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Summer 2013 

 
 
 
 
 
The following pages are excerpts from similar classes‟ midterms. The 
content is similar to our midterm – but I have opted to give you a document 
with more problems rather than one that follows the structure of the 
midterm precisely. See the midterm handout for more details on what the 
exam will look like. The midterm is 2 hours. It is open book and open 
computer but closed Internet. 

  



1. [Short Answers] Truth Test (10 points) 

For the following questions, a correct answer is worth 2 points, no answer 
is worth 1 point, and an incorrect answer is worth 0 points. Circle true or 
false to indicate your answer. 

a.  (true or false) If g(s) and h(s) are two admissible A* heuristics, then 

their average f(s) = ½ g(s) + ½ h(s) must also be admissible.  

True. Let h*(s) be the true distance from s. We know that g(s) <= h*(s) 
and h(s) <= h*(s), thus f(s) <= ½ h*(s) + ½ h*(s). We can simplify to f(s) 
<= h*(s). 

b. (true or false) For a search problem, the path returned by uniform cost 
search may change if we add a positive constant C to every step cost.  

True. Consider that there are two paths from the start state (S) to the 

goal (G), S → A → G and S → G. So the optimal path is through A. 

Now, if we add 2 to each of the costs, the optimal path is directly from 
S to G. Since uniform cost search finds the optimal path, its path will 
change. 

c. (true or false) The running-time of an efficient solver for tree-structured 
constraint satisfaction problems is linear in the number of variables.  

 True. The running time of the algorithm for tree-structured CSPs is  
O(n · d2), where n is the number of variables and d is the maximum 
size of any variable‟s domain. 

d.  (true or false) The amount of memory required to run minimax with 
alpha-beta pruning is O(bd) for branching factor b and depth limit d.  

 True and False (everyone wins). The memory required is only O(bd), 
so we accepted False. However, by definition an algorithm that is 
O(bd) is also O(bd), because O denotes upper bounds that may or may 
not be tight, so technically this statement is True (but not very useful). 

e.  (true or false) For a discrete bayesian network with n variables, the 
amount of space required to store the “joint” distribution table is O(n). 

 False. The size of the joint is O(dn) where d is the domain of the 
variables. 

 



f.  (true or false) In a markov decision problem, there are no actions and 
instead everything is controlled by “chance.” 

 False. Agents make actions, the successor states of those actions are 
controlled by chance. 

h. (true or false) Assume the Bayes Net from class is a prefect 
representation of the world: 

     

 You know that you do not have a stomach bug. If you were to vomit, 
would that information change the probability that you had a fever? 

False. The two variables are conditionally independent given stomach 
bug (notably, the wording of this question didn‟t sound true or false).  



.  

2. [Deterministic Search] Mr. and Ms. Pacman (20 points) 

Pacman and Ms. Pacman are lost in an NxN maze and would like to meet; 
they don‟t care where. In each time step, both simultaneously move in one 
of the following directions: {NORTH, SOUTH, EAST, WEST, STOP}. They 
do not alternate turns. You must devise a plan which positions them 
together, somewhere, in as few time steps as possible. Passing each other 
does not count as meeting; they must occupy the same square at the 
same time. 

a.  Formally state this problem as a single-agent state-space search 
problem.  

States: 

The set of pairs of positions for Pacman and Ms. Pacman: {((x1, y1), 
(x2, y2)) | x1, x2, y1, y2 are in {1, 2, …, N}} 

Goal test: 

isGoal((x1, y1), (x2, y2)): return x1 == x2 and y1 == y2 

 

Legal actions (given a state): 

legalActions((x1, y1), (x2, y2)): If not blocked from their current 
positions, both pacman and mrs pacman can move north, south, 
east, west. They can always stop. 

Successor function (given a state and an action): 

successor(((x1, y1), (x2, y2)), action): Move pacman and mrs 
pacman from their current state in the direction they both moved 
(respectively). Return the new x1, y1, x2, y2 positions. 

 

 

 

 



b.  Give a non-trivial admissible heuristic for this problem. 

