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Abstract—In this paper, we propose a new tractable framework
for dealing with linear dynamical systems affected by uncertainty,
applicable to multistage robust optimization and stochastic pro-
gramming. We introduce a hierarchy of near-optimal polynomial
disturbance-feedback control policies, and show how these can be
computed by solving a single semidefinite programming problem.
The approach yields a hierarchy parameterized by a single variable
(the degree of the polynomial policies), which controls the trade-off
between the optimality gap and the computational requirements.
We evaluate our framework in the context of three classical appli-
cations—two in inventory management, and one in robust regula-
tion of an active suspension system—in which very strong numer-
ical performance is exhibited, at relatively modest computational
expense.

Index Terms—Constrained control, optimization, robust adap-
tive control, semidefinite programming, sums-of-squares, uncer-
tain systems.

I. INTRODUCTION

ULTISTAGE optimization problems under uncertainty
M are prevalent in numerous fields of engineering, eco-
nomics, finance, and have elicited interest on both a theoretical
and a practical level from diverse research communities. Among
the most established methodologies for dealing with such prob-
lems are dynamic programming (DP) [1], stochastic program-
ming [2], robust control [3], [4], and, more recently, robust op-
timization (see [5]—[8] and references therein).
In the current paper, we consider discrete-time, linear dynam-
ical systems of the form

ok +1) = A(K)z(k) + B(k)u(k) +w(k) (1)

evolving over a finite planning horizon, ¥ = 0,...,7 — 1.
The variables z(k) € R™ represent the state, and the controls
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u(k) € R™ denote actions taken by the decision maker. A(k)
and B(k) are matrices of appropriate dimensions, describing the
evolution of the system, and the initial state, z(0), is assumed
known. The system is affected by unknown,! additive distur-
bances, w(k), which are assumed to lie in a given compact, basic
semialgebraic set

Wi © {w(k) € R™ : g;j(w(k) >0,j €T} ()
where g; € R[w] are multivariate polynomials depending on the
vector of uncertainties at time &, w(k), and 7} is a finite index
set. We note that this formulation captures many uncertainty sets
of interest, such as polytopes (all g; affine), p-norms, ellipsoids,
and intersections thereof. For now, we restrict our description to
uncertainties that are additive and independent across time, but
our framework can also be extended to cases where the uncer-
tainties are multiplicative (e.g., affecting the system matrices),
and also dependent across time (please refer to Section III-C for
details).

We assume that the dynamic evolution of the system is con-
strained by a set of linear inequalities

E.(k)z(k) + Eu(k)u(k) < f(k), k=0,....7—1
E,(T)=(T) < f(T) 3)

where E, (k) € R E,(k) € R f(k) € R™ for the
respective k, and the system incurs penalties that are piecewise
affine and convex in the states and controls

h(k, z(k), u(k))

= max [co(k,i) + ez (k, i) (k) + cu(k, i) u(k)] @)

1€Ly,

where 7}, is a finite index set, and co(k,i) € R, ¢, (k,i) € R",
and ¢, (k,¢) € R™ are prespecified cost parameters. The goal is
to find nonanticipatory control policies u(0), u(1), ..., u(T—1)
that minimize the cost incurred by the system in the worst-case
scenario

J =h(0,2(0),u(0))
+}£ﬁ]})([h(1,:1:(1)7u(1))+~~
+ max [h(T -

1,z(T —
w(T—2)

D), w(T - 1))

BT, 2(T)]. ]
+wr(11Ta3<1) (T, z(T)) |

With the state of the dynamical system at time k given by
x(k), one can resort to the Bellman optimality principle of DP

'We use the convention that the disturbance w(k ) is revealed in period k after
the control action u(k) is taken, so that u(k + 1) is the first decision allowed
to depend on w(k).
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to compute optimal policies, u*(k,z(k)), and optimal value
functions, J*(k,z(k)) (see [1] for details). Although DP is a
powerful technique as to the theoretical characterization of the
optimal policies, it is plagued by the well-known curse of di-
mensionality, in that the complexity of the underlying recursive
equations grows quickly with the size of the state-space, ren-
dering the approach ill suited to the computation of actual policy
parameters. Therefore, in practice, one would typically solve the
recursions numerically (e.g., by multiparametric programming
[9]-[11]), or resort to approximations, such as approximate DP
[12], [13], stochastic approximation [14], simulation-base op-
timization [15], [16], and others. Some of the approximations
also come with performance guarantees in terms of the objec-
tive value in the problem, and many ongoing research efforts are
placed on characterizing the suboptimality gaps resulting from
specific classes of policies (the interested reader can refer to the
books [1], [12], and [13] for a thorough review).

An alternative approach, originally proposed in the stochastic
programming community (see [2], [17], and references therein),
is to consider control policies that are parametrized directly in
the sequence of observed uncertainties, and typically referred
to as recourse decision rules. For the case of linear constraints
on the controls, with uncertainties regarded as random variables
having bounded support and known distributions, and the goal
of minimizing an expected piecewise quadratic, convex cost,
the authors in [17] show that piecewise affine decision rules are
optimal, but pessimistically conclude that computing the actual
parameterization is usually an “impossible task” (for a precise
quantification of that statement, see [18] and [19]).

Disturbance-feedback parameterizations have recently been
used by researchers in robust control and robust optimization (see
[5]-[7], [20]-[26], and references therein). In most of the pa-
pers, the authors restrict attention to the case of affine policies,
and show how reformulations can be done that allow the compu-
tation of the policy parameters by solving convex optimization
problems, which vary from linear and quadratic (e.g., [6], [21]),
to second-order conic and semidefinite programs (e.g., [6], [20],
[24], and [25]). Some of the first steps toward analyzing the prop-
erties of disturbance-affine policies were taken in [6] and [21],
where it was shown that, under suitable conditions, the resulting
parametrization has certain desirable system theoretic properties
(stability and robust invariance), and that the class of affine dis-
turbance feedback policies is equivalent to the class of affine state
feedback policies with memory of prior states, thus subsuming
the well-known open-loop and prestabilizing control policies.

With the exception of a few classical cases, such as linear
quadratic Gaussian or linear exponential quadratic Gaussian,?
characterizing the performance of affine policies in terms of ob-
jective function value is typically very hard. The only result
in a constrained, robust setting that the authors are aware of
is our recent paper [8], in which it is shown that, in the case
of one-dimensional systems, with independent state and control
constraints (L < uj, < Uy, Lf < xp < UY), linear control
costs and any convex state costs, disturbance-affine policies are,

2These refer to problems that are unconstrained, with Gaussian disturbances,
and the goal of minimizing expected costs that are quadratic or exponential
of a quadratic, respectively. For these, the optimal policies are affine in the
states—see [1] and references therein.
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in fact, optimal, and can be found efficiently. As a downside, the
same paper presents simple examples of multidimensional sys-
tems where affine policies are suboptimal.

In fact, in most applications, the restriction to the affine case
is done for purposes of tractability, and almost invariably results
in loss of performance (see the remarks at the end of [19]), with
the optimality gap being sometimes very large. In an attempt
to address this problem, recent work has considered parame-
terizations that are affine in a new set of variables, derived by
lifting the original uncertainties into a higher dimensional space.
For example, the authors in [27]-[29] suggest using so-called
segregated linear decision rules, which are affine parameteri-
zations in the positive and negative parts of the original uncer-
tainties. Such policies provide more flexibility, and their com-
putation (for two-stage decision problems in a robust setting)
requires roughly the same complexity as that needed for a set
of affine policies in the original variables. Another example fol-
lowing similar ideas is [30], where the authors consider arbi-
trary functional forms of the disturbances, and show how, for
specific types of p-norm constraints on the controls, the prob-
lems of finding the coefficients of the parameterizations can
be relaxed into convex optimization problems. A similar ap-
proach is taken in [26], where the authors also consider arbi-
trary functional forms for the policies, and show how, for a
problem with convex state-control constraints and convex costs,
such policies can be found by convex optimization, combined
with Monte-Carlo sampling (to enforce constraint satisfaction).
Chapter 14 of the recent book [31] also contains a thorough re-
view of several other classes of such adjustable rules, and a dis-
cussion of cases when sophisticated rules can actually improve
over the affine ones.

The main drawback of some of the above approaches is that
the right choice of functional form for the decision rules is rarely
obvious, and there is no systematic way to influence the trade-off
between the performance of the resulting policies and the com-
putational complexity required to obtain them, rendering the
frameworks ill-suited for general multistage dynamical systems,
involving complicated constraints on both states and controls.

