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This paper considers a particular class of dynamic robust optimization problems, where a large number of decisions must
be made in the first stage, which consequently fix the constraints and cost structure underlying a one-dimensional, linear
dynamical system. We seek to bridge two classical paradigms for solving such problems, namely, (1) dynamic programming
(DP), and (2) policies parameterized in model uncertainties (also known as decision rules), obtained by solving tractable
convex optimization problems.

We show that if the uncertainty sets are integer sublattices of the unit hypercube, the DP value functions are convex
and supermodular in the uncertain parameters, and a certain technical condition is satisfied, then decision rules that are
affine in the uncertain parameters are optimal. We also derive conditions under which such rules can be obtained by
optimizing simple (i.e., linear) objective functions over the uncertainty sets. Our results suggest new modeling paradigms for
dynamic robust optimization, and our proofs, which bring together ideas from three areas of optimization typically studied
separately—robust optimization, combinatorial optimization (the theory of lattice programming and supermodularity), and
global optimization (the theory of concave envelopes)—may be of independent interest.

We exemplify our findings in a class of applications concerning the design of flexible production processes, where a
retailer seeks to optimally compute a set of strategic decisions (before the start of a selling season), as well as in-season
replenishment policies. We show that, when the costs incurred are jointly convex, replenishment policies that depend
linearly on the realized demands are optimal. When the costs are also piecewise affine, all the optimal decisions can be
found by solving a single linear program of small size (when all decisions are continuous) or a mixed-integer, linear
program of the same size (when some strategic decisions are discrete).
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1. Introduction

Dynamic optimization problems under uncertainty have
been present in numerous fields of science and engineering,
and have elicited interest from diverse research communi-
ties, on both a theoretical and a practical level. As a result,
many solution approaches have been proposed, with various
degrees of generality, tractability, and performance guaran-
tees. One such methodology, which has received renewed
interest in recent years because of its ability to provide
workable solutions for many real-world problems, is robust
optimization and robust control.

The topics of robust optimization and robust control
have been studied, under different names, by a variety
of academic groups, in operations research (Ben-Tal and
Nemirovski 1999, 2002; Ben-Tal et al. 2002; Bertsimas
and Sim 2003, 2004), engineering (Bertsekas and Rhodes

1971, Fan et al. 1991, El-Ghaoui et al. 1998, Zhou and
Doyle 1998, Dullerud and Paganini 2005), and economics
(Hansen and Sargent 2001, 2008), with considerable effort
put into justifying the assumptions and general model-
ing philosophy. As such, the goal of the current paper is
not to motivate the use of robust (and, more generally,
distribution-free) techniques. Rather, we take the modeling
approach as a given, and investigate questions of tractabil-
ity and performance guarantees in the context of a specific
class of dynamic optimization problems.
More precisely, we are concerned with models in which

a potentially large set of constrained and costly decisions
K must be taken in the first stage, which then critically
influence the constraints and cost structure of a linear and
one-dimensional system evolving in discrete time, over a
finite horizon. Apart from the first-stage decisions K; the
system’s evolution is also governed by particular actions
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(or controls) ut taken by the decision maker at every time t,
and also subject to unknown disturbances wt . In keeping
with the traditional (min–max) robust paradigm, we make
the modeling assumption that the uncertain quantities wt

are only known to lie in a specific uncertainty set W t . The
goal of the decision maker is to compute the first-stage
decisions K and a set of nonanticipative policies ut so that
the system obeys a set of prespecified constraints robustly
(i.e., for any possible realization of the uncertain parame-
ters), while minimizing a worst-case performance measure
(see, e.g., Löfberg 2003; Bemporad et al. 2003; Kerrigan
and Maciejowski 2003; Ben-Tal et al. 2004, 2005a, and
references therein).

Several problems in operations research result in models
that fit this description. One such instance, which we use
throughout the paper to motivate and exemplify our results,
is the following supply chain contracting model, considered
in a similar form by Ben-Tal et al. (2005b, 2009).

Problem 1. Consider a retailer selling a single product
over a finite planning horizon and facing unknown demands
from customers. She is allowed to carry inventory and to
backlog unsatisfied demand, and she can renew her inven-
tory in every period by placing replenishment orders.

The retailer faces two types of decisions. Before the start
of the selling season, a set of strategic decisions must be
made, which fix the structure of the ordering, holding, and
backlogging costs, as well as any constraints on order quan-
tities and inventories faced by the retailer during the season.

The goal is to determine, in a centralized fashion, the
strategic (i.e., preseason) decisions and the ordering poli-
cies that would minimize the overall, worst-case costs for
the retailer.

In the model of Ben-Tal et al. (2005b, 2009), the retailer
enters a contract with a supplier, whereby the former
precommits to a set of orders before the start of the sea-
son, which can differ from the actual replenishments during
the season. To smoothen the production at the supplier, the
contract stipulates penalties for differences between succes-
sive precommitments, as well as for deviations of actual
orders from precommitments. Here, the first-stage decisions
K are the precommitments, which determine the contrac-
tual penalties paid by the retailer.

We note that two key features making such models
salient are the nonlinear dependency of the cost structure
on the strategic decisions, and the potential that at least
some strategic decisions may be discrete (e.g., whether to
acquire a particular technology, contract with a given ven-
dor, hire more staff, etc.).

