑓 be the normal probability density function:

𝑃 (Cluster(𝛿) = Indent) = 𝑓 (𝐷indent = 𝛿)
𝑓 (𝐷indent = 𝛿) + 𝑓 (𝐷no-indent = 𝛿)

See Figure 2 (right side) for the different delta values between In-
dent and No-Indent lines of code among the 16 images. We observe
that there is a clear split among the two groups, which suggests
that the classification would be robust to different hyperparameter
values. We note that it would be slightly more accurate to model
𝐷no-indent as a truncated normal (given that its value can never be
less than 0). However, given that the groups Indent and No-Indent
are so well separated, the model is robust to using a classic GMM
and having no prior on indentation.

3.3 Language Model-Based Post-Correction
The tiniest of textual errors introduced by OCR can render a code
un-executable. As the last part of our method, we use a language
model to fix the errors in transcription introduced by the OCR. This
module receives input directly from the Indentation Recognition
Module, with the explicit aim of correcting only the typographical
errors without altering the code’s logical structure or indentation. A
significant challenge in this phase is mitigating the "hallucination"
effect commonly observed in large language models—unintended
alterations such as indentation changes, unwarranted corrections
of logical errors, or random modifications. Our objective was to

203

Handwritten Code Recognition for Pen-and-Paper CS Education L@S ’24, July 18–20, 2024, Atlanta, GA, USA

0

5

10

15

20

25

30

35

40

0.0
0
0.0
1
0.0
2
0.0
3
0.0
4
0.0
5
0.0
6
0.0
7
0.0
8
0.0
9
0.1
0
0.1
1
0.1
2
0.1
3
0.1
4

N
um

be
r o

f L
in

es

Delta Value (normalized pixels)

Indent

No Indent

OCR Bounding Boxes
100-100 0

Delta Value (pixels)

Figure 2: Left: Example program with corresponding delta values. Large positive deltas signify indentation. Right: A histogram
of positive delta values among 16 images shows a clear distinction between indent and no-indent.

minimize the edit distance, ensuring no deviation from the original
text. We explored two distinct approaches.2

Simple Prompting Approach. The initial strategy involved straight-
forwardly feeding the output from the Indentation Recognition
Module to the language model. This approach significantly reduces
errors but is susceptible to a hallucination-based logical fix. The
challenge was engineering a prompt that maintained a low error
rate while minimizing hallucinations. We found it particularly im-
portant to include direct messaging such as: "*VERY STRICT RULE*
- Do not fix any logical, or numerical error of the original code. -
Do not fix any indentation of the original code."

Chain-of-Thought (CoT) Prompting Approach. To further reduce
hallucination, especially regarding logical corrections and inden-
tation changes, we adopted a more nuanced, three-step Chain-of-
Thought Prompting Approach. The first step involves prompting
the language model to correct spelling errors potentially introduced
by the OCR system. Subsequent steps assume that the model might
inadvertently correct logical errors or alter indentation; hence, spe-
cific instructions are provided to revert any such changes. This
method proved highly effective and eliminated all hallucinatory
logical corrections in our dataset. However, we observed a slightly
higher OCR error rate in this case compared to Simple Prompting.
The Chain-of-Thought Prompting Pipeline is depicted in Figure 3

Figure 3: Chain-of-Thought Prompting Pipeline

2The exact prompts used for the experiment can be found in the post-correction
module in the codebase. Specifically, we used SIMPLEprompting_test2, COTprompt-
ing_test5, and GPT4_Vision for reporting our results.

3.4 Multi-Modal Handwritten OCR
Large multi-modal models offer robust text transcription directly
from images, enabling an end-to-end transcription process that mit-
igates the need for intermediate steps like our three-stage approach.
Leveraging GPT-4-Vision-Preview, we implemented an end-to-end
OCR process that directly transcribes text from images without the
need for segmented preprocessing steps like the aforementioned
method. This method involves directly feeding images of handwrit-
ten code, with a prompt into the model. The model then applies
its capabilities to recognize and transcribe text. The key to this ap-
proach is a carefully crafted prompt that guides the model to focus
strictly on transcription while avoiding the introduction of errors
typical of automated recognition systems. The specific prompt used,
instructs the model to strictly adhere to the text as it appears in
the image, emphasizing accuracy and fidelity to the source without
attempting to correct or interpret the code logic or structure.