The goal of our current paper is to introduce a new frame-
work for modeling and (approximately) solving such multistage
dynamical problems. While we restrict attention mainly to the
robust, mini-max objective setting, our ideas can be extended
to deal with stochastic problems, in which the uncertainties are
random variables with known, bounded support and distribution
that is either fully or partially known3 (see Section III-C for a
discussion). Our main contributions are summarized below:

* We introduce a natural extension of the aforementioned
affine decision rules, by considering control policies that
depend polynomially on the observed disturbances. For
a fixed polynomial degree d, we develop a convex refor-
mulation of the constraints and objective of the problem,
using Sums-Of-Squares (SOS) techniques. In the re-
sulting framework, polynomial policies of degree d can be
computed by solving a single semidefinite programming
problem (SDP), which, for a fixed precision, can be done
in polynomial time [32]. Our approach is advantageous

3In the latter case, the cost would correspond to the worst-case distribution
consistent with the partial information.
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from a modelling perspective, since it places little burden
on the end user (the only choice is the polynomial degree
d), while at the same time providing a lever for directly
controlling the trade-off between performance and com-
putation (higher d translates into policies with better
objectives, obtained at the cost of solving larger SDPs).
¢ To test our polynomial framework, we consider two clas-
sical problems arising in inventory management (single
echelon with cumulative order constraints, and serial
supply chain with lead-times) and one in robust control
(regulation of an active suspension system), and compare
the performance of affine, quadratic and cubic control
policies. The results obtained are very encouraging—in
particular, for all problem instances considered, quadratic
policies considerably improve over affine policies (typi-
cally by a factor of 2 or 3), while cubic policies essentially
close the optimality gap (the relative gap in all simulations
is less than 1%, with a median gap of less than 0.01%).
The paper is organized as follows. Section II presents the
mathematical formulation of the problem, briefly discusses rel-
evant solution techniques in the literature, and introduces our
framework. Section III, which is the main body of the paper,
first shows how to formulate and solve the problem of searching
for the optimal polynomial policy of fixed degree, and then dis-
cusses the specific case of polytopic uncertainties. Section III-C
also elaborates on immediate extensions of the framework to
more general multistage decision problems. Section V translates
three classical problems into our framework, and Section VI
presents our computational results, exhibiting the strong perfor-
mance of polynomial policies. Section VII concludes the paper
and suggests directions of future research.

Notation

Throughout the rest of the paper, we denote scalar quantities
by lowercase, nonbold face symbols (e.g., z € R,k € N),
vector quantities by lowercase, boldface symbols (e.g.,
z € R",n > 1), and matrices by uppercase symbols
(e.g, A € R*"™,n > 1). Also, in order to avoid trans-
posing vectors several times, we use the comma oper-
ator (,) to denote vertical vector concatenation, e.g., with
= (21,...,7,) ER"andy = (y1,...,¥m) € R™, we write
(z,y) Lef (T1y. ey Ty Y1y- -+ Ym) € R,

We refer to quantities specific to time-period k by either in-
cluding the index in parenthesis, e.g., z(k), J* (k,z(k)), or by
using an appropriate subscript, e.g., T, J; (z1). When referring
to the jth component of a vector at time k, we always use the
parenthesis notation for time, and subscript for j, e.g., z;(k).

Since we seek policies parameterized directly in the uncer-

.. . def
tainties, we introduce wy,; =

history of known disturbances at the beginning of period &, and
Wi def Wi X --- x Wy_1 to denote the corresponding uncer-
tainty set. By convention, wyg = [], i.e., an empty vector. With
x = (x1,...,%,), we denote by R[z] the ring of polynomials in
variables x1, ..., T, and by Py[z] the R-vector space of poly-
nomials in z1, . .., z,, with degree at most d. We also let

Ba(z) &

2 d
(1,3:1, ey Ty T, T1T, o T Ty, - ,zn) (®)
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be the canonical basis of Py[z], and s(d) %' (") be its di-

mension. Any polynomial p € P[] is written as a finite linear
combination of monomials

p@) =p(@1,. . 0) = > pax® =p"Ba(z) (6)
aeNn
where 2 x{tx3? ... 2%, and the sum is taken over all n-tu-
ples @ = (a1, as,...,a,) € N" satisfying > ; o; < d. In
the expression above, p = (pa) € R*(") is the vector of coeffi-
cients of p(x) in the basis (5). In situations where the coefficients
Do of a polynomial are decision variables, in order to avoid con-
fusions, we refer to x as the indeterminate (similarly, we refer
to p(x) as a polynomial in indeterminate x). By convention, we
take p(#) = po,o,....0. i.., a polynomial without indeterminate
is simply a constant.
For a polynomial p € R[z], we use deg(p) to denote the
largest degree of a monomial present in p.

II. PROBLEM DESCRIPTION

Using the notation mentioned in the introduction, our goal
is to find nonanticipatory control policies ug, %1, . . . , wr—1 that
minimize the cost incurred by the system in the worst-case sce-
nario. In other words, we seek to solve the problem

n&ion ho (o, uo) + r%)aoxnlllliln hi(z1,u1) + -+

(P) + 'lﬂl,nl[hTfl (Tr—1,ur—1)+ 1?)1Ta,xl hr (ZT)] H
(7a)
s.t. Try1 = Apxp + Brup +wy, V€ {0,...,T — 1}
(7b)
E.(k)xr + Ey(k)ur < f, Yk €{0,..., T —1} (7¢)
E.(T)zr < fr. (7d)

As already mentioned, the control actions u;, do not have to
be decided entirely at time period k = 0, i.e., (P) does not have
to be solved as an open-loop problem. Rather, uy, is allowed to
depend on the information set available4 at time k, denoted by
F, resulting in control policies uy : Fr, — R™».

While F}, is a large (expanding with k) set, the state x;, repre-
sents sufficient information for taking optimal decisions at time
k. Thus, with control policies depending on the states, one can
resort to the Bellman optimality principle of Dynamic Program-
ming (DP) [1], to compute optimal policies, u}(xy), and op-
timal value functions, J;} (x). As suggested in the introduction,
the approach is limited due to the curse of dimensionality, so
that, in practice, one typically resorts to approximate schemes
for computing suboptimal, state-dependent policies [12], [13],
[16].

In this paper, we take a slightly different approach, and
consider instead policies parametrized directly in the observed
uncertainties

up Wo X Wy X --- Xx Wi_1 — R". ®)

“4More formally, the decision process u;, is adapted to the filtration generated
by past values of the disturbances.
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In this context, the decisions that must be taken are
the parameters defining the specific functional form
sought for wuy;. One such example of disturbance-feed-
back policies, often considered in the literature, is the
affine case, ie., ur, = Li - (1,wo,...,wr_1), where
the decision variables are the coefficients of the matrices
Ly € Rrwx(tkxnw) o — T -1,

In this framework, with (7b) used to express the dependency
of states xj on past uncertainties, the state-control constraints
(7c), (7d) at time k can be written as functions of the parametric
decisions Ly, ..., L and the uncertainties wo, ..., wy_1, and
one typically requires these constraints to be obeyed robustly,
i.e., for any possible realization of the uncertainties.

As already mentioned, this approach has been explored be-
fore in the literature, in both the stochastic and robust frame-
works [2], [S]-[7], [17], [20]-[25]. The typical restriction to the
subclass of affine policies, done for purposes of tractability, al-
most invariably results in loss of performance [19], with the gap
being sometimes very large.

To illustrate this effect, we introduce the following simple
example,5 motivated by a similar case in [27].

1) Example 1: Consider a two-stage problem, where w € W
is the uncertainty, with W = {w e RN . |wl||2 < 1}, z e€Ris
a first-stage decision (taken before w is revealed), and y € RV
is a second-stage decision (allowed to depend on w). We would
like to solve the following optimization:

minimize =z
z,Y(W)

N
such that z > Zy, YweW,
i=1
yi > w?, VYweW. 9)

= Wi

It can be easily shown (see Lemma 1 in Section A) that the
optimal objective in Problem (9) is 1, corresponding to y; (w) =
w?, while the best objective achievable under affine policies
y(w) is N, for y;(w) = 1, Vi. In particular, this simple ex-
ample shows that the optimality gap resulting from the use of
affine policies can be made arbitrarily large (as the problem size
increases).

Motivated by these facts, in the current paper we explore the
performance of a more general class of disturbance-feedback
control laws, namely policies that are polynomial in past-ob-
served uncertainties. More precisely, for a specified degree d,
and with wy;; denoting the vector of all disturbances in Fy,

def ‘n
w[k] = (’Ulo,’ll)l./...,’lllkfl) € Rk “ (10)

we consider a control law at time &k in which every compo-
nent is a polynomial of degree at most d in variables wy, i.e.,
u]-(k,'w[k]) € Pd['w[k]], and thus

an

where B, (wr)) is the canonical basis of Py[wy], given by (5).
The new decision variables become the matrices of coefficients
Ly € R | =0,...,7 — 1, where s(d) = (*"47%) is

ur(wig)) = Li Ba(wp)

SWe note that this example can be easily cast as an instance of Problem ().
We opt for the simpler notation to keep the ideas clear.
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the dimension of Py ['w[k,]]. Therefore, with a fixed degree d, the
number of decision variables remains polynomially bounded in
the size of the problem input, T, 7, 1y,.