Answer: Manhattan distance between Pacman and Ms. Pacman 
DIVIDED BY 2 (since both take a step simultaneously) 

 

c.  Circle all of the following graph search methods which are 
guaranteed to output optimal solutions to this problem: 

(i) DFS (ii) BFS (iii) UCS 

(iv) A* (with a consistent and admissible heuristic)   

(v) A* (with heuristic that returns zero for each state) 

Everything but DFS. 

d.  If h1 and h2 are admissible, which of the following are also 
guaranteed to be admissible? Circle all that apply: 

(i)  h1 + h2  

(ii)  h1 * h2  

(iii)  max(h1 , h2 )  

(iv)  min(h1 , h2 )  

(v) (α)h1+(1−α)h2 for any value α between 0 and 1 

Answer: (iii), (iv), (v) 

  



3. [Adversarial Search] MiniMax (15 points) 
 
Consider the following minimax tree: 

 

 
 
a.  What is the minimax value for the root? 

 20 

 

b.  Draw an X through any nodes which will not be visited by alpha-beta 
pruning, assuming children are visited in left-to-right order. 

 See pic above. 

c.  Is there another ordering for the children of the root for which more 
pruning would result? If so, state the order. 

 Yes, if we had the children ordered as 20, 15, 10, 2. 

 

 

[continued on the next page] 



 

d. Propose a general, practical method for ordering children of nodes 
which will tend to increase the opportunities for pruning. You should be 
concise, but clearly state both what to do about min nodes and max 
nodes. 

In general we would want to use an evaluation function to estimate the 
values of the children and then order them so that at max nodes we order 
the children with larger estimated values first and at min nodes we order the 
children with larger estimated values first. For those who did not include the 
evaluation function: ordering nodes by their true values is not practical. 

  



4. [Bayes Net] Nuclear Power Station (15 points) 
 
In your local nuclear power station, there is an alarm that senses when a 
temperature gauge exceeds a given threshold. The gauge measures the 
temperature of the core. Consider the Boolean variables A (alarm sounds), 
FA (alarm is faulty), and FG (gauge is faulty) and the multivalued, discrete 
nodes G (gauge reading) and T (actual core temperature). 

a.  Draw a Bayesian network for this domain, given that the gauge is more 
likely to fail when the core temperature gets too high. 

 

 

 

 

 

 

 

 

b.  Suppose there are just two possible actual and measured 
temperatures, normal and high; the probability that the gauge gives the 
correct temperature is x when it is working, but y when it is faulty. Give 
the conditional probability table associated with G 

  

 FG = True FG = False 

T= High T = Normal T = High T= Normal 

G = High y (1 – y) x (1 – x) 

G = Normal (1 – y) y (1 – x) x 

 

 

FG 

T 

G 

A 

FA 



 

 

 

 

c.  Suppose the alarm works correctly unless it is faulty, in which case it 
never sounds. Give the conditional probability table associated with A 

Alarm works correctly unless it is faulty. So, if alarm is not faulty, then 
the alarm works correctly, meaning that it sounds only if gauge reading 
is high. 

 

 G = Normal G = High 

FA = True FA = False FA = True FA = False 

A = True 0 0 0 1 

A = False 1 1 1 0 

 

d.  Suppose the alarm and gauge are working and the alarm sounds. 
Calculate an expression for the probability that the temperature of the 
core is too high, in terms of the various conditional probabilities in the 
network. 

The assumption says that the alarm and gauge are working, which means 
that FA = :fa and FG = :fg. Also, we have that the alarm sounds (A = a). As 
we are asked the probability of the temperature being too high (T = t), we 
can formulate the query as: 

 ( |         ) 

Which we would have to evaluate for the values of G (the remaining 
variable in our network). However, since we are using the assumptions 
above (also from parts (c) and (d)) we can deduce the following: Since the 
alarm sounds (a) and the alarm is not faulty, we can infer by watching 
Table that for this to be possible, the gauge reading must be high (G = g) 
Hence, we can rewrite the above expression as: 



 ( |           ) 

First, we use Bayes'rule: 

 ( |           )  
                

                
 

Applying chain's rule up and down 

 ( |           )  
   |             ( |     )     |       

   |                           
 

Eliminating common terms 

 ( |           )  
 ( |     )     |       

 (     ) (   )
 

(PS. The calculations above could have been saved, because we all know 
that a and fa do not have direct relation with t. We just wanted to verify that 
this held true...and it did!) 

