

CS221 Practice Solutions #1

Summer 2013

The following pages are excerpts from similar classes‟ midterms. The
content is similar to our midterm – but I have opted to give you a document
with more problems rather than one that follows the structure of the
midterm precisely. See the midterm handout for more details on what the
exam will look like. The midterm is 2 hours. It is open book and open
computer but closed Internet.

1. [Short Answers] Truth Test (10 points)

For the following questions, a correct answer is worth 2 points, no answer
is worth 1 point, and an incorrect answer is worth 0 points. Circle true or
false to indicate your answer.

a. (true or false) If g(s) and h(s) are two admissible A* heuristics, then

their average f(s) = ½ g(s) + ½ h(s) must also be admissible.

True. Let h*(s) be the true distance from s. We know that g(s) <= h*(s)
and h(s) <= h*(s), thus f(s) <= ½ h*(s) + ½ h*(s). We can simplify to f(s)
<= h*(s).

b. (true or false) For a search problem, the path returned by uniform cost
search may change if we add a positive constant C to every step cost.

True. Consider that there are two paths from the start state (S) to the

goal (G), S → A → G and S → G. So the optimal path is through A.

Now, if we add 2 to each of the costs, the optimal path is directly from
S to G. Since uniform cost search finds the optimal path, its path will
change.

c. (true or false) The running-time of an efficient solver for tree-structured
constraint satisfaction problems is linear in the number of variables.

 True. The running time of the algorithm for tree-structured CSPs is
O(n · d2), where n is the number of variables and d is the maximum
size of any variable‟s domain.

d. (true or false) The amount of memory required to run minimax with
alpha-beta pruning is O(bd) for branching factor b and depth limit d.

 True and False (everyone wins). The memory required is only O(bd),
so we accepted False. However, by definition an algorithm that is
O(bd) is also O(bd), because O denotes upper bounds that may or may
not be tight, so technically this statement is True (but not very useful).

e. (true or false) For a discrete bayesian network with n variables, the
amount of space required to store the “joint” distribution table is O(n).

 False. The size of the joint is O(dn) where d is the domain of the
variables.

f. (true or false) In a markov decision problem, there are no actions and
instead everything is controlled by “chance.”

 False. Agents make actions, the successor states of those actions are
controlled by chance.

h. (true or false) Assume the Bayes Net from class is a prefect
representation of the world:

 You know that you do not have a stomach bug. If you were to vomit,
would that information change the probability that you had a fever?

False. The two variables are conditionally independent given stomach
bug (notably, the wording of this question didn‟t sound true or false).

.

2. [Deterministic Search] Mr. and Ms. Pacman (20 points)

Pacman and Ms. Pacman are lost in an NxN maze and would like to meet;
they don‟t care where. In each time step, both simultaneously move in one
of the following directions: {NORTH, SOUTH, EAST, WEST, STOP}. They
do not alternate turns. You must devise a plan which positions them
together, somewhere, in as few time steps as possible. Passing each other
does not count as meeting; they must occupy the same square at the
same time.

a. Formally state this problem as a single-agent state-space search
problem.

States:

The set of pairs of positions for Pacman and Ms. Pacman: {((x1, y1),
(x2, y2)) | x1, x2, y1, y2 are in {1, 2, …, N}}

Goal test:

isGoal((x1, y1), (x2, y2)): return x1 == x2 and y1 == y2

Legal actions (given a state):

legalActions((x1, y1), (x2, y2)): If not blocked from their current
positions, both pacman and mrs pacman can move north, south,
east, west. They can always stop.

Successor function (given a state and an action):

successor(((x1, y1), (x2, y2)), action): Move pacman and mrs
pacman from their current state in the direction they both moved
(respectively). Return the new x1, y1, x2, y2 positions.

b. Give a non-trivial admissible heuristic for this problem.

Answer: Manhattan distance between Pacman and Ms. Pacman
DIVIDED BY 2 (since both take a step simultaneously)

c. Circle all of the following graph search methods which are
guaranteed to output optimal solutions to this problem:

(i) DFS (ii) BFS (iii) UCS

(iv) A* (with a consistent and admissible heuristic) 

(v) A* (with heuristic that returns zero for each state)

Everything but DFS.

d. If h1 and h2 are admissible, which of the following are also
guaranteed to be admissible? Circle all that apply:

(i) h1 + h2

(ii) h1 * h2

(iii) max(h1 , h2)

(iv) min(h1 , h2)

(v) (α)h1+(1−α)h2 for any value α between 0 and 1

Answer: (iii), (iv), (v)

3. [Adversarial Search] MiniMax (15 points)

Consider the following minimax tree:

a. What is the minimax value for the root?

 20

b. Draw an X through any nodes which will not be visited by alpha-beta
pruning, assuming children are visited in left-to-right order.

 See pic above.

c. Is there another ordering for the children of the root for which more
pruning would result? If so, state the order.

 Yes, if we had the children ordered as 20, 15, 10, 2.

[continued on the next page]

d. Propose a general, practical method for ordering children of nodes
which will tend to increase the opportunities for pruning. You should be
concise, but clearly state both what to do about min nodes and max
nodes.

In general we would want to use an evaluation function to estimate the
values of the children and then order them so that at max nodes we order
the children with larger estimated values first and at min nodes we order the
children with larger estimated values first. For those who did not include the
evaluation function: ordering nodes by their true values is not practical.

