
INFORMS Journal on Computing
Vol. 25, No. 2, Spring 2013, pp. 208–221
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.1110.0496

© 2013 INFORMS

A New Local Search Algorithm for
Binary Optimization

Dimitris Bertsimas
Operations Research Center and Sloan School of Management, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, dbertsim@mit.edu

Dan A. Iancu
Graduate School of Business, Stanford University, Stanford, California 94305,

daniancu@stanford.edu

Dmitriy Katz
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598,

dkatzrog@us.ibm.com

We develop a new local search algorithm for binary optimization problems, whose complexity and perfor-
mance are explicitly controlled by a parameter Q, measuring the depth of the local search neighborhood.

We show that the algorithm is pseudo-polynomial for general cost vector c, and achieves a w2/42w−15 approxi-
mation guarantee for set packing problems with exactly w ones in each column of the constraint matrix A, when
using Q = w2. Most importantly, we find that the method has practical promise on large, randomly generated
instances of both set covering and set packing problems, as it delivers performance that is competitive with
leading general-purpose optimization software (CPLEX 11.2).

Key words : programming; integer; algorithms; heuristic
History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received September

2008; revised October 2010, June 2011, July 2011, August 2011; accepted November 2011. Published online in
Articles in Advance April 11, 2012.

1. Introduction
In the last fifty years, there has been considerable
progress in our ability to solve large-scale binary opti-
mization problems of the form

max c′x

s.t. Ax≤ b (1)

x ∈ 80119n1

where A ∈ �m·n1b ∈ �m, and c ∈ �n are given data.
A testimony to this progress is the fact that major
codes (such as CPLEX, EXPRESS, or GUROBI) are
now capable of solving such problems that a decade
ago were out of reach. In addition to very significant
speedups in computing power, the two major ingredi-
ents that led to progress on the algorithmic side were
(a) the introduction of new cutting plane methods,
using a plethora of valid inequalities that improve
the bounds on the solution and the ability to prove
optimality; and (b) the use of heuristic algorithms.
Although it is difficult to make an exact assessment
of the merits of each algorithmic development, we
believe that new cutting plane methods have had
a more significant impact than the use of heuristic
methods.

Despite the major progress in the field, we still
cannot solve especially large and dense binary prob-
lems. In real-world applications, there is a stringent
desire to find feasible solutions that improve current
practice, without necessarily having a proof of their
optimality. Thus, there is a definite need to develop
general-purpose methods producing high-quality fea-
sible solutions. There are relatively few methods for
general binary integer programming problems (see
Aarts and Lenstra 1997 for a review), including the
lift-and-project methods (Balas et al. 1993), the pivot-
and-complement heuristic (Balas and Martin 1980),
the “feasibility pump” (Fischetti et al. 2005), and
the “pivot, cut, and dive” heuristic (Eckstein and
Nediak 2007). Special-purpose exact or approximate
algorithms have been developed for specific binary
optimization problems, such as set covering (see Balas
and Ho 1980, Beasley 1990, Caprara et al. 1999, Chu
and Beasley 1996, Al-Sultan et al. 1996, Aickelin
2002 and the survey Caprara et al. 2000 for details) or
set packing (Hurkens and Schrijver 1989, Arkin and
Hassin 1998, Jia et al. 2004, Koutis 2005).

In this paper, we develop a new algorithm for binary
optimization problems and provide both theoretical

208

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 209

and empirical evidence for its strength. Specifically,
our contributions are as follows:

1. The algorithm is genuinely general purpose, in
that it does not utilize any special combinatorial struc-
ture in Problem (1).

2. The trade-off between complexity and perfor-
mance of the algorithm is explicitly controlled by a
parameter Q, which intuitively measures the depth
of the neighborhood in the local search. More pre-
cisely, with increasing Q, the algorithm can deliver
higher quality solutions, at the expense of higher run-
ning time.

3. We show that the running time is bounded by
O4�c�2

1 ·n ·
(2m
Q

)

·max4m1n55, i.e., for a fixed Q, the algo-
rithm is pseudo-polynomial for general c and strongly
polynomial when c= e, a vector of ones.

4. For the unweighted maximum w-set packing
problem (A ∈ 80119m·n, with w ones on each column,
and b= c= e), we show that our algorithm achieves a
w2/42w−15 approximation guarantee, slightly weaker
than the best known bound in the literature of w/2,
due to Hurkens and Schrijver (1989).

5. Most importantly, we numerically investigate
the algorithm’s performance on randomly generated
instances of both set covering and set packing, with
very encouraging results.

The structure of the rest of the paper is as follows.
In §2 we present the algorithm and give an exam-
ple (which is further expanded in the paper’s online
supplement available at http://dx.doi.org/10.1287/
ijoc.1110.0496). In §3, we analyze its running time, and
in §4, we provide the theoretical guarantee for a class
of set packing problems. In §5, we discuss implemen-
tation details, and in §6, we provide empirical evi-
dence of the algorithm’s strength in several classes of
set covering and packing problems.

2. Algorithm
Our algorithm takes as inputs the matrix A, the vec-
tors b and c, a parameter Q and an initial feasible
solution z0, and constructs a sequence of feasible solu-
tions z with monotonically increasing objective func-
tion values. The parameter Q controls the trade-off
between the quality of the final output solution and
the computational complexity of the algorithm.

2.1. Notation
For any vector x ∈ 80119n, we define the
following:

• xv = max4Ax − b105 ∈ �m
+

: the amount of con-
straint violation produced by x;

• xu = max4b − Ax105 ∈ �m
+

: the amount of con-
straint slack created by x;

• xw = min4xu1e5 ∈ 80119m;
• trace4x5= 6xv3xw7 ∈�m

+
× 80119m.

Furthermore, we introduce the following concepts:
• Two solutions x and y are said to be adjacent if

e′ = 1.
• A feasible solution z1 is said to be better than

another feasible solution z2 if c′z1 > c′z2.
• Let z be the best feasible solution available to

the algorithm at a particular iteration. A solution
y is called interesting if the following three proper-
ties hold:

(A1) �yv��
≤ 12 no constraint is violated by more

than one unit;
(A2) �trace4y5− trace4z5�1 ≤ Q: the total amount of

violation in y plus the number of different loose con-
straints (as compared to z) is at most Q;
(A3) c′y > c′x, ∀x already examined by the algo-

rithm, satisfying h4trace4x55= h4trace4y55.
Here, h2 801192m → � is a function mapping traces of
interesting solutions into integers. Note that, because
h is only applied to interesting solutions y, which, by
condition (A1), must satisfy yv ∈ 80119m, we can take
h2 801192m, instead of h2 �m

+
× 80119m. The only restric-

tion we impose on h4 · 5 is that evaluating it should
be linear in the size of the input: O4m5. Apart from
that, it can be injective, in which case only solutions
with identical traces will be compared, or it can be a
hash function (for an introduction to hash functions,
see Cormen et al. 2001). The reason for introducing
such a hash function is to accelerate the algorithm, at
the potential expense of worsening the performance.
We will elaborate more on this trade-off in §5, which
is dedicated to implementation details.

Note that because of condition (A3), for every value
i in the range of h, the algorithm needs to store
the highest objective function value of an interesting
solution x satisfying h4trace4x55 = i. We will refer to
the location where this value is stored as the trace
box (TB) corresponding to x or to trace4x5, and will
denote it by TB6i7.

• The set of interesting solutions is also referred to
as the solution list (SL).

2.2. Algorithm Outline
With these definitions, we now give a brief outline of
the algorithm, which will also give some insight into
the types of data structures that are needed. The key
ingredients in the heuristic are interesting solutions.
In a typical iteration, the algorithm will pick a candi-
date x from the list of interesting solutions (SL), and
examine all solutions y adjacent to it. If these solu-
tions turn out to be interesting themselves, they are
stored in the list, and the appropriate trace boxes are
changed.

By following this method, occasionally we come
across solutions y that are feasible. If they are also
better than the best current feasible solution z, then

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
210 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

z is replaced, the list and the trace boxes are cleared,
and the procedure resumes by examining solutions
adjacent to z. A formal statement follows.

