
Solutions to Homework 1

Autumn 2012

1 Driving in Manhattan

a

State: suppose s ∈ States, then s = (street, avenue), where 1 ≤ street ≤
n, 1 ≤ avenue ≤ m.
Action: suppose a ∈ Actions(s), then a can be either of the following:

• move North if street < m

• move South if street > 1

• move East if avenue > 1

• move West if avenue < n

Successor and Cost: suppose s = (street, avenue), a is an action defined as
above, the successor and cost are defined as:

• if a is move North, Succ(s, a) = (street + 1, avenue) and Cost(s, a) = 1

• if a is move South, Succ(s, a) = (street− 1, avenue) and Cost(s, a) = 1

• if a is move East, Succ(s, a) = (street, avenue− 1) and Cost(s, a) = 3

• if a is move West, Succ(s, a) = (street, avenue + 1) and Cost(s, a) = 3

Start state: sstart = (14, 8).
Goal test: IsGoal((street, avenue)) is true if and only if street > 96.

1

b

State: augment each state in (a) by adding one check bit to indicate whether
I have stopped at a grocery store or not. That is, ∀s ∈ States, s =
(street, avenue, check bit).
Action: action is defined the same as in (a).
Successor and Cost: suppose s = (street, avenue, check bit), a ∈ Actions(s),
then street/avenue are update by a accordingly as in (a). In addition, we
need to update the check bit. If check bit is 0 and (new street, new avenue) is
any of p1, · · · , pk, then Succ(s, a) = (new street, new avenue, 1). Otherwise,
Succ(s, a) = (new street, new avenue, check bit). So the check bit stays 1
once it’s 1. The cost of each action is defined the same as in (a).
Start State: sstart = (14, 8, 0).
Goal Test: IsGoal((street, avenue)) is true if and only if street > 96 and
check bit == 1.

c

State: ∀s ∈ States, s = (street, avenue, check bit1, check bit2, · · · , check bitk).
Here we add one check bit per store and set it to 1 and stays 1 when a store
is visited.
The number of states is m · n · (2k).

d

State: ∀s ∈ States, s = (street, avenue, counter). Here the counter is in-
cremented from i − 1 to i only when visiting the i-th store. So, when the
counter equals to k, I am guaranteed to have visited all stores in the correct
pre-defined sequence.
The number of states is m · n · (k + 1), since counter starts from 0.

e

It depends. For example, comparing (c) and (d), the state space gets smaller
after we add constraints. On the other hand, comparing (a) and (b), the
state space gets larger after we add constraints. Intuitively, either having
no constraints or a lot of constraints makes the problem easy in some sense;
hard problems are somewhere in between.

2

2 Package Delivery

a The model

A state can informally be described in terms of the locations of all the delivery
trucks, and the locations of all the packages. Since a truck can pick up and
drop off packages at will, the ownership of a package is not crucial to model
in the state definition.

Formally, a state is a tuple: the first element of which is a tuple of size k
taking values 1 . . . |V | denoting the locations of the trucks 1 . . . k. the second
element is a tuple of size |R| taking values 1 . . . |V | denoting the location of
the |R| packages. The state space thus has |V |k+|R| states, corresponding to
any combination of locations of the trucks and the packages.

An action is easiest visualized in two parts:

1. An assignment of movements to trucks. A truck at city i may move to
any city j such that (i, j) ∈ E, or i = j.

2. An assignment of packages to neighboring cities. A package may only
move along an edge that a truck has taken.

The cost of an action is a constant cost; e.g., 1.
The initial state assigns each truck to the start city s, and each package

to its corresponding order’s start city i.
The goal test checks if each package is in its end city j. This amounts to

an ordered equality check on the second element of the state space with the
tuple denoting each package being in its end state.

b Search algorithm

Since the edge costs are 1, we can use breadth-first search. UCS will also
work, but it is slower.

c Average delivery time

Minimizing the average delivery time requires modifying the edge costs in
the search graph. Rather than having a cost of 1 for every time step, the
cost of an action is equal to the number of packages still awaiting delivery.
This will cause the path cost to a state to be the sum of the package transit

3

times, which is proportional to the average transit time. A goal state’s path
cost is therefore proportional to the average delivery time.

Note that an undelivered package which is not moving still contributes
to this sum cost – a package waiting at a city is still contributiong to the
sum delivery time. Also note that the number of trucks which move is not
necessarily correlated with the number of packages awaiting delivery. A single
truck can carry many packages, or many trucks can move without carrying
packages.

The actions taken are identical to those described in part (a), except that
any action which would move a package out of its destination is prohibited
(since that would lead to a suboptimal solution anyway).

d Average delivery time algorithm

Uniform cost search returns the minimum cost path.

3 Agents

a Utility Functions

Counterexample 1: Imagine just two actions, a1 and a2. Let U(a1) = 1 and
U(a2) = 0. Let U ′(a1) = 2 and U ′(a2) = 3. If the agent maximizes with
respect to U ′, the optimal action is a2. However, a1 is the better action to
optimize U .

Counterexample 2: Below is an example of two utility curves where one
is strictly greater than the other, but their maxima are in different locations
(here the actions are real numbers). The x-axis represents actions and y-axis
represents utilities for those actions. In the question, the blue curve is U ′

and the red curve is U .

4

Maximizing with respect to the blue curve will give us an action of 2. If
the agent were to use 2, however, it would get 0 utility according to the red
curve, which is not optimal.

b Rational Agents (Part I)

Any action will work. If the agent’s action is choosing heads, we have
ExpectedUtility = P (heads) ∗ 1 + P (tails) ∗ 0 = 0.5.

In fact, call Z the probability that the agent picks heads. So if the agent
always picks heads, Z = 1, and if the agent always picks tails, Z = 0. Then
we have ExpectedUtility = P (heads) ∗ Z + P (tails) ∗ (1 − Z) = 0.5 ∗ Z +
0.5 ∗ (1 − Z) = 1. So any strategy of picking actions will give us the same
expected utility of 1.

c Rational Agents (Part II)

• In the case when p > 0.5, q must be greater than 0.5 as well. If q > 0.5,
then a rational agent always chooses heads, which is the best action for
any p > 0.5.

• In the case when p < 0.5, q must be less than 0.5 as well. If q < 0.5,

5

then a rational agent always chooses tails, which is the best action for
any p < 0.5.

• If p = 0.5, then this problem is the same as 3.b.

d Reflex Agents

The answer is A.
If the agent began at B, it will go West along the first corridor. It will

reach a wall, turn right, turn right again, and then go back to its starting
location. Then it will turn right, turn right again, turn right again, and
repeat all the previous steps.

C will quickly get caught in the same infinite loop as B.

6