4. [Bayes Net] Nuclear Power Station (15 points)

In your local nuclear power station, there is an alarm that senses when a
temperature gauge exceeds a given threshold. The gauge measures the
temperature of the core. Consider the Boolean variables A (alarm sounds),
FA (alarm is faulty), and FG (gauge is faulty) and the multivalued, discrete
nodes G (gauge reading) and T (actual core temperature).

a. Draw a Bayesian network for this domain, given that the gauge is more
likely to fail when the core temperature gets too high.

b. Suppose there are just two possible actual and measured
temperatures, normal and high; the probability that the gauge gives the
correct temperature is x when it is working, but y when it is faulty. Give
the conditional probability table associated with G

 FG = True FG = False

T= High T = Normal T = High T= Normal

G = High y (1 – y) x (1 – x)

G = Normal (1 – y) y (1 – x) x

FG

T

G

A

FA

c. Suppose the alarm works correctly unless it is faulty, in which case it
never sounds. Give the conditional probability table associated with A

Alarm works correctly unless it is faulty. So, if alarm is not faulty, then
the alarm works correctly, meaning that it sounds only if gauge reading
is high.

 G = Normal G = High

FA = True FA = False FA = True FA = False

A = True 0 0 0 1

A = False 1 1 1 0

d. Suppose the alarm and gauge are working and the alarm sounds.
Calculate an expression for the probability that the temperature of the
core is too high, in terms of the various conditional probabilities in the
network.

The assumption says that the alarm and gauge are working, which means
that FA = :fa and FG = :fg. Also, we have that the alarm sounds (A = a). As
we are asked the probability of the temperature being too high (T = t), we
can formulate the query as:

 (|)

Which we would have to evaluate for the values of G (the remaining
variable in our network). However, since we are using the assumptions
above (also from parts (c) and (d)) we can deduce the following: Since the
alarm sounds (a) and the alarm is not faulty, we can infer by watching
Table that for this to be possible, the gauge reading must be high (G = g)
Hence, we can rewrite the above expression as:

 (|)

First, we use Bayes'rule:

 (|)

Applying chain's rule up and down

 (|)
 | (|) |

 |

Eliminating common terms

 (|)
 (|) |

 () ()

(PS. The calculations above could have been saved, because we all know
that a and fa do not have direct relation with t. We just wanted to verify that
this held true...and it did!)

Back to the problem, we can use the product version of the Bayes'rule for
the denominator:

 (|)
 (|) |

Since we have in Table the relation of g based on T and FG, we will try to
use it. Again, in the denominator we use the variable T:

 (|)
 (|) |

 () ()

And apply chain rule (guess where? Yes, the denominator still)

 (|)
 (|) |

 (|) (|) (|) (|)

Replacing what we have got:

 (|)
 |

 (|) (|)

To make things less messy, we call P(t) = m, P(fg | t) = n and P(fg | t) = q,

so we have:

 (|)

Which is our answer to this last item.

5. [Temporal Models] Knowledge Tracing (25 points)

A new online education website wants to provide individualized education.
For simplicity imagine that users log into the website and continually
answer randomly generated questions that cover triangle inequality. The
only information accessible by the website is the score that the student
gets on the problems they solve. Your task is to use these scores to track
the extent to which a given student has mastered triangle inequality.

(a) Is this problem better suited for a markov model or a hidden markov
model?

Hidden Markov Model: The extent to which the student has
mastered triangle inequality is a hidden variable.

(b) Formalize this real world problem:

(i) Draw the temporal Bayesian network.

(ii) For each variable in your model give a brief description of its
role and specify a discrete domain.

mi represents the students mastery at time i. Its domain could
be any reasonable discrete domain. We chose {low, medium,
high}

si represents the students score on problem i. Its domain could
be any reasonable discrete domain. We chose {low, medium,
high}

m0 m1

s0 s1

(iii) For each arc node in your model what are the dimensions of
the CPT.

m0 has CPT size 3
mi has CPT size 9
si has CPT size 9

(c) We have invented a brain-measuring device that can measure exactly

how well a student knows triangle inequality (You can call

 getMastery()

 at any point and the function will return a string in the domain {„low‟,

„medium‟, „high‟}).

 Your task is to write python code that could use this device to learn the

emission conditional probability table of scores given mastery.

 |

 Your “learner” class will be given a constant stream of data from

students solving problems. After all observations have completed, the

saveCpt method will be called. Implement all functions.

 class Learner():

 # Function: Constructor

 # ---------------------

 # Only if you need it

 def __init___(self):

 self.counter = {}

Function: Update

Called once every time the student completes

a problem. The score variable is the percent

correct (0.0 to 1.0) of the student’s

solution. You can discretize this score in any

reasonable way.

def update(self, score):

 discreteScore = self._getDiscreteScore(score)

 discreteMastery = getMastery()

 if not discreteMastery in self.counter:

 self.counter[discreteMastery] = {}

 counter = self.counter[discreteMastery]

 if not discreteScore in counter:

 counter[discreteScore] = 0

 counter[discreteScore] += 1

Function: Save Cpt

To save any data structure you can use

util.saveProb(yourVariable, fileName).

Save Cpt is Called once after several days of

observing students solve triangle inequality

questions. The variable you save should

be a valid CPT (not a partial representation)

def saveCpt(self, fileName):

 emissionProb = {}

for m in self.transCounter:

masteryTransProb = self._getMasteryEmissionProb(m)

emissionProb [m] = masteryTransProb

 util.saveProb(emissionProb, fileName)

[Helper functions on next page]

def _getMasteryEmissionProb (self, m):

 mCounter = self.counter[m]

 mSum = 0.0

 for score in mCounter:

 count = mCounter[score]

 mSum += count

 emissionProb = {}

 for score in mCounter:

count = mCounter[score]

 prob = float(count) / mSum

 emissionProb[score] = prob

 return emissionProb

def _getDiscreteScore(self, score):

 if score < 0.4: return ‘low’

 if score < 0.6: return ‘medium’

 return ‘high’