4 RESULTS
The off-the-shelf, state-of-the-art algorithms performed quite poorly
on the OCR challenge for handwritten student code. Among the
commercial solutions, Azure was the best performing with an av-
erage OCR Error (normalized Levenshtein distance) of 30.2 ± 1.8.
As an aside, while MathPix had a high error rate, that was mainly
due to its representation of code as LaTeX. It was still useful when
combined with LLM prompting, though not as accurate as Azure.

By employing our algorithms to correct indentation and by us-
ing LLM post-correction we were able to decrease OCR error sig-
nificantly. The best-performing algorithms used our GMM-based
relative indentation correction and LLM post-correction. The two
methods of post-correction had different advantages. The "Sim-
ple" method achieved the lowest OCR error (5.3 ± 0.9). While the
Chain of Thought post-correction technique had a higher OCR er-
ror (8.5 ± 1.0) it produced 0 logical fixes, compared "Simple" which
fixed 9% of the errors in the Logical Error Dataset. See Table 2.

Multi Modal Results: The large Multi-Modal GPT-4V(ision)
achieved notable success, registering an average OCR Error of
6.0 ± 0.8 while only introducing logical fixes in 5% of the Logical

204

https://github.com/mdoumbouya/codeocr/blob/main/src/code_ocr/post_correction.py
https://github.com/mdoumbouya/codeocr/blob/main/src/code_ocr/post_correction.py

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Manning, & Chris Piech

OCR Error Logical Fix

OCR Algorithm
Azure 30.2 ± 1.8 0%
Google 39.4 ± 2.3 0%
AWS 34.4 ± 2.3 0%
MathPix 64.6 ± 5.5 0%
GPT 4V 6.0 ± 0.8 5 ± 1%

Indentation Recognition
Azure + No Fix 30.2 ± 1.8 0%
Azure + Absolute 28.3 ± 5.0 0%
Azure + Relative 20.2 ± 2.4 0%

Post Correction
Azure + Relative + No Post 20.2 ± 2.4 0%
Azure + Relative + CoT 8.5 ± 1.0 0%
Azure + Relative + Simple 5.3 ± 0.9 9 ± 2%

Table 2: Main Results: In the top section we compare off
the shelf OCR algorithms. In the middle section, we show
the benefits of including indentation recognition. In the bot-
tom section, we show the improvement from applying post-
correction methods. OCR Error is the average normalized
Levenshtein distance across all 55 programs (see section 2.1
for details). Logical Fixes are the percentage of the 11 pro-
grams where the algorithm injects a semantic correction to
student code. ± is standard error.

Error Dataset. These results are promising and appear to approach
the Pareto frontier between the two post-correction methods.

Indentation Algorithm Results: Both the absolute algorithm
(Mean Shift) and the relative algorithm (GMM-based) improved
OCR error rates. The relative indentation algorithm had the best
results and qualitatively seemed to make very few indentation
errors. This was especially important for "Grid World" programs
[3] where the LLMwould not have been able to infer the indentation
level simply from the code. The Mean Shift was accurate but would
make mistakes, especially on longer programs. Lines that, to a
human observer, would belong to one indentation level might be
situated closer on the x-axis to a denser cluster associated with
a different indentation level. Such discrepancies highlighted the
limitations of absolute indentation clustering in contexts where
local data characteristics may offer a more intuitive guide to cluster
membership than global data density. The four hyper-parameters
for the Relative indentation algorithm were set using a subset of 16
images. Even though there are only four hyper-parameters, those
values might have overfit the indentation statistics of those 16
images. To make sure that the indentation results are valid, we
rerun all of the results on the 39 images that were not used to
set the hyper-parameters. In this "heldout set" we observe that
Relative indentation recognition has a similar success as on the
full dataset. It performs just as well both before and after the post-
correction (See Table 3 in the appendix for the full results). This
gives us confidence that the four hyper-parameters did not allow
the relative indentation algorithm to overfit the data.

4.1 Qualitative Analysis of Language Model
Hallucinations, and Logical Fixes

The prompting techniques that we used did not induce substantial
hallucinations of logical fixes. The best-performing algorithm in
terms of OCR error (Azure + Relative + Simple) had a single non-
indentation logical fix out of the 11 programs in the Logical Error
Dataset. This fix can be seen in Figure 7.