Algorithm 1 (local search heuristic)
Input: matrix A; vectors b1 c; feasible solution z0;

scalar parameter Q> 0
Output: Feasible solution z such that c′z≥ c′z0
optimizeIP4A1b1 c1z01Q5

(1) z 2= z03 SL 2= 8z9
(2) while 4SL 6= �5
(3) get a new solution x from SL
(4) foreach (y adjacent to x)
(5) if (y is feasible) and (c′y> c′z)
(6) z← y
(7) SL← 8y93 TB6 i 7← −�, ∀ i
(8) goto Step 3
(9) else if (y is interesting)

(10) TB6h4trace4y557← c′y
(11) SL←SL∪ 8y9
(12) return z.

To understand the steps in the algorithm, consider
the following set packing problem:

max 8x1 +x2 +x39

s.t. x1 +x3 ≤ 1

x2 +x3 ≤ 1

(2)

x11x21x3 ∈ 801190

It is easy to see, by inspection, that the optimal solu-
tion is xopt

def
= 6x11x21x37 = 6111107. To illustrate the

steps that Algorithm 1 would take in finding this solu-
tion, we will make the following choice concerning
the parameters and implementation:

• We will make the simplest possible run, with a
parameter Q = 1.

• We will start the algorithm with the initial solu-
tion z0 = 6010107.

• Because every trace of an interesting solution x
is a binary vector, trace4x5 ≡ 6t2m−11 t2m−21 0 0 0 1 t11 t07 ∈

801192m, we will take the mapping h4 · 5 to be the real
value corresponding to this binary string, i.e.,

h2 801192m
→�1h46t2m−11 0 0 0 1 t11 t075=

2m−1
∑

i=0

ti · 2i0

• We will assume that the solution list SL is
implemented as a first-in, first-out (FIFO) list, so that
solutions are extracted in the same order in which
they are inserted.
With these remarks, we now proceed to list the first
few steps in the algorithm:

• (Step 1) z 2= 60101073SL 2= 860101079.
• (Step 2) SL 2= 860101079 6= �.

• (Step 3) x ← 6010107. Adjacent solutions are
61101071 60111071 6010117.

—(Step 4) y = 61101071 trace4y5= 601030117.
∗ (Step 5) y feasible, e′y = 1 > e′z.
∗ (Steps 6–7) z ← 61101073SL ← 8611010793

TB6i7← −�, ∀ i.
• (Step 3) x ← 6110107. Adjacent solutions are

60101071 61111071 6110117.
—(Step 4) y = 60101071 trace4y5

def
= 6yv3yw7 =

601031117.
∗ (Step 5) y feasible, but e′y = 1 = e′z.
∗ (Step 9) y is found to be interesting,

because:
(A1) true: �yv��

= �60107�
�

≤ 1.
(A2) true: �trace4y5− trace4z5�1 ≤Q.
(A3) true: e′y = 1 > TB6h4trace4y557 =

TB637= −�.
∗ (Steps 10–11) TB637← 13SL← 860101079.

—(Step 4) y = 61111071 trace4y5= 601030107.
∗ (Step 5) y feasible, e′y = 2 > e′z 4= 15.
∗ (Steps 6–7) z ← 6111107; SL ← 8611110793

TB6i7← −�, ∀ i.
We note that, although the algorithm has found the

optimal solution z = xopt = 6111107, quite a few steps
remain, which we have listed, for completeness, in the
online supplement. Moreover, the particular choices
of implementation in the above example have been
made in order to facilitate exposition and are by no
means efficient. In §5, we include a detailed discus-
sion of the data structures and hash functions used in
our implementation.

3. Running Time
In this section, we bound the running time of the algo-
rithm as follows:

Theorem 1. For fixed Q and injective h4 · 5, the run-
ning time of Algorithm 1 is bounded above by

O

(

�c�2
1 ·n ·

(

2m
Q

)

· max4m1n5

)

0 (3)

We postpone the proof of Theorem 1 until the end of
this section, and first introduce the following lemma:

Lemma 1. The total number of solutions x that can be
examined between two successive updates of the current
feasible solution z is O4

(2m
Q

)

· �c�15.

Proof. First note that whenever the current feasible
solution z is updated, the solution list SL is emp-
tied, the trace boxes are cleared, and only z is inserted
in SL. Hence for any solution x 6= z to be examined,
it must first be inserted into SL.

By condition (A3) in the definition of interesting
solutions, an interesting x inserted into SL must

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 211

satisfy c′x>TB6i7, where i = h4trace4x55. Because x ∈

80119n, c′x ∈ 8
∑

ci<0 ci1 0 0 0 1
∑

ci>0 ci9. Hence the number
of updates for any trace box i is at most �c�1 + 1,
implying that at most �c�1 + 1 different solutions x
mapping to i can be inserted into SL.

The number of trace boxes i is upper bounded by
the number of distinct traces of interesting solutions.
If x is an interesting solution, then

• condition (A1) ⇒ �xv��
≤ 1 ⇒ xv ∈ 80119m ⇒

trace4x5 ∈ 801192m;
• condition (A2) ⇒ �trace4x5− trace4z5�1 =

�xv − 0�1 + �xw − zw�1 ≤Q.
The number of binary vectors of length 2m satisfy-

ing this property is upper bounded by
(

2m
Q

)

+

(

2m
Q− 1

)

+ · · · +

(

2m
1

)

+ 10 (4)

Thus, there are O4
(2m
Q

)

5 trace boxes to keep track of.
Because for each trace box at most �c�1 + 1 solutions
can be inserted in SL, we conclude that the number
of solutions that can be examined, which is always
less than the number of solutions inserted in the list,
is O4

(2m
Q

)

· �c�15. �
The following lemma deals with the amount of

computation performed when examining an interest-
ing solution x.

Lemma 2. The number of operations performed for any
interesting solution x that is examined between two con-
secutive updates of the current feasible solution z is O4n ·

max4m1n55.

Proof. Without going into the details of the
implementation, let us consider what operations
are performed when examining an interesting
solution x.
(B1) trace4x5 is calculated. This implies the

following:
• Computing Ax − b, which requires O4m · n5

operations for a dense matrix A.
• Comparing Ax−b with 0, to check for violated

or loose constraints, requiring O4m5 computations.
(B2) Computing the objective function for x, requir-

ing O4n5 operations.
(B3) Examining all the solutions y adjacent to x.

One such examination entails:
• Computing trace4y5 from trace4x5. Because y =

x ± ei ⇒ Ay − b = Ax − b ± Ai. Because Ax − b is
already available, computing trace4y5 only requires
O4m5 operations.

• Computing the trace box for y1TB6h
4trace4y557. As mentioned earlier, we are requiring that
an evaluation of the function h4 · 5 should use O4m5
operations, i.e., linear in the size of the argument.
Thus TB6h4trace4y557 can be computed with O4m5
operations.

• Computing the objective function value for y.
This is O415, because c′y = c′x± ci.

• Comparing c′y with TB6h4trace4y557. Because
the theorem assumes that the current feasible solu-
tion z is not updated, the results of the examination
could be that (i) y is ignored or (ii) TB6h4trace4y557 is
replaced and y is added to SL. Overall complexity is
at most O4n5.

Because the number of solutions y adjacent to a
given x is n, the overall complexity of step (B3)
is O4n · max4m1n55, dominating steps (B1) and (B2).
We conclude that the overall complexity associated
with examining any interesting solution x is O4n ·

max4m1n55. �
With the help of the preceding lemmas, we can now

prove Theorem 1.