This class of policies constitutes a natural extension of the
disturbance-affine control laws, i.e., the case d = 1. Further-
more, with sufficiently large degree, one can expect the perfor-
mance of the polynomial policies to become near-optimal (re-
call that, by the Stone-Weierstrass Theorem [33], any contin-
uous function on a compact set can be approximated as closely
as desired by polynomial functions). The main drawback of
the approach is that searching over arbitrary polynomial poli-
cies typically results in nonconvex optimization problems. To
address this issue, in the next section, we develop a tractable,
convex reformulation of the problem based on Sum-Of-Squares
(SOS) techniques [34]-[36].

ITI. POLYNOMIAL POLICIES AND CONVEX REFORMULATIONS
USING SUMS-OF-SQUARES

Under polynomial policies of the form (11), one can use the
dynamical (7b) to express every component of the state at time
k, z;(k), as a polynomial in indeterminate wi), whose coeffi-
cients are linear combinations of the entries in {L;}o<i<k—1-
As such, with e, (k, j)T and e, (k,7)T denoting the jth row of
E.(k)and E, (k), respectively, a typical state-control constraint
(7¢) can be written

2 (h,3) Tk + eu(k, ) Twe < f,(K)
& P (wigy) 20, Vg € Wy

where
con def . .
Pjk (w[k]> = fj(k) - ex(ka.])Txk - eu(ka.])T'u'k-

In particular, feasibility of the state-control constraints at time
k is equivalent to ensuring that the coefficients {L:}o<i<r_1
are such that the polynomials p§%'(wp),7 = 1,...,7x, are
nonnegative on the domain Wy,;.

Similarly, the expression (4) for the stage cost at time &k can
be written as

cost

hi(zg, ur) = max p; (wir))
cost def . ANT N\T
P (wing) = colk, i) +eo (k. i) T (wieg) ek, ) ui (wpg)

i.e., the cost hy, is a piecewise polynomial function of the past-
observed disturbances wy;. Therefore, under polynomial con-
trol policies, we can rewrite the original Problem (P) as the fol-
lowing polynomial optimization problem:

cost (

min | max p;

. - t
w + max min [ max p;° (wy) + - -
Lo | €Ty [0]) wy i€1o P [ ])

Ly

. ost
+ max min| max pi°**(wyp_q
Wr—2 Ly I:iez'j'—l ¢ ( [ ])

(PPOP) + 1112“&3(1 5161%;{})?05%1”{7‘])] .. :|:| (123)
st pigp(wpy) 20, VE=0,....,T,Vj=1,...,7%,
V’U)[k] S W[k.]. (12b)

In this formulation, the decision variables are the coefficients
{Lt}o<t<r—1, and (12b) summarize all the state-control con-
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straints. We emphasize that the expression of the polynomial
controls(11) and the dynamical system (7b) should not be inter-
preted as real constraints in the problem (rather, they are only
used to derive the dependency of the polynomials p°>*(wiy)

con

and p§9; (wigg) on { Lt fo<i<k—1 and wp)).

A. Reformulating the Constraints

As mentioned in the previous section, under polynomial con-
trol policies, a typical state-control constraint (12b) in program
(Ppop) can now be written as

p(€) >0, VEe Wy (13)
where § = wy,) € R¥ 7w is the history of disturbances, and
p(€) is a polynomial in variables &1,&a, . . ., £k.n,, With degree
at most d

p(€) =p"Ba(§)

whose coefficients p; are affine combinations of the decision
variables L;, 0 < t < k — 1. Itis easy to see that constraint (13)
can be rewritten equivalently as

p(€) 20, V€ € Wiy
Wi < (e RF™ 1 g;(6) 20, j=1,....m} (14

where {g,}1<;<m are all the polynomial functions describing
the compact basic semi-algebraic set Wiy = Wo X - - - X Wy 1,
immediately derived from (2). In this form, (14) falls in the gen-
eral class of constraints that require testing polynomial nonneg-
ativity on a basic closed, semi-algebraic set, i.e., a set given by a
finite number of polynomial equalities and inequalities. To this
end, note that a sufficient condition for (14) to hold is

p:UO+ZUj9j 5)
j=1
where o; € R[], j = 0,...,m, are polynomials in the vari-

ables € which are furthermore sums of squares (SOS). This con-
dition translates testing the nonnegativity of p on the set Wy,
into a system of linear equality constraints on the coefficients
of pand o, j = 0,...,m, and a test whether o; are SOS. The
main reason why this is valuable is because testing whether a
polynomial of fixed degree is SOS is equivalent to solving a
semidefinite programming problem (SDP) (refer to [34]-[36]
for details), which, for a fixed precision, can be done in polyno-
mial time, by interior point methods [32].

At first sight, condition (15) might seem overly restrictive.
However, it is motivated by recent powerful results in real al-
gebraic geometry [37], [38], which, under mild conditions® on
the functions g;, state that any polynomial that is strictly posi-
tive on a compact semi-algebraic set Wiy must admit a repre-
sentation of the form (15), where the degrees of the o; polyno-
mials are not a priori bounded. In our framework, in order to
obtain a tractable formulation, we furthermore restrict these de-
grees so that the total degree of every product o; g; is at most

These are readily satisfied when g; are affine, or can be satisfied by simply
appending a redundant constraint that bounds the 2-norm of the vector §
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max (d./ max; (deg(g;)) ) , the maximum between the degree of
the control policies (11) under consideration and the largest de-
gree of the polynomials g; giving the uncertainty sets. While this
requirement is more restrictive, and could, in principle, result in
conservative parameter choices, it avoids ad-hoc modeling deci-
sions, and has the advantage of keeping a single parameter that
is adjustable to the user (the degree d), which directly controls
the trade-off between the size of the resulting SDP formulation
and the quality of the overall solution. Furthermore, in our nu-
merical simulations, we find that this choice performs very well
in practice, and never results in infeasible conditions.

B. Reformulating the Objective

Recall from our discussion in the beginning of Section III
that, under polynomial control policies, a typical stage cost be-
comes a piecewise polynomial function of past uncertainties,
i.e., a maximum of several polynomials. A natural way to bring
such a cost into the framework presented before is to introduce,
for every stage k = 0,...,7T, a polynomial function of past
uncertainties, and require it to be an upper-bound on the true
(piecewise polynomial) cost.

More precisely, and to fix ideas, consider the stage cost at
time k, which, from our earlier discussion, can be written as

cost,

} N f— .
e (T, Uk max p; (wrg))

cost

P (wiky) = co(k, ) + e (ky i) x (wpy)
+ Cu(k, i)T'u,k(w[k]), Vi€ Tg.

In this context, we introduce a modified stage cost =
Palwyy], which we constrain to satisfy

hi(wiyy) > P (wp), Ywpy € Wik, Vi € Ty,

and we replace the overall cost for Problem (Ppop) with the
sum of the modified stage costs. In other words, instead of min-
imizing the objective (7a), we seek to solve

min J

T
st. J> th(w[k]), Y wr) € wip (16a)

k=0
hi(wpg) 2 5 (wiy), Ywpy € Wi, Vi € Ty (16b)

The advantage of this approach is that constraints (16a) and
(16b) are now of the exact same nature as (13), and thus fit
into the SOS framework developed earlier. As a result, we can
use the same semidefinite programming approach to enforce
them, while preserving the tractability of the formulation and
the trade-off between performance and computation delivered
by the degree d. The main drawback is that the cost J may, in
general, over-bound the optimal cost of Problem (P), due to
several reasons.

1) We are replacing the (true) piecewise polynomial cost Ay,
with an upper bound given by the polynomial cost h.
Therefore, the optimal value J of problem (16a) may, in
general, be larger than the true cost corresponding to the
respective polynomial policies, i.e., the cost of problem
(Prop).
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2) All the constraints in the model, namely (16a), (16b), and
(12b), are enforced using SOS polynomials with fixed de-
gree (see the discussion in Section III-A), and this is suffi-
cient, but not necessary.

However, despite these multiple layers of approximation, our
numerical experiments (Section VI), suggest that most of the
above considerations are second-order effects when compared
with the fact that polynomial policies of the form (11) are them-
selves, in general, suboptimal. In fact, our results suggest that
with a modest polynomial degree (3, and sometimes even 2),
one can close most of the optimality gap between the SDP for-
mulation and the optimal value of Problem (P).

To summarize, our framework can be presented as the se-
quence of steps below:

1) Consider polynomial control policies in the disturbances,

up(wi) = Ly Ba(wpy).

2) Express all the states zj, according to (7b). Each compo-
nent of a typical state =, becomes a polynomial in indeter-
minate wy, with coefficients given by linear combinations
of {Li}o<t<i—1.