On line 4 the student wrote if number / 2 != 0 but the LLM
corrected it to be if number % 2 != 0. Note that the algorithm
changed the incorrect division to be a mod – possibly giving away
part of the answer to the student. For this particular example, the
Chain of Thought prompting did not create the logical fix, however,
it incorrectly translated the division as a 1 (carrying forward a
mistake from Azure). For some learning environments, this type
of logical fix may be more tolerable than others. There are many
examples where the simple OCR algorithm managed to faithfully
translate the student’s code while still maintaining the logical errors.
One example can be seen in Figure 5. In the identify leap year
function the student included the incorrect logic if (Year % 4 ==
0) or (Year % 100 == 0) or (year % 400 == 0). It should
have been if (Year % 4 == 0) and (Year % 100 != 0) or
(Year % 400 == 0). Even though the LLM certainly would be able
to produce the correct code, it did not fix the student’s mistake.

5 LIMITATIONS
5.1 More comprehensive evaluation datasets
One of the contributions of this paper is the first (to the best of our
knowledge) public datasets of handwritten student codes. However,
we hope that for future work we can substantially increase the
size of our public dataset. 55 programs is enough to understand
high-level differences between algorithms, now that future work
will concentrate on more subtle improvements (from 5% error rate
towards 0%) it will be important to increase the size of this dataset.
Similarly, it will be important to fix the Logical Error Dataset to
encompass a broader set of the sorts of logical errors that students
could make while programming. It is surprisingly hard to get hand-
written student code which is free to share. Now that we have a
useful solution, we hope to be able to collect orders of magnitude
more data (with student consent, of course).

5.2 The Iterative Editing Challenge
In this paper, we focused on the context of having a single photo
that needs to be digitized into code. However, in a natural learn-
ing environment, we imagine that students will also need a user
interface that supports iterative work. A potential interaction with
our OCR system could unfold as follows: a student writes code
by hand, digitizes it for execution, and corrects a syntax error on
the computer, but then needs to revisit the handwritten code for
conceptual adjustments. This process raises a question: does the
student rewrite the entire code? There’s an undeniable need for a
more sophisticated approach to such iterative editing. One default
solution would be for students to maintain significant whitespace
between lines, facilitating subsequent code insertions. Another so-
lution is for students to take photos of different subsets of their

205

Handwritten Code Recognition for Pen-and-Paper CS Education L@S ’24, July 18–20, 2024, Atlanta, GA, USA

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2 Absolute

Relative

None

LM Post-
Correction

3

Simple

COTNone

Figure 4: Example of perfect transcription of a student’s program in a grid world programming environment which is often
used in introductory programming courses. The language model accurately fixed all OCR errors and did not introduce any
artifacts, despite this type of program being less frequent in the training set of large language models.

code. If they need to edit a part of their code, they would only need
to replace the corresponding photo.

5.3 Handling Crossed-Out Code
As shown in the example in Figure 1, our system is able to handle
basic "crossing out" of code. We have observed that our system han-
dles crossed-out codes with notable accuracy. However, crossed-out
code can become arbitrarily hard. Students writing code, without
concern for the OCR system could use annotations that our OCR
system is not able to handle. One example of this would be the use
of arrows to indicate that a block of code should be inserted some-
where in the codebase. One potential solution is to set expectations
for students that they need to keep their code as clean as possible.
However, we note that there is great promise that the multi-modal
systems, such as GPT4V may be especially adept at handling these
sorts of annotations.

5.4 Applicability to Larger Programs
The longest programs that we tested in this paper were on the
order of 40 lines long. The scalability of our approach to longer
programs remains a topic of inquiry. The threshold beyond which
our method might be less effective or feasible for learners is yet to
be established. For longer programs it seems reasonable to have the
student take several photos of their code. While this approach com-
plicates indentation recognition, achieving consistent indentation
recognition across multiple photos appears to be a solvable issue.