Proof. From Lemma 1, the number of solutions
that have to be examined between two succes-
sive updates of z is O

((2m
Q

)

· �c�1

)

. From Lemma 2,
each such examination entails O4n · max4m1n55 oper-
ations. Hence the amount of operations that are
performed while examining interesting solutions
between updates of z is O

((2m
Q

)

· �c�1 ·n · max4m1n5
)

.
Each update of the current feasible solution z

involves copying the new solution 4O4n55, emp-
tying the solution list, and clearing the trace
boxes. The latter operations are linear in the total
number of trace boxes, which, from a result in
Lemma 1, is O

((2m
Q

))

. Therefore updating z entails
O
(

max8n1
(2m
Q

)

9
)

operations.
Because z ∈ 80119n ⇒ c′z ∈ 8

∑

ci<0 ci1 0 0 0 1
∑

ci>0 ci9.
Hence, there can be at most �c�1 + 1 updates of z.
Therefore, the total running time of the algorithm is

O

(

�c�1

[(

2m
Q

)

·�c�1 ·n·max4m1n5+max
{

n1

(

m

Q

)}])

=O

(

�c�2
1 ·n·

(

2m
Q

)

·max4m1n5

)

0 �

We make the observation that when c= e, the above
result becomes O

(

n3 ·
(2m
Q

)

· max4m1n5
)

, proving that
Algorithm 1 is strongly polynomial for a fixed Q.

4. Performance Guarantee for
Set Packing Problems

So far, we have put no restrictions on the particular
data structures that are used. Although this level of
generality was appropriate for the algorithm descrip-
tion, in order to prove a meaningful result about the
performance, we have to be more specific about the
details.

As such, for the remaining part of this section, we
consider a solution list SL implemented as a FIFO
list, and we consider the ideal case of an injective h4 · 5,

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
212 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

namely, when each trace box corresponds to a unique
trace of an interesting solution, and, implicitly, only
solutions having exactly the same trace are compared.

We focus on the following binary optimization
problem, which is an integer programming formula-
tion for the well-known unweighted w-set packing
problem:

max e′x

s.t. Ax≤ e (5)

x ∈ 80119n1

where A ∈ 80119m·n is additionally restricted so
that each variable xi participates in exactly w con-
straints, i.e.,

e′A=we′0 (6)

Let z∗ denote an optimal solution to Problem (5)
and Z∗ = e′z∗ be its associated objective function
value. Then the following theorem holds:

Theorem 2. If Q = w2 and w > 1, Algorithm 1, oper-
ating with a FIFO list and an injective h4 · 5, finds a feasible
solution z for Problem (5) with objective function value
ZH = e′z satisfying

Z∗

ZH

≤
w2

2w− 1
0 (7)

We defer the proof of the theorem to the end of the
section, and first introduce a lemma summarizing the
properties of a feasible z not satisfying the require-
ment of Theorem 2. In what follows, a′

j will always
denote the jth row of the matrix A, ei will denote the
ith unit vector, and e will denote the vector with 1 in
every component.

Lemma 3. Let z be a feasible solution such that e′z <
442w− 15/w25Z∗ and e′z≥ e′y, for all solutions y feasible
and adjacent to z. Also let

O = 8i ∈ 811 0 0 0 1n92 z∗

i = 191

(components = 1 in the optimal solution) (8)

I = 8i ∈ 811 0 0 0 1n92 zi = 191

(components = 1 in the current solution) (9)

Vi = 8l ∈ 811 0 0 0 1m92 a′

l4z+ ei5 > 191 4i ∈ O51 (10)

(constraints violated by increasing ith

component of current solution)

V = 8i ∈ O2 �Vi� = 191 (11)

R = �V�3V≡ 8v11 0 0 0 1 vR90 (12)

Then the following properties hold:

A4ei+ej5≤e and Vi∩Vj =�1 ∀i 6= j ∈O1 (13)

R>
Z∗

w
1 (14)

vi ∈V⇒ vi yI and ∃pi ∈I\O

s.t. A4z+ evi − epi 5≤ e1 (15)

∃j ∈ 811 0 0 0 1m9 and ∃T ≤R

s.t. A
(

z+

T
∑

i=1

evi −
T
∑

i=1

epi + ej

)

≤ e0 (16)

Proof. From the definition of O, z∗ =
∑

i∈O ei.
Because z∗ is feasible, Az∗ ≤ e. With A ∈ 80119m·n ⇒

A4ei + ej5 ≤ e, ∀ i 6= j ∈ O. Intuitively, this means that
two variables, xi and xj , cannot participate in the same
constraint.

To prove the second part of (13), assume, for the
purposes of a contradiction, that ∃l ∈ Vi ∩ Vj ⇒

a′

l4z + ei5 > 1 and a′

l4z + ej5 > 1. Because z is feasi-
ble, a′

l z≤1 ⇒ a′

l ei = a′

l ej = 1, in contradiction with the
result in the previous paragraph.

To prove (14), first note that only constraints al that
are tight at z can belong to Vi:

∀ i∈O1∀ l∈Vi1 a′

l4z+ei5>1 ⇒ 4because a′

j ei ≤11∀ j5

⇒ a′

lz=a
′

lei =10 (17)

Because each variable participates in exactly w con-
straints, and e′z< 442w−15/w25Z∗, the number of con-
straints that are tight at z always satisfies

(no. of constraints tight at z) < w ·
2w− 1
w2

Z∗

=

(

2 −
1
w

)

Z∗0 (18)

Now consider the sets Vi. Because e′z∗ = Z∗, there
are Z∗ such sets, one for each i ∈ O. If ∃i ∈ O
s.t. Vi = �, then z + ei would be feasible, with a
strictly larger objective function than z, in contradic-
tion with the second assumption concerning z. There-
fore �Vi� ≥ 1, ∀ i ∈ O, implying

n
∑

i=1

�Vi� =
∑

i2�Vi �=1

�Vi� +
∑

i2�Vi �≥2

�Vi� ≥R+ 24Z∗
−R5

= 2Z∗
−R0 (19)

We have argued that only constraints that z satis-
fies with equality can belong to Vi. Thus, from (18)
and (19), we obtain the desired relation (14):

2Z∗
−R ≤

n
∑

i=1

�Vi�< (because Vi are disjoint sets,

by (13))

< Z∗

(

2 −
1
w

)

⇔ R>
Z∗

w
0

To prove (15), observe that if vi ∈V, then vi ∈ O and
�Vvi

� = 1. Then (17) implies that ∃ unique l ∈ Vvi
s.t.

a′

l4z+ evi 5 > 1 and ∀ j 6= l1a′
j4z+ evi 5≤ 1.

Assume vi ∈ I. Then z ≥ evi . Because each vari-
able participates in w constraints, ∃l11 0 0 0 1 lw distinct

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 213

constraints s.t. a′

lj
evi = 1, which implies a′

lj
4z+evi 5≥ 21

∀ j = 11 0 0 0 1w, in contradiction with �Vvi
� = 1. There-

fore, vi yI.
Consider again the unique l s.t. a′

l4z+evi 5 > 1. From
(17), a′

l z = 1 ⇒ ∃pi ∈I s.t. a′

l epi = 1. Also, because vi y

I, pi 6= vi. Assume pi ∈ O; then a′

l epi = a′

l evi = 11 pi1vi ∈

O, in direct contradiction with (13). Hence pi y O.
Now consider ẑ = z + evi − epi . ∀ j ∈ 811 0 0 0 1m91 j 6=

l1a′
j ẑ≤ a′

j4z+evi 5≤ 1. Also, a′

l ẑ= 1+1−1 = 1. There-
fore, ẑ is feasible, concluding the last part of (15).

Before establishing the proof of (16), first note that
result (15) can be extended by induction if pi 6= pj
when vi 6= vj . Namely, ∀T ≤R, the following solution
ẑ will be feasible:

ẑ= z+

T
∑

i=1

evi −
T
∑

i=1

epi 0 (20)

If, for some vi 6= vj , we have pi = pj , then an even
stronger statement holds: ẑ= z− epi + evi + evj will be
feasible (because subtracting epi will introduce slack
in both constraints, instead of just one), and therefore
T = 1 and j = vj satisfy (16).

So for the remaining proof of (16), we can restrict
attention to the most general case of vi 6= vj ⇒ pi 6= pj .
Let us define the following sets:

Î = 8i ∈ O2 ẑi = 191 (21)

� = 8l ∈ 811 0 0 0 1m92 ∃i ∈ Î s.t. a′

l ei = 191 (22)

�̄ = 811 0 0 0 1m9\�0 (23)

The set of all variables Î are 1 in both ẑ and the
optimal solution, z∗. From the construction of ẑ, it can
be seen that Î = V ∪ 4I ∩ O5. From (17), ∀vi ∈ V ⇒

vi y I ⇒ V ∩ I = � ⇒ �Î� = �V� + �I ∩ O�. Letting
n0 = �I∩O�, we have �Î� =R+n0.