3) Replace a typical stage cost hg(zk, ur) =
maxier,  pi>*(wp)) with  a  modified stage
cost hy € Pglwyry], constrained to  satisfy

hk("”[k}) > pfOSt(’u)[k]), Vg € I/V[k], Vi€ 1.

4) Replace the overall cost with > & Pk

5) Replace a typical constraint p(wy,) > 0, Ywy, € {£:
g;(&) > 0,5 = 1,...,m} (for either state-control or

costs) with the requirements:

p=o9+ Z 0;9; (linear constraints on coefﬁcients)
j=1
0; 508, j=0,...,m.
deg(oj g;) < max(d./ max(deg(gj)))
J

deg(og) = mja,x(deg(aj gj)).

(m + 1SDP constraints)

6) Solve the resulting SDP to obtain the coefficients L.

The size of the overall formulation is controlled by the fol-
lowing parameters: .

. o(T2 -maxy, (r, + | Zx]) - (maxy, | Ti|) - (T'"5+d)) linear

constraints
o O(T? - maxy(ry, + |Zi|) - (maxy | Jx|)) SDP constraints,
T nw+ fd/z])
[d/2]

. O(T- [y + T - maxg(ry, + |Zi|)-(maxy | Ti])| (T 1w +

cfcf)) variables.

each of size at most (

Above, d def nax (d, max; (dcg(gj)) ) ,1.e., the largest of d and
the degree of any polynomial g; defining the uncertainty sets.
Since, for all practical purposes, most uncertainty sets consid-
ered in the literature are polyhedral or quadratic, the main pa-
rameter that controls the complexity is d (for d > 2).

As the main computational bottleneck comes from the SDP
constraints, we note that their size and number could be sub-
stantially reduced by requiring the control policies to only de-
pend on a partial history of the uncertainties, e.g., by considering
U Wi—g X Wr_g41 X - - X Wy_1, for some fixed ¢ > 0, and
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by restricting x;, in a similar fashion. In this case, there would
be O(T - q - maxy(ri + |Zx|) - (maxy | Tx|)) SDP constraints,
each of size at most (q'n‘r”(;r/;/ﬂ), and only O(}", |7%|) SDP
T-nw-&-]'d/2-|)
[d/2]

constraints of size (

C. Extensions

For completeness, we conclude our discussion by briefly
mentioning several modelling extensions that can be readily
captured in our framework.

1) Although we only consider uncertainties that are “indepen-
dent” across time, i.e., the history wy) always belongs to
the Cartesian product Wy X - - - x Wj,_1, our approach could
be immediately extended to situations in which the uncer-
tainty sets characterize partial sequences. As an example,
instead of Wy, we could specify a semi-algebraic descrip-
tion for the history W[k], 1.e.,

(wo, w1, ..., wr_1) € Wi

Wiy = {€ € R "™ 1 g;(€) >0,V € T}

which could be particularly useful in situations where the
uncertainties are generated by processes that are dependent
across time. The only modification would be to use the
new specification for the set VW) in the typical state-con-
trol constraints (13) and the cost reformulation constraints
(16a), (16b).

2) While we restrict the exposition to uncertainties that
are only affecting the system dynamics additively, i.e.,
by means of (1), the framework can be extended to
situations where the system and constraint matrices,
A(k), B(k), E.(k), E.(k), f(k) or the cost parameters,
¢z (k,1) or e, (k, ) are also affected by uncertainty. These
situations are of utmost practical interest, in both the in-
ventory examples that we consider in the current paper, but
also in other realistic dynamical systems. As an example,
suppose that the matrix A(k) is affinely dependent on
uncertainties ;, € Z, C R™¢

A(k) = Ao(k) + Z Gi(k) A (k)

where A;(k) € R**" Vi € {0,...,n¢} are determin-
istic matrices, and Zj, are closed, basic semi-algebraic
sets. Then, provided that the uncertainties wy and ¢,
are both observable in every period,” our framework can
be immediately extended to decision policies that de-
pend on the histories of both sources of uncertainty, i.e.,
’ll.k(’ulo, e s Wi—1, 407 “e ,Ck_l).

3) Note that, instead of considering uncertainties as lying
in given sets, and adopting a min-max (worst-case)
objective, we could accommodate the following model-
ling assumptions.

(a) The uncertainties are random variables, with bounded
support given by the set Wy x -+ x Wp_4, and
known probability distribution function F. The goal

"When only the states x;, are observable, then one might not be able to si-
multaneously discriminate and measure both uncertainties.



BERTSIMAS et al.: HIERARCHY OF NEAR-OPTIMAL POLICIES FOR MULTISTAGE ADAPTIVE OPTIMIZATION

is to find ug, . . . , w7 _1 SO as to obey the state-control
constraints (3) almost surely, and to minimize the ex-
pected costs,

min | hg (2o, uo) + Ew,~F min[hl (T1,u1) + -
Uo u,

-I—,&r;inl [hr—1(zr—1,ur—1) + Ew,_ ~F hr (z7) ] H .

In this case, since our framework already enforces al-
most sure (robust) constraint satisfaction, the only po-
tential modifications would be in the reformulation of
the objective. Since the distribution of the uncertain-
ties is assumed known, and the support is bounded, the
moments exist and can be computed up to any fixed
degree d. Therefore, we could preserve the reformu-
lation of state-control constraints and stage-costs in
our framework (i.e., Steps 2 and 4), but then proceed
to minimize the expected sum of the polynomial costs
hy, (note that the expected value of a polynomial func-
tion of uncertainties can be immediately obtained as
a linear function of the moments).

(b) The uncertainties are random variables, with the same
bounded support as above, but unknown distribution
function [, belonging to a given set of distributions,
JF . The goal is to find control policies obeying the con-
straints almost surely, and minimizing the expected
costs corresponding to the worst-case distribution F

min | hg (2o, uo) + sup Eq, min[hl (T1,u1) + -
Uo FeF U,
+ min [}LT—I (-":T—huT—l) -+ sup |E'wT71 }LT (.’ET)] .. :|:| .
Ur—1 FeF

In this case, if partial information (such as the mo-
ments of the distribution up to degree d) is available,
then the framework in (a) could be applied. Other-
wise, if the only information available about F were
the support, then our framework could be applied
without modification, but the solution obtained would
exactly correspond to the min-max approach, and
hence be quite conservative.

‘We note that, under moment information, some of
the seemingly “ad-hoc” substitutions that we intro-
duced in our framework can actually become tight.
More precisely, the paper [39] argues that, when the
set of measures F is characterized by a compact sup-
port and fixed moments up to degree d, then the op-
timal value in the worst-case expected cost problem
supger Ew,, hi (zk,ur) (Where hy are piecewise
polynomial functions) exactly corresponds to the cost
supger Ewy, hi(wiy)), where hy, are constrained by
(16b). In other words, introducing a (potentially dom-
inating) polynomial stage cost hj does not increase
the optimal value of the problem under the distribu-
tionally-robust framework.

In general, if more information about the measures
in the set F is available, such as uni-modality, sym-
metry, directional deviations ([40]), then one should
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be able to obtain better bounds on the stage costs Ay,
by employing appropriate Tchebycheft-type inequal-
ities (see [39], [41], [42], and the recent papers [28],
[29], and [43], which take similar approaches in re-
lated contexts).
While these extensions are certainly worthy of attention, we
do not pursue them here, and restrict our discussion in the re-
mainder of the paper to the original worst-case formulation.

IV. OTHER METHODOLOGIES FOR COMPUTING
DECISION RULES OR EXACT VALUES

Our goal in the current section is to discuss the relation
between our polynomial hierarchy and several other estab-
lished methodologies in the literature$ for computing affine or
quadratic decision rules. More precisely, for the case of N-el-
lipsoidal uncertainty sets, we show that our framework delivers
policies of degree 1 or 2 with performance at least as good as
that obtained by applying the methods in [31]. In the second
part of the section, we discuss the particular case of polytopic
uncertainty sets, where exact values for Problem (P) can be
found (which are very useful for benchmarking purposes).

A. Affine and Quadratic Policies for N-Ellipsoidal
Uncertainty Sets

Let us consider the specific case when the uncertainty sets W,
are given by the intersection of finitely many convex quadratic
forms, and have nonempty interior (this is one of the most gen-
eral classes of uncertainty sets treated in the robust optimization
literature, see, e.g., [31]).

We first focus attention on affine disturbance-feedback poli-
cies, i.e., ux(wpr)) = Ly Bi(wyk)), and perform the same sub-
stitution of a piecewise affine stage cost with an affine cost that
over-bounds it.9 Finding the optimal affine policies then requires
solving the following instance of Problem (Ppop):

min J (17a)
Ly, 2k 2k,0,J
T
(PAFF) J > Z(z;‘:w[k] + Zk,o) (17b)
k=0

zj, Bi(wpyg) > co(k, 1) + e (k1) i (wpyg)
+ Cu(k, i)T'u,k('w[k]).,

V'w[k] S W[k], VieIy, Vke{0,...,T -1}

zpBi(wiry) > co(T,4) + e (T,1) "z r (wiry),
V’IU[T] € W[T], Vielr

(@hp1(wigr)) = Ak T (wi) + Br we(wig) + w(k), )

Vkelo,...,T—1} (17¢)
Fr 2 Ex(k) zr(wig) + Eu(k) ue(wiy),

Vg € Wi,

Vke{0,....,T -1} (17)

8We are grateful to one of the anonymous referees for pointing out reference
[31], which was not at our disposal at the time of conducting the research.