5.5 Offline Mode
Our system has three distinct modules, which could be implemented
in various ways: (1) OCR module, (2) Indentation Recognition Mod-
ule, and (3) Language model used for post-correction. In the offline

embodiment of our system, which we will explore in future work,
the OCR module and the language model used for post-correction
are executed on a local device, reducing the usage cost (see Appen-
dix B), and removing the need for internet connectivity.

6 DISCUSSION
Our research into the digitization of handwritten code, utilizing a
symbiotic approach that combines Optical Character Recognition
(OCR) with Large Language Models (LLMs), has culminated in both
noteworthy outcomes and a comprehensive understanding of the
prevailing challenges in this domain. This initiative primarily aimed
to augment computer science education in regions where computer
accessibility is restricted.

6.1 CS Education with Limited Digital
Resources and Minimal Distractions

Handwritten code recognition facilitates computer science educa-
tion without the need for prolonged access to computers, which
is particularly beneficial in two educational settings. In the first
setting, students do not have personal computers, and their schools
lack the funding to acquire and maintain computer labs. With our
solution, a classroom could perform programming activities using
only a single shared mobile device to scan and execute handwritten
student code. In the second setting, to mitigate the adverse effects of
prolonged screen exposure, teachers may intentionally limit young
students’ access to computers. Instead, they encourage activities per-
formed on paper with pens. In this scenario, as in the first, students
can meticulously craft their programs on paper and then use the
classroom’s shared code execution device. Handwritten code rec-
ognition thus provides a familiar, distraction-free way for students
to engage with algorithms and programming. Additionally, this

206

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Manning, & Chris Piech

Figure 5: An example of OCR (Azure + Relative + Simple) on a longer example of handwritten student code. The OCR faithfully
translates the student program, even keeping logical errors such as the test for leap year. It does not keep the student’s comment
and it does not include the second "print" line: print(" ")

method fosters reflection, review, and precision, thereby promot-
ing deliberate learning. These experiences instill qualities beyond
mere coding skills. By embracing accessible methodologies, educa-
tors worldwide can prioritize comprehension and problem-solving
skills, empowering students to achieve a deeper understanding of
computer science concepts.

6.2 Application in Grading Handwritten Exams
In the current academic landscape, digital exams are susceptible to
misconduct, especially with the advent of sophisticated LLMs like
ChatGPT. Many educational institutions, from high schools to uni-
versities, resort to handwritten exams. These exams, while reducing
cheating opportunities, are labor-intensive to grade. Additionally,
the potential introduction of gender bias during grading—stemming
from handwriting perception—is a concern. By digitizing and accu-
rately recognizing text from these handwritten exams, automated
unit tests can be employed. This not only expedites the grading
process but also may diminish human-induced grading variance.
However, to maintain academic integrity, it’s paramount that the
digitization process avoids any form of solution hallucination.

6.3 OCR of Grid Based Coding
In an early stage of our research, we considered whether we could
develop a method that would make zero errors. One creative so-
lution was to have students write their code on graph paper in a

grid-based representation of their code. Grid-based coding has been
proposed for accessible CS education in the context of low vision
and blind programmers [13]. OCR of a handwritten grid should be
substantially easier than handwritten code. Clearly, this introduces
an extra level of work for the student. However, we hypothesized
that this extra work could have deep pedagogical benefits. Learning
to represent one’s code in a binary representation would expose
students to some valuable lessons. However, as we realized that
OCR for students directly writing Python would be so accurate we
did not fully explore this interesting direction.

7 CONCLUSION
We believe that the ability to digitize handwritten student code
could have transformative potential for learning coding at scale. It
will be especially useful for increasing accessibility to students who
don’t have or want constant access to a computer. In this paper, we
introduce a novel methodology for indentation recognition as well
as the first application of LLMs to the task of student code OCR.
We contribute two novel datasets for student-code digitalization
labelled with the indented code, and including deliberate errors. The
tool we have developed is accurate enough to be used by students
in a real learning environment. We plan to deploy this research in
classrooms in Guinea where the project originated and Bangladesh,
as well as in a massive online coding class.

207

Handwritten Code Recognition for Pen-and-Paper CS Education L@S ’24, July 18–20, 2024, Atlanta, GA, USA

A BENCHMARKS
This is the result when we filtered the 16 images we trained it on.