The set of all constraints � is where variables from
Î participate. Because ∀ i 6= j ∈ Î⇒ i1 j ∈ O, then, from
(13), they cannot participate in the same constraint, so
��� = 4R+n05w.

The set of all other constraints �̄1��̄�=m−w4R+n05.
From (20), with T = R, we obtain that ẑ = z +

∑R
i=1 evi −

∑R
i=1 epi is feasible. Because e′ẑ = e′z <

4Z∗/w542−1/w5, then, by an argument similar to (18),
the number of tight constraints in ẑ is <Z∗42 − 1/w5.
Furthermore, because ẑi = 11 ∀ i ∈ Î, all the � con-
straints are tight, so the number of tight �̄ constraints
is <Z∗42 − 1/w5− 4R+n05w. From (14),

R>Z∗/w ⇒ Z∗

(

2 −
1
w

)

− 4R+n05 ·w

≤Z∗

(

2 −
1
w

)

−R ·w−n0

<Z∗

(

2 −
1
w

)

−
Z∗

w
4w− 15−R−n0

=Z∗
−R−n00 (24)

Now consider all the variables in O\Î. For any such
variable j , j y Î ⇒ ẑj = 0 and j only participates in �̄

constraints. Also, ∀ i 6= j ∈ O\Î, from (13), j and i can-
not participate in the same constraint. But from (24),
there are <Z∗ −R−n0 tight constraints involving vari-
ables j , and there are �O� − �Î� = Z∗ − R − n0 such j .
Therefore ∃j s.t. ẑ+ ej is feasible, proving (16). �

The main result of the preceding lemma is (16),
which indicates that for any solution z not satisfying
the requirements of Theorem 2, a better feasible solu-
tion ẑ= z+

∑R
i=1 evi −

∑R
i=1 epi + ej can be constructed,

by (1) subtracting all the relevant epi , (2) adding ej ,
and (3) adding all the corresponding evi .

However, it is not immediately clear that our algo-
rithm would proceed according to these steps. For
instance, perhaps a solution z−

∑R
i=1 epi is never exam-

ined. As such, we need one more result concerning
the reachability of ẑ.

We introduce the concept of a generation, defined by
the following recursion:

• Let the best feasible solution z always have gen-
eration 0.

• For any solution y inserted in the list at Step 11
of Algorithm 1, define its generation to be 1+ the gen-
eration of the solution x from Step 4, to which y is
adjacent.

Observe that the definition is consistent: the genera-
tion counting is always reset when the current feasible
solution z is updated in Step 6, because the solution
list is cleared and z, whose generation is set to zero,
is the only solution added to the list. From that point
onward, for any solution x extracted and examined
in Steps 3 and 4, the generation t will simply repre-
sent the number of variables that the algorithm has
changed starting at z in order to reach x. Note that
this is not the same as the distance between z and x.
For instance, x = z+ ei − ei will actually be identical
to z, but it will have generation two.

An immediate consequence of this assignment is
that all the solutions x will be inserted into (and hence
extracted from) the FIFO list in an increasing order of
generations.

With variables z1R and indices pi1vi and j having
the same significance as that from Lemma 3, we estab-
lish the following result:

Lemma 4. If Q ≥ T ·w and T ≤ R, a feasible solution
of generation T with the same trace and objective function
value as z−

∑T
i=1 epi will be in the FIFO list.

Proof. First note that, as a consequence of (15),
∀ t ≤ T 1z ≥

∑t
i=1 epi , which makes the subtraction

operations well defined. Furthermore, any such solu-
tion is feasible (because z itself is feasible), which also
implies that any solution with the same trace as z ≥
∑t

i=1 epi must also be feasible.

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
214 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

The first step of the induction is trivial: genera-
tion zero has z in the list. Assume that the property
holds for solutions of the tth generation, t < T , and
call such a solution z4t5. Note that z4t5 is not necessar-
ily equal to z−

∑t
i=1 epi . It only has the same trace and

objective function value.
We claim that z4t5pt+1 = 1. Assume by contradiction that

z4t5pt+1 = 0. With any subtraction of epi , exactly w con-
straints become loose, and hence �trace4x5− trace4z5�1
increases by w. Thus the trace distance between z4t5

and z is exactly tw. If z4t5pt+1 = 0, and the trace is the same
as that of z −

∑t
i=1 epi , then in some earlier genera-

tion, the variable at pt+1 was changed from one to zero.
Also, to maintain the same trace, it must have been the
case that one other variable was changed from zero
to one in each of the w constraints in which pt+1 par-
ticipates. But this would cause a delay of at least two
generations as compared to z4t5, meaning that such a
solution could not have been already examined. It is
the property of the FIFO list that imposes that solu-
tions will be examined in a strictly increasing order of
generations. Hence it must be that z4t5pt+1 = 1.

But then, in the tth generation, a solution with the
same trace and objective function as z4t5 −ept+1

will be
examined. Because Q ≥ T ·w ≥ 4t+15w, and this solu-
tion is feasible, it will immediately satisfy conditions
(A1) and (A2) characterizing interesting solutions. For
condition (A3), there are two cases:

• If the objective function value for this solution is
larger than that found in its corresponding trace box,
the solution will be added to the list, with genera-
tion t + 1 assigned to it, and the induction proof is
complete.

• Otherwise, because all the trace boxes are set to
−� when the list is cleared, it must be that some
other solution z̃, mapping to the same trace box,
was already added to the list in some earlier step.
Because h4 · 5 is injective, it must be that trace4z̃5 =

trace4z4t5 −ept+1
5. But, as argued in the preceding para-

graph, this would imply that the distance between
trace4z5 and trace4z̃5 was exactly 4t+15w, meaning that
at least t + 1 variables were changed starting from z
in order to reach z̃. But then z̃ must have generation
t + 1, completing our inductive proof. �

With the preceding lemmas, we are now ready to
prove the result of Theorem 2.

Proof. Assume the heuristic is run with some ini-
tial feasible solution z = z0 satisfying e′z < 442w −

15/w25Z∗. If there are solutions y adjacent to z that
satisfy the condition at Step 5 in the algorithm
(namely, they are feasible and have better objective
function value than z), then Steps 6–7 will clear the
solution list and replace z with y. If repeating this
process results in a feasible solution z satisfying Equa-
tion (7), then there is nothing to prove. So, with-
out loss of generality, let us assume that we reach a

feasible solution z for which no adjacent y satisfies the
condition at Step 5. Then, from Lemma 3, a feasible
solution ẑ= z+

∑R
i=1 evi −

∑R
i=1 epi + ej exists.

By Lemma 4, after t generations, a solution z4t5 with
the same trace and objective function value as z −
∑t

i=1 epi will be in the FIFO list. The number t of such
generations that need to be considered is given by the
first time when ej can be added. Because ej partici-
pates in w constraints, it will collide with at most w
of the pi, which must first be subtracted. Therefore,
we require t ≥ w, which, by Lemma 4, implies that
Q ≥ w2, justifying the condition in the statement of
the theorem.

Once all the pi’s are subtracted, in generation w,
a feasible solution with the same trace and objective
function as z−

∑w
i=1 epi + ej will be considered by the

algorithm. By the same inductive argument as in the
proof of Lemma 4, it can be seen that for all future
generations w+1+t, a feasible solution with the same
trace and objective function value as z−

∑w
i=1 epi +ej +

∑t
i=1 evi will be in the FIFO list. After 2w + 1 gener-

ations, a feasible solution z42w+15 = z −
∑w

i=1 epi + ej +
∑w

i=1 evi , with objective function e′z42w+15 = e′z+1, will
be examined. In Step 6, the current feasible solution z
will be replaced with z42w+15, and the solution list and
trace boxes will be cleared.

Repeating this argument inductively for the new z,
we see that the end solution has to obey Z∗/ZH ≤

w2/42w− 15, proving Theorem 2. �
Two observations are worth making at this point.