9This is the same approach as that taken in [31]; when the stage costs /. are
already affine in x,., uy, the step is obviously not necessary.
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Jr 2 E.(T) zr(win),

Vw[T] € W[T]. 17g)

In this formulation, the decision variables are
{Li}o<k<r-1,{Zk }o<k<r and J, and (17e) should be
interpreted as giving the dependency of xj on wy) and the
decision variables, which can then be used in the constraints
(17¢), (17d), (17f), and (17g). Note that, in the above
optimization problem, all the constraints are bi-affine functions
of the uncertainties and the decision variables, and thus, since
the uncertainty sets ¥|;) have tractable conic representations,
the techniques in [31] can be used to compute the optimal
decisions in (PAfr).

Letting J} pp denote the optimal value in (Psrr), and with

7_, representing the optimal value obtained from our polyno-
mial hierarchy (with SOS constraints) for degree d = r, we have
the following result.

Theorem 1: 1If the uncertainty sets W are given by the in-
tersection of finitely many convex quadratic forms, and have
nonempty interior, then the objective functions obtained from
the polynomial hierarchy satisfy the following relation:

Jarr 2 Sy 2 Jjmg >

a

Proof: See Section VIII-C of the Appendix. ]

The above result suggests that the performance of our poly-
nomial hierarchy can never be worse than that of the best affine
policies.

For the same case of WV, given by intersection of convex
quadratic forms, a popular technique introduced by Ben-Tal and
Nemirovski in the robust optimization literature, and based on
using the approximate S-Lemma, could be used for computing
quadratic decision rules. More precisely, the resulting problem
(Pquap) can be obtained from (Papr) by using uy(zy) =
Ly, - Bz (wyy)), and by replacing zf By (wjy)) and z7.B2(w(7y) in
(17¢) and (17d), respectively. Since all the constraints become
quadratic polynomials in indeterminates w(y), one can use the
approximate S-Lemma to enforce the resulting constraints (See
Chapter 14 in [31] for details). If we let J¢; s p denote the op-
timal value resulting from this method, a proof paralleling that
of Theorem 1 can be used to show that J&;xp > Jj_,, i.€., the
performance of the polynomial hierarchy for d > 2 cannot be
worse than that delivered by the S-Lemma method.

In view of these results, one can think of the polynomial
framework as a generalization of two classical methods in the
literature, with the caveat that (for degree d > 3), the resulting
SOS problems that need to be solved can be more computation-
ally challenging.

B. Determining the Optimal Value for Polytopic Uncertainties

Here, we briefly discuss a specific class of Problems (P),
for which the exact optimal value can be computed by solving
a (large) mathematical program. This is particularly useful for
benchmarking purposes, since it allows a precise assessment
of the polynomial framework’s performance (note that the
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approach presented in Section III is applicable to the general
problem, described in the introduction).

Consider the particular case of polytopic uncertainty sets, i.e.,
when all the polynomial functions g; in (2) are actually affine. It
can be shown (see Theorem 2 in [11]) that piecewise affine state-
feedback policies!Ouy (x;,) are optimal for the resulting Problem
(P), and that the sequence of uncertainties that achieves the
min-max value is an extreme point of the uncertainty set, that is,
wip) € ext(Wp) X - - - xext(Wrp_1). As animmediate corollary
of this result, the optimal value for Problem (P), as well as
the optimal decision at time & = 0 for a fixed initial state x,
uf(xo), can be computed by solving the following optimization
problem (see [6], [10], and [11] for a proof):

min J (18a)
Uy (W), 2k (W), T
T
T > z(wyy) (18b)
k=0
2 (wiig) > hi (T (W), e (wpg))
(P)ext k=0,...,T-1 (18¢)
zr(wir) 2 by (zr(wir)) (18d)

Tpp1(Wiep1]) = Ap Zp(wir)) + Brur(wpy) + w(k),

k=0,....T—1 (18e)
fre 2 Eo(k) z(wp) + Eu(k) wr(wpy),

k=0,....T—1 (18f)
Fr > E.(T) zr(wp). (18¢g)

In this formulation, nonanticipatory wy (wry)) control values and
corresponding states . (wjy)) are computed for every vertex of
the disturbance set, i.e., for every wp,; € ext(Wp) X +-+ X
ext(Wg_1), k=0,...,T — 1. The variables z; (wy;)) are used
to model the stage cost at time k, in scenario wiy)- Note that
constraints (18c), (18d) can be immediately rewritten in linear
form, since the functions hy(x, ), hr(x) are piecewise affine
and convex in their arguments.

We emphasize that the formulation does not seek to com-
pute an actual policy u}(xy), but rather the values that this
policy would take (and the associated states and costs), when
the uncertainty realizations are restricted to extreme points of
the uncertainty set. As such, the variables u (w)), Zr (wir))
and zj(wi;)) must also be forced to satisfy a nonanticipativity
constraint,!! which is implicitly taken into account when only
allowing them to depend on the portion of the extreme sequence
available at time k, i.e., W] Due to this coupling constraint,
Problem (P)eyt results in a Linear Program which is doubly-ex-
ponential in the horizon 7', with the number of variables and the
number of constraints both proportional to the number of ex-
treme sequences in the uncertainty set, O ([Tr_q lext(W3)]).
Therefore, solving (P)ext is relevant only for small horizons,
but is very useful for benchmarking purposes, since it provides
the optimal value of the original problem.

190ne could also immediately extend the result of [17] to argue that distur-
bance-feedback policies u, (w[ k]) are also optimal.

Tn our current notation, nonanticipativity is equivalent to requiring that, for
any two sequences (wo, ..., wr_1) and (o, ..., Wwr_1) satisfying w, =

w,,Vt € {0,...,k— 1}, we have u,(wp)) = u, (o)), Vt € {0,..., k}.
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We conclude this section by examining a particular example
when the uncertainty sets take an even simpler form, and poly-
nomial policies (11) are provably optimal. More precisely, we
consider the case of scalar uncertainties (n,, = 1), and

w(k) € W(k) < [w,, wr] CR, VE=0,...

T—1 (19)

4]. Under this
. . def
model, any partial uncertain sequence wy,; = (wo, ..., Wk_1)
will be a k-dimensional vector, lying inside the hypercube
Wiy € Wo x -+ x Wiy C RE,
Introducing the subclass of multiaffine policies!2 of degree d,
given by

known in the literature as box uncertainty [23], [4

k

Z Lo (w))®, where Zai <d (0)

ac{0,1}k i=1

kwk]

one can show (see Theorem 2 in the Appendix) that multiaffine
policies of degree T' — 1 are, in fact, optimal for Problem (P).
While this theoretical result is of minor practical importance
(due to the large degree needed for the policies, which trans-
lates into prohibitive computation), it provides motivation for re-
stricting attention to polynomials of smaller degree, as a midway
solution that preserves tractability, while delivering high quality
objective values.

For completeness, we remark that, for the case of box-uncer-
tainty, the authors in [31] show one can seek separable polyno-
mial policies of the form

Zpl wl

Vjied{l,...,

k'wk]

ny}, Ve {0,...,T — 1}
where p; € Pg4[z] are univariate polynomials in indeterminate
x. The advantage of this approach is that the reformulation of a
typical state-control constraint would be exact (refer to Lemma
14.3.4 in [31]). The main pitfall, however, is that for the case of
box-uncertainty, such a rule would never improve over purely
affine rules, i.e., where all the polynomials p; have degree 1
(refer to Lemma 14.3.6 in [31]). However, as we will see in our
numerical results (to be presented in Section VI), polynomials
policies that are not separable, i.e., are of the general form (11),
can and do improve over the affine case.

V. EXAMPLES FROM INVENTORY MANAGEMENT

To test the performance of our proposed policies, we consider
two problems arising in inventory management.

A. Single Echelon With Cumulative Order Constraints

This first example was originally discussed in a robust frame-
work by [45], in the context of a more general model for the
problem of negotiating flexible contracts between a retailer and
a supplier in the presence of uncertain orders from customers.
We describe a simplified version of the problem, which is suf-

12Note that these are simply polynomial policies of the form (11), involving

. . . def rrh—1
only square-free monomials, i.e., every monomial, (wy))* = []

satisfies the condition ov; € {0, 1}.

o
i
i=o Wi >
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ficient to illustrate the benefit of our approach, and refer the in-
terested reader to [45] for more details.