Method OCR Error

OCR Algorithm
Azure 32.1 ± 2.4
GPT 4V 5.9 ± 1

Indentation Recognition
Azure + No Fix 32.1 ± 2.4
Azure + Absolute 32.2 ± 7
Azure + Relative 23.1 ± 3.2

Post Correction
Azure + Relative + No Post 19.85 ± 1.8
Azure + Relative + Chain of Thought 9.3 ± 1.3
Azure + Relative + Simple 5.6 ± 1

Table 3: OCRError rates after various correction stages (n=39)

B COST CALCULATION BREAKDOWN
This section provides a breakdown of the cost calculations for the
GPT-4(Vision) and our Azure + Relative Indentation + Simple.

The cost analysis is based on the February 2024 pricing for the
respective services:

• Azure OCR: $0.001 per image
• GPT-4-0613 Text Processing:
– Input: $0.03 per 1,000 tokens
– Output: $0.06 per 1,000 tokens

• GPT-4-Vision-Preview:
– Image: $0.00765 (over 768px by 768px)
– Input: $0.01 per 1,000 tokens
– Output: $0.03 per 1,000 tokens

Our pipeline integrates Azure OCR and GPT-4 text processing,
with the costs broken down as follows:

• Azure OCR Cost: $0.001 per image
• GPT-4 Text Processing Cost: Calculated based on the average
token count per image

In our dataset, the handwritten codes had an average of 320.2545
characters, which roughly equates to 80.0636 tokens (assuming an
average of 4 characters per token).

The instructions comprised 381 characters, contributing to nearly
95.25 tokens. In contrast, the output codes held an average of
341.5455 characters, resulting in around 85.3863 tokens.

The cost for text processing per image is thus calculated as:

Price =
(80.0636 + 95.25) × 0.03 + 85.3863 × 0.06

1000
= $0.01038

Summing the costs for Azure OCR and GPT-4 text processing
yields our total pipeline cost:

Total Pipeline Cost = $0.001 + $0.01038 = $0.01138 per image

The GPT-4(Vision) model incurs a cost of $0.00765 per image
for all images over 786x786 size, which is standalone and does not
require additional text processing costs.

The instructional requirement for each image is quantified as 387
characters, which translates to roughly 96.75 tokens at an approxi-
mate ratio. The output codes held an average of 308.9636 characters,
approximately resulting in around 77.2409 tokens.

The cost per image is thus calculated as:

Price =
96.75 × 0.01 + 77.2409 × 0.03

1000
+ 0.00765 = $0.01094

Comparing the costs:
• Our Pipeline Cost: $0.01138 per image
• GPT-4(Vision) Cost: $0.01094 per image

C DETAILS OF LOGICAL ERROR DATASET

Image ID Description of Error

29 In the ‘identify leap year‘ function the student
used incorrect logic: if (Year % 4 == 0) or
(Year % 100 == 0) or (Year % 400 == 0).
Correct logic: if (Year % 4 == 0) and (Year
% 100 != 0) or (Year % 400 == 0).

45 Initialized the variable max = 0 inside of the for
loop, causing it to reset at every iteration.

46 Off by one error in string indexing:
should be str[len(str)-i-1] instead of
str[len(str)-i].

47 Recursive factorial function lacks a base case
and does not handle n = 0.

48 Fibonacci sequence indexing error: should
be sequence[i] + sequence[i+1], not
sequence[i+1] + sequence[i+2]. In-
correct loop condition: should be while
len(sequence) < n instead of <= n.

49 KeyError raised if freq[item] is called and
item is not in dictionary. Solution: check if item
is in dictionary before incrementing.

50 The range in the second loop should start from
i+1 to avoid repeating elements.

51 Indentation error in assigning final_list and
unnecessary variable final_loop resetting in-
side the loop.

52 Incorrect operator: used division (/) instead of
modulo (%) for checking even or odd.

53 Non-alphabetic characters are incorrectly
counted as lower case due to an overly broad
else condition.

54 Error in multiplication logic: multiplies every
number by 0. Initialize total as 1 for correct
operation.

Table 4: Logical Errors in Handwritten Code Dataset

D ADDITIONAL EXAMPLES

208

L@S ’24, July 18–20, 2024, Atlanta, GA, USA Md Sazzad Islam, Moussa Koulako Bala Doumbouya, Christopher D. Manning, & Chris Piech

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2

Relative

AbsoluteNone

LM Post-
Correction

3

Simple

COTNone

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2

Relative

AbsoluteNone

LM Post-
Correction

3

Simple

COTNone

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2

Relative

AbsoluteNone

LM Post-
Correction

3

Simple

COTNone

Figure 6: Our system processes a student’s handwritten code under various settings. The student made two mistakes: an
indentation error, and a variable scoping error (line 3). Top and Bottom: the system hallucinates a fix for the indentation error.
Middle: the system correctly transcribed the student’s work.