First, we note that our result is only slightly weaker
than the best known bound in the literature for w-
set packing, namely, w/2 + �, found in Hurkens and
Schrijver (1989). Although this is certainly encourag-
ing, we also remark that, in order to achieve this
bound, our algorithm requires Q ≥ w2, which would
give rise to an O4mw2

5 term in the running time of
Theorem 1. Hence, for large values of w, one should
carefully trade off between computational require-
ments and the desired quality of the objective func-
tion value.

5. Implementation
In this section, we present several details specific to
our implementation of the algorithm. Although these
provide a guideline for several “good” choices of
data structures and parameter values, they should
by no means be regarded as exhaustive or optimal.
Our main reason for including them here is to pro-
vide a complete framework for the computational
results in §6.

5.1. Problem Representation
To accommodate large data sets, we have opted to
implement the constraint matrix A as a sparse matrix
(n sparse vectors, one for each column). The vectors

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 215

b ∈ �m and c ∈ �n were represented as dense vectors
(arrays of integer values).

For the solutions x, we have taken two different
approaches. In problems where x ∈�n, solutions were
represented as n-dimensional dense vectors. For prob-
lems with x ∈ 80119n, every solution was represented
as a bit array (also known as bit field or bitmap).
This compact representation significantly reduced the
memory requirements, which turned out to be essen-
tial for achieving better performance.

Because the algorithm usually operated with inter-
esting solutions, which, by conditions (A1) and (A2)
from §2.1, have few nonzero entries, we decided to
store the traces of solutions as sparse arrays.

5.2. Algorithm-Characteristic Data Structures
As hinted to in earlier sections, the major choices in
terms of implementation were the solution list SL,
with the associated trace boxes, and the function h4 · 5.

Note that if no other restrictions are imposed, an
implementation using a FIFO solution list, with a
large Q, could create structures of very large size,
because interesting solutions could be added for a
very long time until a feasible solution of better objec-
tive function value is found, and the list is cleared. To
fix this situation, we have decided to store as many
solutions as there are trace boxes. After all, once a
solution is deemed interesting, the previous solution
mapping to the same trace box is no longer interest-
ing, and hence could simply be ignored.

This brings us to the issue of the number of trace
boxes. The ideal case of an injective h4 · 5, which
implies having one trace box for each possible trace of
an interesting solution, would require O

((2m
Q

))

boxes,
by Equation (4). Because for every trace box, we
would also like to store the associated interesting
solution, this would imply a memory commitment of
O4n ·

(2m
Q

)

5, which for large m1n could cause problems
even in modern systems.

As suggested in §2.1, one way to overcome these
difficulties is to relax the requirement of having
h4 · 5 injective. Instead, we would consider a function
h2 U → V , where U ⊂ 801192m is the set of traces of
interesting solutions and V = 81121 0 0 0 1NTB9 is the set
of indices of trace boxes. The parameter NTB repre-
sents the total number of trace boxes that can be con-
sidered, which is also the total size of the allowed
solution list SL. As such, it provides a direct connec-
tion with the total amount of memory committed to
the algorithm, and can be adjusted depending on the
available resources.

The advantage of this approach is that we are now
free to choose NTB and h4 · 5. The main pitfall is that for
most practical problems, NTB << �U �, and hence mul-
tiple interesting solutions with different traces will
map to the same trace box, causing some of them to be

ignored in the search. If the number of such collisions
is high, then the algorithm might ignore many good
directions of improvement, resulting in poor perfor-
mance. To minimize this undesirable effect, we take
the following twofold approach:

1. We choose h4 · 5 as a hash function, namely a map-
ping from a large universe of values (U) to a much
smaller set (V), with as few collisions as possible.

2. Instead of having a single hash function h4 · 5,
i.e., allowing each trace of an interesting solution to
map to a single trace box, we consider a family of
hash functions hi4 · 51 i ∈ 81121 0 0 0 1NH 9. The parameter
NH , representing the number of distinct trace boxes
into which an interesting trace gets mapped, is a
fixed, small number that becomes another choice in
the design.

With the addition of multiple hash functions hi4 · 5,
the original definition of an interesting solution from
§2.1 has to be modified slightly. Although the first
two conditions remain the same, a solution y is now
found interesting if c′y > c′x for all x already exam-
ined such that hi4trace4x55 = hi4trace4y55 for some i ∈

811 0 0 0 1NH 9. In other words, in Step 9 of Algorithm 1,
y is interesting if its objective function value c′y is
larger than at least one of the values stored in the
trace boxes h14trace4y55, h24trace4y551 0 0 0 1 hNH 4trace4y55.
If that is the case, in Step 10, the value c′y is stored
in all the trace boxes satisfying this property, and the
solution y is written in the corresponding locations in
the solution list at Step 11.

The downside for using this approach is that the
theoretical result presented in prior sections change
for the worse. Namely, for a general cost vector c ∈�n,
with the number of trace boxes fixed to NTB and the
number of hash functions fixed to NH , the running
time from §3 becomes

O4�c�2
1 ·NTB ·n · max4m1n ·NH 551 (25)

and the performance guarantee from §4 is lost. How-
ever, as we will see in §6, this approach is advanta-
geous from a computational perspective, and delivers
very good results in practice.

5.3. Hash Functions
To complete the description of the implementation,
in this subsection we present our particular choice
of functions hi4 · 5. Although the literature on hash
functions is abundant and many good choices are
available (see Cormen et al. 2001 for an introduc-
tion and Bakhtiari et al. 1995 for a survey article), we
have settled for a less sophisticated version, which we
describe in the next paragraphs.

In the first step, for each hash function hi1 i ∈

81121 0 0 0 1NH 9, a set of m positive integer values was
generated. These values were chosen uniformly at
random, and only once, at the very beginning of the

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
216 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

algorithm. Let the ith set of such values be êi =

8�i
11�

i
21 0 0 0 1�

i
m9.

Given the total (fixed) number NTB of traces
boxes, we distinguish the following two regions of
equal size:

1. The first region, henceforth referred to as the
“yv region,” corresponds to interesting solutions y
with yv 6= 0 (i.e., violating certain constraints). This
region is further split into subregions, depending on
the number of violated constraints:

• The first subregion, of size m, corresponds to
solutions y with exactly one violated constraint
(�yv�1 = 1). Because there are m total constraints, the
mapping into this region is trivial: a solution that vio-
lates only constraint i will be mapped to the ith box
of this region.

• The remaining (NTB/2 − m) boxes from the yv
region are split evenly among exactly Q − 1 subre-
gions. Any interesting solution y, with violated con-
straints j11 j21 0 0 0 1 jp 42 ≤ p ≤ Q5, would be mapped
only to the pth such subregion, and would have NH

boxes corresponding to it, one for each hash function.
The ith hash function would compute the correspond-
ing trace box according to the following formula:

hi6trace4y57 =

(p
∑

k=1

�i
jk

+

p
∏

k=1

�i
jk

)

mod
(

NTB/2 −m

Q− 1

)

1

i ∈ 811 0 0 0 1NH 91 (26)

where 4a mod b5 denotes the remainder obtained
when dividing the integer a by the integer b. The
above formula has a simple interpretation: the first
term is a combination of the set êi of random val-
ues, based on the indices j11 0 0 0 1 jp of the violated con-
straints. The mod operation ensures that the resulting
index is in a range suitable for the pth subregion. The
intuition behind why the formula works and results
in few collisions is more complicated, and is beyond
the scope of the current paper (we refer the interested
reader to Bakhtiari et al. 1995 for a more comprehen-
sive treatment).

2. The second region, also of size NTB/2, corre-
sponds to interesting solutions with no violated con-
straints (yv = 0), but with loose constraints 4yw 6= 05.
Similar to the previous discussion, this region is
called the “yw region,” and is further divided into
subregions:

• The first subregion has size m, and corresponds
to solutions with exactly one loose constraint. The
mapping here is analogous to that from the yv case.

