
Homework 6
CS 221 (Autumn 2012–2013)

Submission instructions: Write your answers in one PDF file named hw6.pdf. Remember to in-
clude your name and SUNet ID. Copy the PDF file onto corn.stanford.edu, ssh in to the machine, type
/usr/class/cs221/WWW/submit, and follow the instructions.

1. Elimination (5 points)
Suppose we have a chain-structured Markov network with variables X1, . . . , Xn with domains Xi ∈

{1, . . . , r}, and factors ti(xi−1, xi) for each i = 2, . . . , n. If we wanted to compute P(Xi) (that is, P(Xi = v)
for each v ∈ {1, . . . , r}) for a specific i ∈ {1, . . . , n}, we could eliminate all the variables except Xi from the
two ends of the chain, and normalize the resulting weights (of possible values of Xi) to get a distribution
over Xi.

a. (1 point) If we wanted to compute P(Xi) for every i, we could just repeat the above procedure
for each Xi. What is the running time of this algorithm as a function of r and n?

b. (1 point) Let Fi be the set of factors produced by performing variable elimination (from the
ends of the chain) on all variables except Xi for each i. If n = 100, which factors are in both F3 and F4?
For example, the factor created by eliminating X1 is in both. Hint: think about associating each new factor
created with the set of variables whose elimination produced that factor.

c. (3 points) Describe an algorithm that computes P(Xi) for each i = 1, . . . , n by re-using factors.
Your algorithm should run in time O(nr2), and your description should be brief.

2. Markov networks to Bayesian networks (8 points)
We saw that Bayesian networks can be viewed as just Markov networks with a normalization constant

of 1. Now we will show how an arbitrary Markov network can be converted into a Bayesian network.1

a. (1 point) Warm-up: consider a Markov network with two variables X1 and X2 with a single
factor f12(x1, x2). Construct an equivalent Bayesian network (specify p(x1) and p(x2 | x1) as a function of
f12). You must have p(x1)p(x2 | x1) ∝ f12(x1, x2).

b. (1 point) Now consider a Markov network with variablesX1 . . . Xn with factors fi(xi, x(i mod n)+1)
for i = 1, . . . , n (the factor graph looks like a ring). Recall that the weight of an assignment x is Weight(x) =∏n

i=1 fi(xi, x(i mod n)+1).
Let gi be the new factor that is created when variables Xi+1, . . . , Xn are eliminated. What variables

(out of X1, . . . , Xi) does gi depend on? Write the expression for P(X1 = x1, . . . , Xi = xi) as a function of
f1, . . . , fi−1, gi.

c. (1 point) Write an expression for the conditional distribution P(Xi = xi | X1 = x1, . . . , Xi−1 =
xi−1) of the Markov network from part (b) as a function of some subset of the original factors f1, . . . , fi−1
and gi.

1Note that this is not saying that each Markov network structure (which represents a set of possible Markov networks with
that structure) can be represented by a Bayesian network structure (which represents a set of Bayesian networks with that
structure). The sets are often overlapping but not exactly the same in general.
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d. (2 points) Define a Bayesian network (i.e., what is the distribution pi(xi | xParent(i)) and specify
the minimal set of parents Parent(i) for each node i) such that the Bayesian network defines the same joint
distribution as the Markov network from parts (b) and (c), that is:

(Bayesian network)

n∏
i=1

p(xi | xParent(i)) =
Weight(x)∑
x′ Weight(x)

(Markov network),

where Weight(x) is defined above.
Hint: use induction. Assume that you’ve constructed a Bayesian network over i− 1 variables. Use part

(c) to construct a Bayesian network over i variables (you should be adding one local probability distribution
p(xi | xParent(i)) during each inductive step).

e. (2 points) Suppose you wanted to draw a set S of independent samples of assignments from
the distribution P(X) defined by this Markov network. (Samples are useful for approximating queries; for
example, the probability that X1 = X5 is estimated by 1

|S|
∑

x∈S [x1 = x5].)

Describe an algorithm that leverages Bayesian networks to draw independent samples. What is the
running time of this algorithm as a function of n and |S|?

f. (1 point) Give a concrete example of a Markov network over n = 3 variables where Gibbs
sampling fails to provide samples that yield correct estimates, but the above algorithm will work.

3. Chat room (10 points)
Suppose that there are K people (numbered 1 through K) who go in and out of a chat room. In the

beginning, the room is empty. At each time step, the following occurs: (i) for each person in the chat room,
he leaves with probability α and stays with probability 1−α; and (ii) for each person outside the chat room,
he enters with probability α and stays out with probability 1− α.

If there are at least two people in the room, then one of them (uniformly at random), person j, will type
in a utterance u with probability pj(u), where pj is person j’s distribution over utterances. If there are fewer
than two people in the room, then no one types. Assume, for any person j, pj is a distribution over a fixed
set of utterances (including silence), U , and is known to you.

You are not a member of this chat room, so you don’t know exactly who is in the chat room at any time
or who’s talking, but do get to see the utterance ui said by someone at each time step i = 1, . . . , T .

a. (4 points) Define a (dynamic) Bayesian network to model this scenario. What are the variables,
domains of those variables, and local conditional probability distributions? All domain sizes should be linear
in K, T , and |U|.

b. (2 points) Suppose we’re interested in a particular time step i0 ∈ {1, . . . , T}. Given the observed
utterances u1, . . . , uT , describe an algorithm to compute the probability that when person 1 and person
K were both in the chat room at time i0. Your algorithm can use variable elimination, but you must
specify which variables you will eliminate, and write down explicitly how to combine the results of variable
elimination (use equations).

c. (2 points) Describe an algorithm to compute the expected number of time steps that person 1
and person K were in the chat room together given the utterances u1, . . . , uT . Hint: recall that expectation
is linear. The running time of your algorithm must be linear in T .

2



d. (2 points) Given the evidence u1, . . . , uT , you now want to compute the probability that there
was at least one time step i ∈ {1, . . . , T} that person 1 and person K were in the chat room together at time
i. Change the variables and factors so that you can run variable elimination (plus a few simple operations)
to compute the desired query.
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