Optical Character
Recognition

1

AWS

Azure

GPT-4V

MathPix Google

Indentation
Recognition

2

Relative

AbsoluteNone

LM Post-
Correction

3

Simple

COTNone

Figure 7: The student made a mistake (used division instead of modulo). The system hallucinated a correction.

209

Handwritten Code Recognition for Pen-and-Paper CS Education L@S ’24, July 18–20, 2024, Atlanta, GA, USA

REFERENCES
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] N. Arica and F. T. Yarman-Vural. Optical character recognition for cursive
handwriting. IEEE transactions on pattern analysis and machine intelligence,
24(6):801–813, 2002.

[3] B. W. Becker. Teaching cs1 with karel the robot in java. In Proceedings of the
thirty-second SIGCSE technical symposium on Computer Science Education, pages
50–54, 2001.

[4] T. Bell and J. Vahrenhold. Cs unplugged—how is it used, and does it work?
Adventures between lower bounds and higher altitudes: essays dedicated to Juraj
Hromkovič on the occasion of his 60th birthday, pages 497–521, 2018.

[5] T. Bell, I. H. Witten, and M. Fellows. Computer science unplugged, 2002.
[6] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.

Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[7] M. Celepkolu, E. O’Halloran, and K. E. Boyer. Upper elementary and middle grade
teachers’ perceptions, concerns, and goals for integrating cs into classrooms. In
Proceedings of the 51st ACM technical symposium on computer science education,
pages 965–970, 2020.

[8] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern
analysis and machine intelligence, 17(8):790–799, 1995.

[9] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to
handwritten letters. In 2017 international joint conference on neural networks
(IJCNN), pages 2921–2926. IEEE, 2017.

[10] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–
619, 2002.

[11] E. F. d’Albe. On a type-reading optophone. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character,
90(619):373–375, 1914.

[12] W. Du. Code runner: Solution for recognition and execution of handwritten code.
Standford University, pages 1–5, 2012.

[13] M. Ehtesham-Ul-Haque, S. M. Monsur, and S. M. Billah. Grid-coding: An acces-
sible, efficient, and structured coding paradigm for blind and low-vision pro-
grammers. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology, pages 1–21, 2022.

[14] H. Herbert. The history of ocr, optical character recognition. Manchester Center,
VT: Recognition Technologies Users Association, 1982.

[15] W. Hu, Y. Xu, Y. Li, W. Li, Z. Chen, and Z. Tu. Bliva: A simple multimodal llm
for better handling of text-rich visual questions. arXiv preprint arXiv:2308.09936,
2023.

[16] D. Keysers, T. Deselaers, H. A. Rowley, L.-L. Wang, and V. Carbune. Multi-
language online handwriting recognition. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1180–1194, 2016.

[17] S.-C. Kong, M. Lai, and D. Sun. Teacher development in computational thinking:
Design and learning outcomes of programming concepts, practices and pedagogy.
Computers & Education, 151:103872, 2020.

[18] M. Kumar, M. Jindal, and R. Sharma. Review on ocr for handwritten indian scripts
character recognition. In International Conference on Digital Image Processing

and Information Technology, pages 268–276. Springer, 2011.
[19] Y. Liu, Z. Li, H. Li, W. Yu, M. Huang, D. Peng, M. Liu, M. Chen, C. Li, L. Jin,

et al. On the hidden mystery of ocr in large multimodal models. arXiv preprint
arXiv:2305.07895, 2023.

[20] A. Malkadi, M. Alahmadi, and S. Haiduc. A study on the accuracy of ocr engines
for source code transcription from programming screencasts. In Proceedings of
the 17th International Conference on Mining Software Repositories, pages 65–75,
2020.