• The remaining NTB/2 − m boxes are divided
evenly among the Q− 1 subregions corresponding to
solutions with more than one loose constraint. How-
ever, unlike the situation with yv, it is no longer
desirable to map solutions with p loose constraints

exclusively in the pth subregion. Instead, these solu-
tions should also be compared with solutions having
fewer than p loose constraints. The intuition is that if a
solution having more loose constraints also has higher
objective function value, then it would be desirable to
have it considered by the algorithm. To accommodate
for this new provision, for each solution with loose
constraints j11 0 0 0 1 jp (p ≥ 2), we choose several sub-
sets of 1, 2, or r constraints (r ≤ p could be either a
function of p or chosen in some deterministic way).
The numbers of such subsets, henceforth referred to
as N1, N2, and Nr , respectively, are fixed and become
parameters of the algorithm. Furthermore, the choice
of the subsets themselves is done in a deterministic
fashion, so that for any particular trace of an interest-
ing solution y, the same subsets are always chosen.
Once such a subset of indices j11 0 0 0 1 jr is fixed, the
trace index is computed with the help of one of the
hash functions defined before—for instance, we could
use the first hash function:

h16trace4y57=
(r
∑

k=1

�1
jk

+

r
∏

k=1

�1
jk

)

mod
(

NTB/2 −m

Q− 1

)

0

(27)

Note that because we are already considering multi-
ple sets of indices, the same solution is automatically
mapped into multiple boxes in the yw region, so there
is no need to compute the results from multiple hash
functions, as was done for yv.

We conclude this section by making two relevant
observations. First, note that because the “random”
values êi do not change during the run of the algo-
rithm, the hash functions hi4 · 5 are deterministic, in
the sense that the same trace of a particular solution y
is always mapped to the same trace boxes, regardless
of the time at which it is considered by the algorithm.
Therefore, the set of rules specified above uniquely
determines the way in which each interesting solution
is mapped into the trace boxes (and, implicitly, in the
solution list).

Second, observe that the number of trace boxes NTB

(or, equivalently, the total amount of memory commit-
ted to the solution list) and the parameter Q should,
in general, not be chosen independently. The reason
is that for a fixed NTB, the size of each subregion in
both the yv and the yw regions is inversely propor-
tional with Q. Therefore, if we would like the param-
eter Q to be a good indicator of the performance of
the algorithm (i.e., larger Q resulting in improved
objective function value), then we should increase NTB

accordingly, so that the ratio NTB/Q remains roughly
constant.

5.4. Extracting a New Solution from the List
The last relevant detail of the implementation is
the way in which interesting solutions are extracted

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 217

from the solution list SL, at Step 3 of the algo-
rithm. Although any procedure that extracts solutions
repeatedly would eventually explore all interesting
solutions, particular choices for the order of extraction
could speed up the algorithm considerably. For exam-
ple, it is desirable to first examine solutions y adja-
cent to an interesting solution x that has few violated
constraints, because such directions are more likely to
result in feasible solutions.

To this end, we have included in the implementa-
tion a simple scheme based on a priority queue. The
main idea behind this data type is that each element
inserted in the queue also has an associated value,
which determines its priority relative to the other ele-
ments in the queue. Whenever an extraction occurs,
the first element to leave the queue is the one with the
highest priority among all the members of the queue.
For a comprehensive treatment and other references,
we refer the interested reader to (Cormen et al. 2001).

To implement this concept in our setting, when-
ever a solution y was determined as interesting at
Step 9, a priority value pv4y5 was computed based on
y’s objective function value and the number of con-
straints it violated (we used a very simple, additive
scheme). When y was written in the solution list at
Step 11, the index of its corresponding trace box was
introduced in the priority queue, with a priority of
pv4y5. By following this rule, the solution x extracted
at Step 3 always had the largest priority among all
solutions in the list.

The downside for using a priority queue is that
we need to store an additional O4NTB5 values, and
the complexity for inserting and/or extracting from
the priority queue becomes O4logNTB5, hence rais-
ing the overall complexity of the scheme. However,
despite this seemingly higher computational load, the
actual (physical) running time is usually decreased,
because the heuristic spends less time searching in
“infertile” directions.

5.5. Running the Algorithm
We conclude this section by first summarizing the
parameters that the user is free to choose in our
implementation of the heuristic:

• Q—the parameter determining what constitutes
an interesting solution.

• NTB—the number of trace boxes, also equal to the
size of the solution list. Because specifying a particu-
lar NTB is equivalent to fixing a certain memory com-
mitment (MEM) for the solution list, we have decided
to use the latter for convenience.

• NH—the number of hash functions, influenc-
ing how many boxes correspond to each interesting
solution.

• N1, N2, and Nr—the number of subsets of 1, 2,
or r loose constraints, respectively, which should be

considered when computing the indices of the trace
boxes.

To simplify the benchmarking of the algorithm, we
decided to fix some of the adjustable parameters to a
choice that consistently delivered good results in our
experiments:

NH = 23 N1 = 23 N2 = 23 Nr = 50

With respect to the two remaining parameters, Q
and MEM, we found that the most natural way to
run the heuristic procedure is in stages, by gradually
increasing the values of both Q and MEM. The reason
is that cold starting the procedure directly with large
values of Q and MEM would result in an unneces-
sarily large computational time spent in clearing the
(large) solution list SL, which is done whenever the
current feasible solution is updated. Thus, to improve
the physical running time, one should always first
run the heuristic with smaller values of Q and MEM,
which would (quickly) deliver better feasible solu-
tions, that could in turn be used to warm start the
heuristic with larger Q and MEM.

6. Computational Results
We have tested our implementation of the algorithm
on several classes of problems, and have compared
the results with the output from IBM ILOG CPLEX
11.2. Although the latter is a general-purpose integer
optimization solver, and hence a comparison with a
(heuristic) algorithm geared toward pure-binary prob-
lems might not be deemed entirely fair, we maintain
that it is nonetheless very meaningful, particularly
given CPLEX’s strength and ubiquity.

All our tests were run on the Massachusetts
Institute of Technology Operations Research Cen-
ter computational machine, which is a Dual Core
Intel® Xeon® 5050 Processor (3.00 GHz, 4 MB Cache,
667 MHz FSB), with 8 GB of RAM (667 MHz), run-
ning Ubuntu Linux.

Consistent with our remarks in the end of §5.5, we
used the values NH = 21N1 = 2, N2 = 21Nr = 5, and the
following sequence of runs of the heuristic in all the
test cases:

415 Q=41MEM=10 MB⇒ 425 Q=41MEM=50 MB

⇒ 435 Q=61MEM=100 MB⇒ 445 Q=61

MEM=250 MB⇒ 455 Q=101

MEM=1 GB⇒ 465 Q=101MEM=2 GB⇒

475

{

Q=151MEM=6 GB
Q=201MEM=6 GB0

In step (7), the brace indicates that the two indepen-
dent runs were both started with the same initial fea-
sible solution, given by the output from the run in

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
218 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

step (6). These two runs were still performed sequen-
tially (i.e., nonconcurrently), so that the total comple-
tion time of the heuristic was given by the sum of the
completion times of stages (1) to (6) and the two runs
in stage (7).

6.1. Set Covering
The first type of problem that we considered was set
covering, i.e.,

min
x

c′x

s.t. Ax≥ e (28)

x ∈ 80119n1

where A ∈ 80119m·n. To have sufficiently large data
sets, we wrote a script that generated different
instances of the problem. The script took as argu-
ments the number of constraints (m), the number of
variables (n), and the number of nonzero entries (w)
in each column of A. In addition, there were two
parameters specifying lower and upper bounds on the
entries in the cost vector c, for the weighted version
of the problem.

In the first class of tests, we considered m = 11000,
n = 21500, and took w = 3, w = 5, or w generated
uniformly at random, in 831 0 0 0 179. Table 1 records
the results of the simulation for the unweighted case,
c= e, and Table 2 contains the results for the weighted
case, where the weights ci were also generated uni-
formly at random, with values in 640015007.

In the second category of tests, summarized in
Table 3, we considered a larger problem size,
m= 41000 and n = 101000, with w generated uni-
formly at random in 831 0 0 0 179. We note that, for
all the set cover instances, CPLEX was run with
its default settings (in particular, the MIP emphasis
parameter was zero).