The setting is the following: consider a single-product,
single-echelon, multiperiod supply chain, in which invento-
ries are managed periodically over a planning horizon of T'
periods. The unknown demands wy, from customers arrive at
the (unique) echelon, henceforth referred to as the refailer, and
are satisfied from the on-hand inventory, denoted by z;, at the
beginning of period k. The retailer can replenish the inventory
by placing orders uy, at the beginning of each period k&, for a
cost of ¢i per unit of product. These orders are immediately
available, i.e., there is no lead-time in the system, but there are
capacities on the order size in every period, Ly < ug < U, as
well as on the cumulative orders places in consecutive periods,
Lk < Et ot < Uk After the demand wy, is realized, the
retailer incurs holding costs Hy11 - max{0,zx + up — wi}
for all the amounts of supply stored on her premises, as well as
penalties Bj41 - max{wy — z — ug, 0}, for any demand that
is backlogged.

In the spirit of robust optimization, we assume that the only
information available about the demand at time £ is that it re-
sides within an interval centered around a nominal (mean) de-
mand dj, which results in the uncertainty set Wy, = {w, € R :
|wy, — di| < p-dy }, where p € [0,1] can be interpreted as an
uncertainty level.

With the objective function to be minimized as the cost re-
sulting in the worst-case scenario, we immediately obtain an in-
stance of our original Problem (P), i.e., a linear system with
n = 2 states and n,, = 1 control, where x1(k) represents the
on-hand inventory at the beginning of time k, and zo(k) de-
notes the total amount of orders placed in prior times, z2(k) =
Zt o ! u(t). The dynamics are specified by

z1(k 4+ 1) =21(k) + u(k)
xo(k + 1) =x2(k) + u(k)

— w(k)

with the constraints

Ly, <xo(k) + u(k) < Uy

and the costs
hi (g, ur) = max{ckuk—{—[Hk, 0]z, crup+[— :l,'k}
hr(zr) = max{[Hr, 0] zr, [-Br, 0] ZT}-

We remark that the cumulative order constraints, i}k <
Zf:o up < U &, are needed here, since otherwise, the resulting
(one-dimensional) system would fit the theoretical results from
[8], which would imply that polynomial policies of the form
(11) and polynomial stage costs of the form (16b) are already
optimal for degree d = 1 (affine). Therefore, testing for higher
order polynomial policies would not add any benefit.

B. Serial Supply Chain

As a second problem, we consider a serial supply chain, in
which there are .J echelons, numbered 1, ..., .J, managed over
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aplanning horizon of T" periods by a centralized decision maker.
The jth echelon can hold inventory on its premises, for a per-
unit cost of H;(k) in time period k. In every period, echelon 1
faces the unknown, external demands w(k), which it must sat-
isfy from the on-hand inventory. Unmet demands can be back-
logged, incurring a particular per-unit cost, B; (k). The jth ech-
elon can replenish its on-hand inventory by placing orders with
the immediate echelon in the upstream, j + 1, for a per-unit cost
of ¢; (k). For simplicity, we assume the orders are received with
zero lead-time, and are only constrained to be nonnegative, and
we assume that the last echelon, .J, can replenish inventory from
a supplier with infinite capacity.

Following a standard requirement in inventory theory [46],
we maintain that, under centralized control, orders placed by
echelon 7 at the beginning of period k cannot be backlogged at
echelon j + 1, and thus must always be sufficiently small to be
satisfiable from on-hand inventory at the beginning!3 of period
k at echelon 7 + 1. As such, instead of referring to orders placed
by echelon j to the upstream echelon j + 1, we will refer to
physical shipments from j + 1 to j, in every period.

This problem can be immediately translated into the linear
systems framework mentioned before, by introducing the fol-
lowing states, controls, and uncertainties:

o Let z;(k) denote the local inventory at stage j, at the be-

ginning of period k.
* Let u;(k) denote the shipment sent in period k from ech-
elon j + 1 to echelon j.
¢ Let the unknown external demands arriving at echelon 1
represent the uncertainties, w(k).
The dynamics of the linear system can then be formulated as

z1(k+ 1) =z1(k) + ui (k) — w(k),
zj(k+1) =z;(k) + u;(k) — uj_1(k),

k=0,...,T—1
j=2,...,J,
k=0,...,T—1

with the following constraints on the states and controls

wi(k) >0, j=1,....J k=0,...,T—1,
(nonnegative shipments)
:L‘j(k)zuj'_l(k)./jzl...,(]., k:O,..../T—l,

(downstream order < upstream inventory)

and the costs

hl (l{/‘ le‘l(k‘), ul(k)) = Cl(k) ul(k)

+max{H1(k) .Tl(k),—Bl(k) .Tl(k)}
k=0 -1,
(T 1:1(T)) = max{H1 T)z1(T), —B1(T) ml(T)},
h; (k zj(k), u](k)) =cj(k)u;(k) + H;j(k) (k).
k=0,...,T—1

13This implies that the order placed by echelon j in period % (to the upstream
echelon, j 4+ 1) cannot be used to satisfy the order in period k from the down-
stream echelon, 57 — 1. Technically, this corresponds to an effective lead time of
1 period, and a more appropriate model would redefine the state vector accord-
ingly. We have opted to keep our current formulation for simplicity.
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With the same model of uncertainty as before, Wy, = [Jk(l -
p), di(1 + p)], for some known mean demand d;, and uncer-
tainty level p € [0, 1], and the goal to decide shipment quanti-
ties u;(k) so as to minimize the cost in the worst-case scenario,
we obtain a different example of Problem (P).

C. Active Suspension System

Our third example, originally suggested in [47] and also ap-
pearing in [11], consists of the problem of robustly regulating
to the origin the following active suspension system:

0.809  0.009 0 0 1
23693 080 0 0
sk+1) =1 0191 _0009 1 o0.01]| ¥
0 o 0 1 |
0.0005 - —0.009
0.0935 0.191
1 20005 | “R)F | Zg0006 | wR)-
~0.0100 L o

We follow the formulation in [11], and consider T" = 4, with a
cost function

IP2(T +1)]|oc + Z 1Qz(k

k=1

Moo + |Ru(k)])

where P = Q = diag{5000, 0.1, 400, 0.1}, R = 1.8, input
constraints —5 < u(k) < 5, state constraints

—0.02 0.02
—0o0 +00
005 | ST <005
—00 “+00

and a disturbance set —0.4 < w(k) <04,Vk e {1,...,T}.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations testing the
performance of polynomial policies in each of the three prob-
lems mentioned in Section V.

All our computations were done in a MATLAB environment,
on the MIT Operations Research Center computational machine
(3-GHz Intel Dual Core Xeon Processor, with 8 GB of RAM
memory, running Ubuntu Linux). The optimization problems
were formulated using YALMIP [48], and the resulting SDPs
were solved with SDPT3 [49].

A. First Example

For the first model (single echelon with cumulative order con-
straints), we vary the horizon of the problem from 7' = 4 to
T = 10, and for every value of 7', we perform the following.

1) Create 100 problem instances, by randomly generating the

cost parameters and the constraints, in which the perfor-
mance of polynomial policies of degree 1 (affine) is sub-
optimal.
2) For every such instance, we compute the following.
e The optimal cost OPT, by solving the exponential
Linear Program (P)exct.
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TABLE I
RELATIVE GAPS (IN PERCENT) FOR POLYNOMIAL POLICIES IN EXAMPLE 1