[21] L. A. Manwell, M. Tadros, T. M. Ciccarelli, and R. Eikelboom. Digital dementia
in the internet generation: excessive screen time during brain development will
increase the risk of alzheimer’s disease and related dementias in adulthood.
Journal of Integrative Neuroscience, 21(1):28, 2022.

[22] J. Memon, M. Sami, R. A. Khan, and M. Uddin. Handwritten optical character
recognition (ocr): A comprehensive systematic literature review (slr). IEEE Access,
8:142642–142668, 2020.

[23] S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of ocr research and
development. Proceedings of the IEEE, 80(7):1029–1058, 1992.

[24] G. Nagy. At the frontiers of ocr. Proceedings of the IEEE, 80(7):1093–1100, 1992.
[25] S. R. Narang, M. K. Jindal, and M. Kumar. Ancient text recognition: a review.

Artificial Intelligence Review, 53:5517–5558, 2020.
[26] E. Ose Askvik, F. Van der Weel, and A. L. van der Meer. The importance of cursive

handwriting over typewriting for learning in the classroom: A high-density eeg
study of 12-year-old children and young adults. Frontiers in Psychology, 11:550116,
2020.

[27] C. Piech, A. Malik, K. Jue, and M. Sahami. Code in place: Online section leading
for scalable human-centered learning. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (SIGCSE ’21), page 7, New York, NY,
USA, 2021. ACM.

[28] E. Relkin, L. E. de Ruiter, and M. U. Bers. Learning to code and the acquisition of
computational thinking by young children. Computers & education, 169:104222,
2021.

[29] Y. Shi, D. Peng, W. Liao, Z. Lin, X. Chen, C. Liu, Y. Zhang, and L. Jin. Exploring
ocr capabilities of gpt-4v (ision): A quantitative and in-depth evaluation. arXiv
preprint arXiv:2310.16809, 2023.

[30] T. J. Smoker, C. E. Murphy, and A. K. Rockwell. Comparing memory for handwrit-
ing versus typing. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, volume 53, pages 1744–1747. SAGE Publications Sage CA: Los
Angeles, CA, 2009.

[31] S. N. Srihari, S.-H. Cha, H. Arora, and S. Lee. Individuality of handwriting. Journal
of forensic sciences, 47(4):856–872, 2002.

[32] N. Stiglic and R. M. Viner. Effects of screentime on the health and well-being of
children and adolescents: a systematic review of reviews. BMJ open, 9(1):e023191,
2019.

[33] L. Sun, L. Hu, and D. Zhou. Improving 7th-graders’ computational thinking skills
through unplugged programming activities: A study on the influence of multiple
factors. Thinking Skills and Creativity, 42:100926, 2021.

[34] Unknown Author. Handwritten code scanner. https://devfolio.co/projects/
handwritten-code-scanner-414f, 2021. Accessed: 2024-02-12.

[35] L. Yujian and L. Bo. A normalized levenshtein distance metric. IEEE transactions
on pattern analysis and machine intelligence, 29(6):1091–1095, 2007.

210

https://devfolio.co/projects/handwritten-code-scanner-414f
https://devfolio.co/projects/handwritten-code-scanner-414f

	Abstract
	1 Introduction
	1.1 Related Work

	2 The Student-Code OCR Challenge
	2.1 Measuring OCR Error
	2.2 Logical Fix Hallucination Test

	3 Methods
	3.1 Initial OCR
	3.2 Indentation Recognition
	3.3 Language Model-Based Post-Correction
	3.4 Multi-Modal Handwritten OCR

	4 Results
	4.1 Qualitative Analysis of Language Model Hallucinations, and Logical Fixes

	5 Limitations
	5.1 More comprehensive evaluation datasets
	5.2 The Iterative Editing Challenge
	5.3 Handling Crossed-Out Code
	5.4 Applicability to Larger Programs
	5.5 Offline Mode

	6 Discussion
	6.1 CS Education with Limited Digital Resources and Minimal Distractions
	6.2 Application in Grading Handwritten Exams
	6.3 OCR of Grid Based Coding

	7 Conclusion
	A Benchmarks
	B Cost Calculation Breakdown
	C Details of Logical Error Dataset
	D Additional Examples
	References