Based on the examples presented here and sev-
eral other runs we have performed, our assessment
is that Algorithm 1 tends to outperform CPLEX after
approximately 20 hours, and in many cases even ear-
lier, provided that both methods are run with the
same amount of memory (6 GB). For shorter running
times (one-two hours), CPLEX tends to have an edge,
although not in all cases.

6.2. Set Packing
The second problem we considered was set pack-
ing, i.e.,

max c′x

s.t. Ax≤ e (29)

x ∈ 80119n1

with A ∈ 80119m·n. In this case, we also used a script
to generate the test cases. Just as with set covering,

Table 1 Results for Unweighted Set Covering

5 hr 10 hr 20 hr

w ALG CPLEX ALG CPLEX ALG CPLEX

3 346 344 344 344 344 343
3 346 343 344 343 344 342
3 346 345 344 345 344 344
3 343 345 343 345 343 344
3 344 346 343 343 343 342
3 344 345 344 345 344 343
3 343 343 343 343 343 342
3 344 345 342 345 342 343
3 343 345 343 345 343 344
3 344 346 342 346 342 344

5 233 242 231 241 229 236
5 231 243 229 243 229 236
5 233 238 233 238 233 235
5 230 244 230 244 230 240
5 230 240 230 240 230 233
5 231 240 229 240 226 237
5 228 240 228 240 228 236
5 232 239 228 239 228 236
5 231 240 229 240 229 235
5 232 239 231 239 231 236

U4831 0 0 0 1795 226 231 226 231 226 226
U4831 0 0 0 1795 228 231 226 231 226 229
U4831 0 0 0 1795 228 235 227 235 227 231
U4831 0 0 0 1795 228 231 225 231 225 229
U4831 0 0 0 1795 231 235 229 235 227 230
U4831 0 0 0 1795 230 234 227 234 227 229
U4831 0 0 0 1795 228 236 225 236 224 228
U4831 0 0 0 1795 226 234 225 234 225 230
U4831 0 0 0 1795 231 234 225 233 222 229
U4831 0 0 0 1795 231 232 225 232 222 227

Notes. m = 11000, n = 21500, c= e. The recorded values denote the objec-
tive function, and bold font outlines better outcomes.

we took m = 11000, n = 21500 and considered cases
with w = 3, w = 5, or w generated independently and
uniformly at random between three and seven. The
results for the unweighted version of the problem, are
reported in Table 4, and the results for weighted prob-
lems, with all weights generated independently and
uniformly at random, with values between 400 and
500, are found in Table 5.

For all the set packing instances, we decided to
compare the performance of Algorithm 1 with two
different runs for CPLEX, recorded in columns CPX(0)
and CPX(4) of the tables, in which the MIP emphasis
parameter was either set to its default value of zero
or to a value of four, respectively. The main difference
is that a setting of zero forces the CPLEX algorithms
to “balance” between finding rapid proofs of opti-
mality and high-quality feasible solutions, whereas a
setting of four (dubbed “hidden feasibility”) forces
the solver to work hard(er) toward recovering high-
quality feasible solutions that would otherwise be dif-
ficult to find (for an exact explanation of the MIP
emphasis parameter, the interested reader is referred to
the CPLEX 11.2 documentation, available from IBM

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 219

Table 2 Results for Weighted Set Covering

5 hr 10 hr 20 hr

w ALG CPLEX ALG CPLEX ALG CPLEX

3 1501453 1511662 1501085 1501691 1491615 1491390
3 1501557 1501785 1501110 1501785 1491230 1491833
3 1501782 1511130 1501233 1511130 1491923 1491287
3 1511789 1501917 1501062 1501917 1491486 1501264
3 1501449 1511781 1501404 1511709 1501233 1491756
3 1491449 1491728 1491449 1491728 1491449 1481999
3 1501337 1511202 1501337 1511202 1501337 1481635
3 1501088 1511306 1491860 1501740 1491503 1491559
3 1491676 1501868 1491609 1501868 1491293 1491403
3 1491791 1501524 1491608 1501440 1481703 1491052

5 1001264 1071920 991663 1071920 991663 1031111
5 1021454 1071776 1001943 1071776 1001131 1021393
5 1001266 1071190 991837 1051185 991837 1001904
5 1001393 1061231 1001393 1061231 1001393 1011017
5 1001341 1071072 1001180 1071072 991911 1021651
5 1011272 1061268 1001585 1061268 981989 1011442
5 1001718 1071542 991978 1071542 991978 1021396
5 1011070 1081647 1001530 1081647 991651 1031266
5 1001592 1061986 1001288 1061986 991970 1031100
5 1001084 1081170 1001084 1081170 1001084 1021330

U4831 0 0 0 1795 991021 1021026 981803 1021026 981803 1001951
U4831 0 0 0 1795 981330 1041147 981235 1041147 981235 1001533
U4831 0 0 0 1795 991630 1011245 991491 1001789 981429 981552
U4831 0 0 0 1795 991610 1021623 981765 1021623 971928 1001997
U4831 0 0 0 1795 991930 1011656 991605 1011404 981801 991790
U4831 0 0 0 1795 991485 1021107 981665 1021104 981158 991624
U4831 0 0 0 1795 991219 1021449 991056 1001877 981570 991128
U4831 0 0 0 1795 991109 1031281 981946 1031281 981905 1001709
U4831 0 0 0 1795 1001868 1021188 991973 1021188 991533 1001930
U4831 0 0 0 1795 1001998 1021991 1001285 1021991 1001285 1001837

Notes. m = 110001 n = 215001 ci ∈ U46400150075. The recorded values denote the objective function, and bold font
outlines better outcomes.

ILOG). We note that we have also attempted other
settings for MIP emphasis in our initial tests (e.g., one,
which corresponds to emphasizing feasibility over
optimality), but the outcomes were consistently dom-
inated by the “hidden feasibility,” which prompted us
to remove them from the final results reported here.

Just as with set covering, we find that Algorithm 1
is able to outperform (both runs of) CPLEX in a con-
siderably large number of tests, particularly those cor-
responding to a fixed w. In all fairness, however, we
acknowledge that CPLEX remains a general-purpose
solver, searching for provably optimal solutions, no
matter which MIP emphasis settings are used.

Table 3 Results for Large Instances of Set Covering

10 hours 20 hours 100 hours 200 hours

ALG CPLEX ALG CPLEX ALG CPLEX ALG CPLEX

Unweighted 969 904 858 887 826 865 826 858
Weighted 4541495 3931540 4321562 3931540 3671516 3811087 3661021 3811087

Notes. m = 410001 n = 1010001 c = e, and w generated uniformly at random from 831 0 0 0 179. Recorded values
denote the objective function, and bold outlines better outcomes.

6.3. Mixed Integer Programming Library (MIPLIB)
Instances

We have also run our algorithm on three of the
instances in the 2003 MIPLIB library (refer to Achter-
berg et al. 2006 for details). In particular, we focused
on the problems manna81, fast0507, and seymour.
We note that, whereas the latter two instances directly
matched our problem formulation given in Equa-
tion (1), manna81 involved integer knapsack con-
straints and integer variables, so that we had to adjust
our algorithm in order to handle such an instance.
Table 6 contains details of the problem structures,
as well as a comparison of the optimal value of the

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
220 INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS

Table 4 Results for Unweighted Set Packing

5 hr 10 hr 20 hr

w ALG CPX(0) CPX(4) ALG CPX(0) CPX(4) ALG CPX(0) CPX(4)

3 322 319 319 322 319 321 322 322 322
3 314 319 320 314 319 322 321 322 323
3 320 321 322 320 321 322 320 322 322
3 320 318 319 320 320 321 320 321 321
3 322 319 320 323 320 321 323 323 322

5 166 155 161 167 155 162 167 155 162
5 165 159 159 168 159 160 168 161 162
5 165 160 159 166 160 159 166 160 161
5 167 157 159 167 157 160 167 157 163
5 164 156 158 166 156 159 166 162 163

7 104 95 95 105 95 97 105 98 100
7 103 95 95 106 95 95 106 95 98
7 105 95 95 105 95 97 105 95 100
7 105 97 96 105 97 96 105 97 99
7 105 97 96 105 97 96 105 97 97