[T Degree d = 1 Degree d = 2 Degree d = 3 |
[T avg [ std [mdn [ min [ max [[ avg | std [ mdn [ min [ max [[ avg | std [ mdn [ min [ max |
4 [[2.84[ 241 2.18 [ 0.02] 9.76 [[0.75 [ 0.85] 047 [ 0.00 ] 3.79 [[ 0.03 [ 0.12] 0.00 [ 0.00 [ 0.01
5 [[2.82[2.29] 2.52 | 0.04 | 11.22 ][ 0.62 | 0.71 | 0.39 | 0.00 | 3.92 || 0.02 | 0.09 | 0.00 | 0.00 | 0.56
6 [3.09]2.63 | 2.36 | 0.01 | 9.82 |[0.69 | 0.89 0.25 | 0.00 | 3.47 || 0.03 [ 0.10] 0.00 | 0.00 | 0.59
7 |[325]2.95] 258 [0.13 | 15.00 || 0.83 | 0.99 | 0.43 [ 0.00 | 4.79 |[0.06 | 0.17| 0.00 | 0.00 | 0.93
8 |[3.66 329 2.69 | 0.03 | 18.36][ 1.06 | 1.17] 0.74 | 0.00 | 5.81 |[ 0.10 | 0.17] 0.00 | 0.00 | 0.99
9 [[2.93[2.78 2.12 | 0.05 | 11.56 || 0.80 | 0.86 | 0.55 | 0.00 | 3.39 || 0.07 | 0.13 | 0.00 | 0.00 | 0.61
10 |[3.443.60 | 2.09 [ 0.00 | 18.20 || 0.76 | 1.16 | 0.26 [ 0.00 | 5.76 || 0.05 | 0.12 | 0.00 [ 0.00| 0.74
TABLE II
SOLVER TIMES (IN SECONDS) FOR POLYNOMIAL POLICIES IN EXAMPLE 1
[ Degree d = 1 [ Degree d = 2 T Degree d = 3 |
[T |[avg [ std [mdn [ min [max || avg [ std [ mdn [ min [max [[ avg | std [ mdn [ min | max |
4 [[0.47[0.05] 0.46 [0.38]0.63 ]| 1.27 [0.10] 127 | 1.13 | 1.62 ]| 3.33 | 021 | 3.24 | 3.01 | 4.03
5 [[0.58]0.06 | 0.58 [ 0.46 | 0.75 || 2.03 [0.20] 1.97 | 1.69 | 2.65 || 7.51 | 0.91 | 727 | 6.58 | 12.08
6 |[0.73[0.11[0.72 [0.62 | 1.50 || 2.29 [0.22] 2.28 | 1.87 | 3.26 || 18.96 | 2.54 | 1825 | 16.07 | 31.86
7 |[0-88]0.08 [ 0.87 | 0.72 | 1.07 || 3.08 [0-23 | 3.10 | 2.47 | 3.67 || 48.83 | 5.63 | 47.99 | 40.65 | 74.00
8 [[1.13[0.12 .11 [0.94 [ 1.92 || 4.79 [0.32] 4.75 | 3.97 | 5.96 || 157.73 | 20.67 | 153.91 | 126.15 | 217.80
9 [[1.53]0.17 | 1.51 [ 1.272.66 || 7.65 [0.51 | 7.65 | 6.10 | 9.59 || 420.75 | 60.10 | 411.09 | 334.71 | 760.13
10 |[1.310.15| 1.30 [ 1.07 | 2.19 |[ 14.77 | 1.24 | 14.80 | 11.81 | 18.57 || 1846.94 | 600.89 | 1640.10 | 1313.18 | 4547.09
 The optimal cost P; obtained with polynomial policies 10f — ' ‘ ]
of degree d = 1,2, and 3, respectively, by solving the 9t i 1
1
corresponding associated SDP formulations, as intro- 8t ! 1
duced in Section III. B | .
We also record the relative optimality gap corresponding = 6l ! 1
. . = 2 ,
to each polynomial policy, defined as (P; — OPT)/OPT, g sl : |
and the solver time. 2 .l |
3) We compute statistics over the 100 different instances § , i
(recording the mean, standard deviation, min, max and -
. . . . 2+ ! E
median) for the optimality gaps and solver times corre- [
. . . . 1F p
sponding to all three polynomial parameterizations. , I;’ .
. . . L R E— _’_ 4
Tables I and II record these statistics for relative gaps and 0 . . <

solver times, respectively. The following conclusions can be
drawn from the results.

¢ Policies of higher degree decrease the performance gap
considerably. In particular, while affine policies yield an
average gap between 2.8% and 3.7% (with a median gap
between 2% and 2.7%), quadratic policies reduce both av-
erage and median gaps by a factor of 3, and cubic policies
essentially close the optimality gap (all gaps are smaller
than 1%, with a median gap smaller than 0.01%). To better
see this, Fig. 1 illustrates the box-plots corresponding to
the three policies for a typical case (here, 1" = 6).

* The reductions in the relative gaps are not very sensitive to
the horizon, 7. Fig. 2(a) illustrates this effect for the case
of quadratic policies, and similar plots can be drawn for the
affine and cubic cases.

¢ The computational time grows polynomially with the
horizon size. While computations for cubic policies are
rather expensive, the quadratic case, shown in Fig. 2(b),
shows promise for scalability—for horizon T' = 10, the
median and average solver times are below 15 s.

We remark that the computational times could be substan-
tially reduced by exploiting the structure of the polynomial
optimization problems (e.g., [50]), and by utilizing more
suitable techniques for solving smooth large-scale SDPs
(see, e.g., [51] and the references therein). Such tech-
niques are immediately applicable to our setting, and

1 2 3
Degree of the policy

Fig. 1. Box plots comparing the performance of different polynomial policies
for horizon T = 6.

could provide a large speed-up over general-purpose al-
gorithms (such as the interior point methods implemented
in SDPT3), hence allowing much larger and more compli-
cated instances to be solved.

B. Second Example

For the second model (serial supply chain), we fix the
problem horizon to 7' = 7, and vary the number of echelons
from J = 2 to J = 5. For every resulting size, we go through
the same steps 1-3 as outlined above, and record the same
statistics, displayed in Tables IIT and IV, respectively. Essen-
tially the same observations as before hold. Namely, policies
of higher degree result in strict improvements of the objective
function, with cubic policies always resulting in gaps smaller
than 1% (see Fig. 3(a) for a typical case). Also, increasing the
problem size (here, this corresponds to the number of echelons,
J) does not affect the reductions in gaps, and the computational
requirements do not increase drastically (see Fig. 3 (b), which
corresponds to quadratic policies).



2820

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 12, DECEMBER 2011

6F T T T T T — T T T T T T T
+ N +
18} R
1
St T 16 b
S 2 =
S . . "‘g’ 14 + — 1
E 4 I + T 8 1
g N T * 2z 12 -
g . ¥ + : * + 2
::0 o —_— - ! + + 1 E 10 + i
E + ! I : : | : —_
s, T = | ! ! . - == T
& | | ! | ! ! 1 =) -4
I 1 ! ' ! ! [ s N + |
1 : : =+
4t . .
2F %l % ]
ol J ==
4 5 6 7 8 9 10 4 5 6 7 8 9 10
Horizon Horizon
(a) (b)

Fig. 2. Performance of quadratic policies for Example 1. (a) illustrates the weak dependency of the improvement on the problem size (measured in terms of the

horizon T'), while (b) compares the solver times required for different problem

sizes.
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Fig. 3. Performance of polynomial policies for Example 2. (a) compares the three policies for problems with ./ = 3 echelons, and (b) shows the solver times

needed to compute quadratic policies for different problem sizes.

TABLE III
RELATIVE GAPS (IN PERCENT ) FOR POLYNOMIAL POLICIES IN EXAMPLE 2

Degree d =1 De;

gree d = 2 Degree d = 3

avg | std | mdn | min avg | std

mdn | min | max || avg | std | mdn | min | max

1.87(1.48|1.47 [0.00| 8.27 || 1.38|1.16

1.11 [ 0.00 | 6.48 || 0.06 | 0.14 | 0.01 | 0.00 | 0.96

1.4710.89]1.27 | 0.16 | 4.46 || 1.08 | 0.68

0.93 {0.14 | 3.33 || 0.04 [ 0.06 | 0.00 [ 0.00 | 0.32

1.14(2.46 | 0.70 [ 0.05 | 24.63 || 0.67 | 0.53

0.53 10.01|2.10 || 0.04 [ 0.07 | 0.00 | 0.00 | 0.38

| & vy

0.35(0.37(0.21 [0.03 | 1.85 [/0.27|0.32

0.150.00 [ 1.59 [/ 0.020.03 | 0.00 [ 0.00 | 0.15

TABLE IV

SOLVER TIMES (IN SECONDS) FOR

POLYNOMIAL POLICIES EXAMPLE 2

Degree d =1 Degree d

=2 Degree d =3

avg | std | mdn | min | max || avg | std | mdn

min avg std mdn | min | max

1.2210.20| 1.18 [ 0.86| 2.35 || 5.58 | 1.05| 5.44

3.82 | 879 || 81.64 | 14.02 | 80.88 | 52.55 | 116.56

1.7210.26 | 1.70 | 1.21 ] 3.09 || 8.84 | 1.40| 8.53

6.83 [ 13.19 | 115.08 | 20.91 | 109.96 | 77.29 | 183.84

1.5710.22 | 1.55 [ 1.20| 2.85 || 12.59 | 1.63 | 12.44

8.86 | 17.86 [ 160.05| 19.34 [159.29 | 82.11 | 207.56

AFSENESE

2.5911.46|1.97 [1.51]8.18 ([ 18.97|6.59]17.59

13.21]63.71 | 250.43 | 109.96 | 227.56 | 144.54 | 952.37

C. Third Example

For the third example, we fix the initial state to z(1)
(=0.01, —1.0,—0.03,—0.5), and compute polynomial control
policies with degree d € {1,...,3}. The worst case cost for
d = 1 is approximately 422.28, while the worst-case cost under
d = 2 and d = 3 is 367.12 (in this case, cubic polynomials do
not offer considerable improvement over quadratic).