Back to the problem, we can use the product version of the Bayes'rule for 
the denominator: 

 ( |           )  
 ( |     )     |       

         
 

Since we have in Table the relation of g based on T and FG, we will try to 
use it. Again, in the denominator we use the variable T: 

 ( |           )  
 ( |     )     |       

 (       )    (        )
 

And apply chain rule (guess where? Yes, the denominator still) 

 ( |           )  
 ( |     )     |       

 ( |     ) (   | )       ( |      ) (   |  )     
 

Replacing what we have got: 

 ( |           )  
       |       

   (   | )           (   |  )     
 

To make things less messy, we call P(t) = m, P(fg | t) = n and P(fg | t) = q, 



so we have: 

 ( |           )  
        

                        
 

 

Which is our answer to this last item. 

  



5. [Temporal Models] Knowledge Tracing (25 points) 

A new online education website wants to provide individualized education. 
For simplicity imagine that users log into the website and continually 
answer randomly generated questions that cover triangle inequality. The 
only information accessible by the website is the score that the student 
gets on the problems they solve. Your task is to use these scores to track 
the extent to which a given student has mastered triangle inequality.  

(a)  Is this problem better suited for a markov model or a hidden markov 
model? 

Hidden Markov Model: The extent to which the student has 
mastered triangle inequality is a hidden variable. 

(b)  Formalize this real world problem: 
 

(i)   Draw the temporal Bayesian network.    
 

 
 
 
 
 
 
 
 
 

(ii)   For each variable in your model give a brief description of its 
role and specify a discrete domain. 

 
mi represents the students mastery at time i. Its domain could 
be any reasonable discrete domain. We chose {low, medium, 
high} 
 
si represents the students score on problem i. Its domain could 
be any reasonable discrete domain. We chose {low, medium, 
high} 

  
 
 
 

m0 m1 

s0 s1 



(iii)   For each arc node in your model what are the dimensions of 
the CPT. 

 
m0 has CPT size 3 
mi has CPT size 9 
si has CPT size 9  

 
(c)  We have invented a brain-measuring device that can measure exactly 

how well a student knows triangle inequality (You can call  
 
   getMastery()  

 
  at any point and the function will return a string in the domain {„low‟, 

„medium‟, „high‟}).  
 
   Your task is to write python code that could use this device to learn the 

emission conditional probability table of scores given mastery. 
 
              |          
 
   Your “learner” class will be given a constant stream of data from 

students solving problems.  After all observations have completed, the 

saveCpt method will be called. Implement all functions. 
 

  class Learner(): 

 

  # Function: Constructor 

  # --------------------- 

  # Only if you need it 

  def __init___(self): 

 

   self.counter = {} 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

# Function: Update 

# ----------------- 

# Called once every time the student completes 

# a problem. The score variable is the percent  

# correct (0.0 to 1.0) of the student’s  

# solution. You can discretize this score in any 

# reasonable way. 

def update(self, score): 

 discreteScore = self._getDiscreteScore(score) 

 discreteMastery = getMastery() 

 if not discreteMastery in self.counter: 

   self.counter[discreteMastery] = {} 

 counter = self.counter[discreteMastery] 

 if not discreteScore in counter: 

   counter[discreteScore] = 0 

 counter[discreteScore] += 1 

 

# Function: Save Cpt 

# ------------------ 

# To save any data structure you can use  

# util.saveProb( yourVariable, fileName).  

# Save Cpt is Called once after several days of 

# observing students solve triangle inequality 

# questions. The variable you save should  

# be a valid CPT (not a partial representation) 

def saveCpt(self, fileName): 

 emissionProb = {} 

for m in self.transCounter: 

masteryTransProb = self._getMasteryEmissionProb(m) 

emissionProb [m] = masteryTransProb 

 util.saveProb(emissionProb, fileName) 

 

 

 

 

 

 

 

 

[Helper functions on next page] 



def _getMasteryEmissionProb (self, m): 

 mCounter = self.counter[m] 

 mSum = 0.0 

 for score in mCounter:  

   count = mCounter[score] 

 mSum += count 

 emissionProb = {} 

 for score in mCounter: 

count = mCounter[score] 

    prob = float(count) / mSum  

 emissionProb[score] = prob 

 return emissionProb 

 

 

def _getDiscreteScore(self, score): 

 if score < 0.4: return ‘low’ 

 if score < 0.6: return ‘medium’ 

 return ‘high’ 

 

 

 

 