U4831 0 0 0 1795 255 255 258 255 255 258 255 258 259
U4831 0 0 0 1795 253 255 260 255 255 261 255 257 261
U4831 0 0 0 1795 251 256 256 253 256 256 253 258 256
U4831 0 0 0 1795 249 252 255 249 252 255 249 253 256
U4831 0 0 0 1795 256 258 259 256 258 259 256 259 259

Notes. m = 110001 n = 215001 c= e. Recorded values denote the objective function, and bold outlines better out-
comes. CPX(i) denotes a CPLEX run with parameter MIP emphasis= i.

problem (column OPT) with the results obtained by
running Algorithm 1 and CPLEX (columns ALG and
CPLEX, respectively). We note that Algorithm 1 was
run with an identical parameter setting as described

Table 5 Results for Weighted Set Packing

5 hr 10 hr 20 hr

w ALG CPX(0) CPX(4) ALG CPX(0) CPX(4) ALG CPX(0) CPX(4)

3 1461896 1471663 1481706 1471800 1471663 1481894 1481905 1481617 1491500
3 1471796 1471914 1491511 1471796 1471914 1491726 1471796 1491116 1491726
3 1471951 1471479 1481125 1471951 1471479 1481733 1471951 1481583 1481788
3 1471421 1471023 1481568 1471421 1471023 1481889 1471421 1481399 1481889
3 1481545 1481208 1491104 1481545 1481869 1491325 1481545 1491261 1491823

5 751937 711799 741865 761590 711799 751488 771531 751594 761806
5 761928 721762 731080 771566 721762 731149 771566 741790 741752
5 761841 731447 741747 771681 731447 741747 771726 761086 751696
5 771475 721492 741392 771681 731231 741562 771681 751810 761299
5 761606 731361 731679 761985 731361 731750 771674 751376 741995

7 481200 431708 451204 481200 431708 451577 481200 461052 461187
7 481559 431548 441001 481895 441579 451809 481895 451486 471083
7 481019 431433 441602 481019 441658 451177 481019 461287 451606
7 481297 431667 441517 481297 431667 451272 481297 451721 471383
7 481721 441046 451280 481721 441046 461767 481721 441641 471545

U4831 0 0 0 1795 1141934 1131760 1151852 1141934 1131760 1151852 1141934 1141948 1151909
U4831 0 0 0 1795 1181242 1171505 1181261 1181587 1171505 1181344 1181587 1181477 1181447
U4831 0 0 0 1795 1161733 1161896 1181334 1171115 1161896 1181334 1171115 1171686 1181334
U4831 0 0 0 1795 1171227 1161139 1171317 1171227 1161421 1171317 1171227 1171616 1171317
U4831 0 0 0 1795 1141864 1151134 1161356 1141864 1151134 1161356 1141864 1151915 1161356

Notes. m = 110001 n = 215001 ci ∈ U46400150075. Values in bold denote better outcomes. CPX(i) denotes CPLEX
run with MIP emphasis= i.

in the debut of §6, and CPLEX was run with MIP
emphasis set to 4.

As can be noticed from the results in Table 6,
our algorithm recovers the optimal value in instance

Bertsimas, Iancu, and Katz: A New Local Search Algorithm for Binary Optimization
INFORMS Journal on Computing 25(2), pp. 208–221, © 2013 INFORMS 221

Table 6 Instances in MIPLIB Library and Comparison of the Results Obtained with ALG and CPLEX

Constraints

Problem name Rows Columns Pack Cover Knapsack OPT ALG CPLEX

manna81 61480 31321 0 0 61480 −131164 −131164 −131164
fast0507 507 631009 3 504 0 174 188 174
seymour 41944 11372 285 41659 0 423 444 423

Note. OPT denotes the optimal value of the problem.

manna81, but stops short of doing the same for
fast0507 and seymour, with a relative optimality gap
of 8004% and 4096%, respectively. We suspect that
for these instances (particularly seymour, which also
causes problems for CPLEX) one would need to
allow a considerably larger neighborhood for the local
search procedure (e.g., by a larger value of the param-
eter Q), in order to recover the true optimum.

7. Conclusions
In this paper, we have presented a new class of
general-purpose heuristic methods for solving large,
sparse binary optimization problems. The formulation
of the central algorithm, based on the notion of inter-
esting solutions and their traces, provides flexibility
in terms of the exact implementation, and allows the
user to directly influence the complexity-performance
trade-off through the adjustable parameter Q.

In addition to interesting theoretical properties
(pseudo-polynomial running times and performance
guarantees), we feel that the proposed method has
practical promise, as it is applicable in fairly general
settings, and it is competitive with leading optimiza-
tion packages in computational tests on fairly large
instances of randomly generated set packing and set
covering problems.

Electronic Companion
An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
ijoc.1110.0496.

Acknowledgments
The authors thank Jingting Zhou for research assistance with
the computational study, and the editor-in-chief, the area
editor, the associate editor and two anonymous referees,
whose comments and suggestions have improved the con-
tent and exposition of the present paper.

References
Aarts, E., J. K. Lenstra, eds. 1997. Local Search in Combinatorial Opti-

mization. John Wiley & Sons, New York.
Achterberg, T., T. Koch, A. Martin. 2006. MIPLIB 2003. Oper. Res.

Lett. 34(4) 361–372.
Aickelin, U. 2002. An indirect genetic algorithm for set covering

problems. J. Oper. Res. Society 53(10) 1118–1126.
Al-Sultan, K. S., M. F. Hussain, J. S. Nizami. 1996. A genetic algo-

rithm for the set covering problem. J. Oper. Res. Society 47(5)
702–709.

Arkin, E. M., R. Hassin. 1998. On local search for weighted k-set
packing. Math. Oper. Res. 23(1) 640–648.

Bakhtiari, S., R. Safavi-Naini, J. Pieprzyk. 1995. Cryptographic hash
functions: A survey. Technical Report 95-09, Department of
Computer Science, University of Wollongong.

Balas, E., A. Ho. 1980. Set covering algorithms using cutting
planes, heuristics, and subgradient optimization: A compu-
tational study. Combinatorial Optimization. Mathematical Pro-
gramming Studies, Vol. 12. Springer, Berlin, Heidelberg,
37–60.

Balas, E., C.. H. Martin. 1980. Pivot and complement–a heuristic for
0–1 programming. Management Sci. 26(1) 86–96.

Balas, E., S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting
plane algorithm for mixed 0–1 programs. Math. Programming
58(1-3) 295–324.

Beasley, J. E. 1990. A Lagrangian heuristic for set-covering prob-
lems. Naval Res. Logist. 37(1) 151–164.

Caprara, A., M. Fischetti, P. Toth. 1999. A heuristic method for the
set covering problem. Oper. Res. 47(5) 730–743.

Caprara, A., P. Toth, M. Fischetti. 2000. Algorithms for the set cov-
ering problem. Annals Oper. Res. 98(1) 353–371.

Chu, P. C., J. E. Beasley. 1996. A genetic algorithm for the set cov-
ering problem. Eur. J. Oper. Res. 94(2) 392–404.

Cormen, T. H., C. Stein, R. L. Rivest, C. E. Leiserson. 2001. Intro-
duction to Algorithms. MIT Press, Cambridge, MA.

Eckstein, J., M. Nediak. 2007. Pivot, cut, and dive: A heuristic for
0–1 mixed integer programming. J. Heuristics 13(5) 471–503.

Fischetti, M., F. Glover, A. Lodi. 2005. The feasibility pump. Math.
Programming 104(1) 91–104.

Hurkens, C. A. J., A. Schrijver. 1989. On the size of systems of sets
every t of which have an sdr, with an application to the worst-
case ratio of heuristics for packing problems. SIAM J. Discret.
Math. 2(1) 68–72.

Jia, W., C. Zhang, J. Chen. 2004. An efficient parameterized algo-
rithm for m-set packing. J. Algorithms 50(1) 106–117.

Koutis, I. 2005. A faster parameterized algorithm for set packing.
Inform. Processing Lett. 94(1) 7–9.