To understand the actions taken under the different policies,
we simulate 10000 uncertainty sequences, and we compute the
relevant controls and states. Fig. 4 depicts box-plots of the state
vector (k) under the three different schemes, with (a), (b), and
(c) denoting polynomials with d = 1, d = 2 and d = 3, respec-
tively. As can be seen from the figures, all three control schemes
are able to drive the state vector close to the origin, and the effect
is particularly obvious for the first component, x1(k), which is
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Fig. 4. Performance of polynomial policies in Example 3. A total of 10000 uncertainty sequences are generated, and (a), (b), and (c) record box-plots of the

corresponding states under policies of degree 1, 2 and 3, respectively.

the main driver of the cost. However, quadratic and cubic poli-
cies typically generate less variability of the state values than
affine policies, and also incur a considerably smaller worst-case
cost (a reduction of around 13%).

VII. CONCLUSION

In this paper, we have presented a new method for dealing
with multistage decision problems affected by uncertainty, ap-
plicable to robust optimization and stochastic programming. Our
approach consists of constructing a hierarchy of suboptimal poly-
nomial policies, parameterized directly in the observed uncer-
tainties. The problem of computing such an optimal polynomial
policy can be reformulated as an SDP, which can be solved ef-
ficiently with interior point methods. Furthermore, the approach
allows modelling flexibility, in that the degree of the polynomial
policies explicitly controls the trade-off between the quality of
the approximation and the computational requirements. To test
the quality of the policies, we have considered two applications
in inventory management and one in the robust control of an ac-
tive suspension system. For all our examples, quadratic policies
(requiring modest computational requirements) were able to sub-
stantially reduce the optimality gap, and cubic policies (under

more computational requirements) were always within 1% of op-
timal. Given that our tests were run using publicly-available, gen-
eral-purpose SDP solvers, we believe that, with the advent of
more powerful (commercial) packages forinterior point methods,
as well as dedicated algorithms for solving SOS problems, our
method should have applicability to large scale, real-world opti-
mization problems.

APPENDIX

Suboptimality of Affine Policies:

Lemma 1: Consider Problem (9), written below for con-
venience. Recall that z is a (first-stage) nonadjustable decision,
while y is a second-stage adjustable policy (allowed to depend
on w).

minimize
z,Yy(w)
N
such that =z > Zyi, vwe W = {weRV:[|jw| <1}
i=1
(21a)

yi > w?, YweW. (21b)
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The optimal value in the problem is 1, corresponding to policies
yi(w) = w?, i = 1,..., N. Furthermore, the optimal achiev-
able objective under affine policies y(w) is N.
Proof: Note that for any feasible z,y, we have
e > SNy > YN w?, for any w € W. Therefore,
with Y ;_, w? = 1, we must have # > 1. Also note that
y*(w) = w? is robustly feasible for constraint (21b), and
results in an objective z* = maxgweyy Zf\;l w? = 1, which
equals the lower bound, and is hence optimal.
Consider an affine policy in the second stage, y*FF (w) =

K2

B + aiT'w, i =1,..., N. With e; denoting the first unit vector
(1 in the first component, 0 otherwise), for any 7 = 1,..., N,
we have
w=e E W= [, +a;(1) >1
> 1
w=-e EW=0—wa(1)>1 =P

This implies that zAFF > SN yAFF () > N 4 N oTw.
In particular, with w = 0 € W, we have z2FF > N. The
optimal choice, in this case, will be to set a; = 0, resulting in
zAFF = N,

Optimality of MultiAffine Policies:

Theorem 2: Multiaffine policies of the form (20), with de-
gree at most d = T — 1, are optimal for problem (P).

Proof: The following trivial observation will be useful in
our analysis.

Observation 1: A multiaffine policy u; of the form (20)
is an affine function of a given variable w;, when all the other
variables wy, [ # 1, are fixed. Also, with u; of degree at most
d, the number of coefficients £, is (lg) + (]1“) + 0+ (Z)

Recall that the optimal value in Problem (P) is that same
as the optimal value in Problem (P)eyt from Section IV-B. Let
us denote the optimal decisions obtained from solving problem
(P)ext by u™ (wpr) ), 27 (wyy, ), respectively. Note that, at time
k, there are at most 2% such distinct values ui"t ('w[k] ), and, cor-
respondingly, at most 2* values 5t (wiz)), due to the nonan-
ticipativity condition and the fact that the extreme uncertainty
sequences at time k, wpi € ext(Wy)) = ext(Wp) x --- X
ext(Wy_1), are simply the vertices of the hypercube Wy, C
R*. In particular, at the last time when decisions are taken,
k = T — 1, there are at most 271 distinct optimal values
" (wyr_1)) computed.

Consider now a multiaffine policy of the form (20), of degree
T —1,implemented at time 7'— 1. By Observation 1, the number
of coefficients in the jth component of such a policy is exactly

("o + ("7 4+ (B2 =271, by Newton’s binomial
formula. Therefore, the total n,,

- 2T=1 coefficients for wy_q
could be computed so that

ur_1(wir_1)) = u (wir_1)), YV wir_1) € extWr_q))
(22)
i.e., the value of the multiaffine policy exactly matches the 271
optimal decisions computed in (P)eyt, at the 271 vertices of
Wz _1)- The same process can be conducted for times k = T —
2,...,1,0,to obtain multiaffine policies of degree at most!47" —
1 that match the values u§**(wy;)) at the extreme points of W.

141n fact, multiaffine policies of degree k would be sufficient at time &
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With such multiaffine control policies, it is easy to see that
the states ;. become multiaffine functions of w;. Furthermore,
we have a:k('w[k]) = .’Eth (w[k])7 Vw[k] € OXt(’u}[k]). A typical
state-control constraint (7c¢) written at time k& amounts to en-
suring that

ex (K, ) mr(wpg) + ew(k, /) "we (wp)
—f,(k) <0,

where e, (k,j)T,e,(k,j)T denote the jth row of E,(k)
and E,(k), respectively. Note that the left-hand side of this
expression is also a multiaffine function of the variables
w(y). Since, by our observation, the maximum of multiaffine
functions is reached at the vertices of the feasible set, i.e.,
wp) € ext(Wy), and, by (22), we have that for any such
vertex, uy(wy) = up(wpyy), zr(wp) = =5 (wy), we
immediately conclude that the constraint above is satisfied,
since uf** (wpy)), £ (wyy) ) are certainly feasible.

A similar argument can be invoked for constraint (7d), and
also to show that the maximum of the objective function is
reached on the set of vertices ext(W[T]), and, since the values
of the multiaffine policies exactly correspond to the optimal de-
cisions in program (P)eyxt, optimality is preserved. ]

Comparison With Other Methodologies:

Theorem: 1If the uncertainty sets W are given by the in-
tersection of finitely many convex quadratic forms, and have
nonempty interior, then the objective functions obtained from
the polynomial hierarchy satisfy the following relation:

v Wk € W[k]

Jarr 2 Jiog 2 Jjmg > 0

Proof: First, note that the hierarchy can only improve when
the polynomial degree d is increased (this is because any fea-
sible solutions for a particular degree d remain feasible for de-
gree d+1). Therefore, we only need to prove the first inequality.

Consider any feasible solution to Problem (Papp) under
disturbance-affine policies, i.e., any choice of matrices
{Li}o<k<r—1, coefficients {zx}o<r<r and cost J, such
that all constraints in (Papr) are satisfied.

Note that a typical constraint in Problem ( Porr) becomes

flwpy) 20, Ywpyy € Wiy

where f is a degree 1 polynomial in indeterminate wy;, with
coefficients that are affine functions of the decision variables. By
the assumption in the statement of the theorem, the sets WV}, are
convex, with nonempty interior, Vk € {0,...,T — 1}, which
implies that Wjg; = Wh x -+ X Wy is also convex, with
nonempty interior.

Therefore, the typical constraint above can be written as

flwpy) >0, Vwpy € {E€RM ™ 1 g,(£) >0, j€ T}

where 7 is a finite index set, and g;(+) are convex. By the non-
linear Farkas Lemma (see, e.g., Proposition 3.5.4 in [52]), there
must exist multipliers 0 < A; € R,V j € J, such that

Flwp) > > Nigi(wp).

JET
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But then, recall that our SOS framework required the existence
of polynomials o;(wy),j7 € {0} U J, such that

Flwyy) = oo(wpy) + D 0(wiy) g5 (wpey)-

JET

By choosing oj(wyy) = Aj, Vi € J, and oo(wy)) =
flwpy) = 3267 Aigi(wpy), we can immediately see that:

* Vj # 0,0, are SOS (they are positive constants)

* Since g; are quadratic, and f is affine, o is a quadratic
polynomial which is nonnegative, for any w;). Therefore,
since any such polynomial can be represented as a sum-of-
squares (see [35] and [36]), we also have that o is SOS.

By these two observations, we can conclude that the particular
choice Ly, 2, J remains feasible in our SOS framework applied
to degree d = 1, and, hence, Jipr > JJ_;. |
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