The typical approach for solving such problems is via a
dynamic programming (DP) formulation (Bertsekas 2001),
in which, with a compact notion of the system state xt ,
the optimal state-dependent policies u⇤

t 4xt5 and value func-
tions J ⇤

t 4xt5 are characterized going backward in time. DP
is a powerful and flexible technique, enabling the model-
ing of complex problems, with nonlinear dynamics, incom-
plete information structures, etc. For certain “simpler”

(low-dimensional) problems, the DP approach also allows
an exact characterization of the optimal actions; this has
lead to numerous celebrated results in operations research,
a classic example being the optimality of base stock or
4s1S5 policies in inventory systems (Scarf 1959, Clark and
Scarf 1960, Veinott 1966). Furthermore, the DP approach
often entails very useful comparative statics analyses, such
as monotonicity results of the optimal policy with respect
to particular problem parameters or state variables, mono-
tonicity or convexity of the value functions, etc. (see,
e.g., the classical texts Zipkin 2000, Topkis 1998, Heyman
and Sobel 1984, Simchi-Levi et al. 2004, and Talluri and
van Ryzin 2005 for numerous such examples). We critically
remark that such comparative statics results are often possi-
ble even for complex problems, where the optimal policies
cannot be completely characterized (e.g., Zipkin 2008, Huh
and Janakiraman 2010).
The main downside of the DP approach is the well-

known “curse of dimensionality,” in that the complexity of
the underlying Bellman recursions explodes with the num-
ber of state variables (Bertsekas 2001), leading to a lim-
ited applicability of the methodology in practical settings.
In fact, an example of this phenomenon already appears
in the model for Problem 1: after the (first-stage) strate-
gic decisions are fixed, the state of the problem consists of
the on-hand inventory available at the retailer. As Ben-Tal
et al. (2005b, 2009) remark, even though the DP opti-
mal ordering policy might have a simple form (e.g., if the
ordering costs were linear, and the holding/backlogging
costs were convex, it would be a base-stock policy), the
methodology would encounter difficulties, as (i) one may
have to discretize the state variable and the actions, and
hence produce only an approximate value function; (ii) the
dynamic program would have to be solved for any pos-
sible choice of strategic decisions; (iii) the value function
depending on strategic decisions would, in general, be non-
smooth; and (iv) the DP solution would provide no sub-
differential information, leading to the use of zero-order
(i.e., gradient-free) methods to solve the resulting first-stage
problem, which exhibit notoriously slow convergence. The
latter issues would be furthermore exacerbated if some of
the strategic decisions were discrete.
An alternative approach is to forgo solving the Bellman

recursions (even approximately), and instead focus on par-
ticular classes of policies that can be optimized over by
solving tractable optimization problems. One of the most
popular such approaches is to consider decision rules
directly parameterized in the observed disturbances, i.e.,

ut2 W 1 ⇥W 2 ⇥ · · ·⇥W tÉ1 !✓m1 (1)

where m is the number of control actions at time t. One
such example of particular interest has been the class of
affine decision rules. Originally suggested in the stochas-
tic programming literature (Charnes et al. 1958, Garstka
and Wets 1974), these rules have gained tremendous popu-
larity in the robust optimization literature because of their
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tractability and empirical success (see, e.g., Löfberg 2003;
Ben-Tal et al. 2004, 2005a, 2006, 2009; Bemporad et al.
2003; Kerrigan and Maciejowski 2003, 2004; Skaf and
Boyd 2010; and Bertsimas et al. 2011a for more refer-
ences). Recently, they have been reexamined in stochas-
tic settings, with several papers (Shapiro and Nemirovski
2005, Chen et al. 2008, Kuhn et al. 2009) providing
tractable methods for determining optimal policy parame-
ters, in the context of both single-stage and multistage lin-
ear stochastic programming problems. Several extensions,
such as piecewise affine (See and Sim 2010, Goh and Sim
2010) or polynomial decision rules (Ben-Tal et al. 2009,
Bertsimas et al. 2011b) have also been recently discussed
in the literature.

One central question when restricting attention to a par-
ticular subclass of policies (such as affine) is whether this
induces large optimality gaps as compared to the DP solu-
tion. One such attempt was Bertsimas and Goyal (2010),
which considers a two-stage linear optimization problem
and shows that affine policies are optimal for a simplex
uncertainty set, but can be within a factor of O4

p
dim4W 55

of the DP optimal objective in general, where dim4W 5
is the dimension of the first-stage uncertainty set. Other
research efforts have focused on providing tractable dual
formulations, which allow a computation of lower or upper
bounds, and hence a numerical assessment of the subopti-
mality level (see Kuhn et al. 2009 for details).

The work that is perhaps closest to ours is Bertsimas
et al. (2010), where the authors show that affine decision
rules are provably optimal for a considerably simpler set-
ting than Problem 1, namely, one without first-stage (strate-
gic) decisions, with linear ordering costs, and with the
uncertainty set described by a hypercube. The proofs in
the latter paper rely heavily on the problem structure, and
cannot be extended to other settings, most importantly to
models where the ordering costs depend nonlinearly on the
decisions, such as in Problem 1.

However, these (seemingly weak) theoretical results
stand in contrast with the considerably stronger empirical
observations. In a thorough simulation conducted for an
application very similar to Problem 1 Ben-Tal et al. (2009,
chap. 14, p. 392) report that affine policies are optimal in
all 768 instances tested, and Kuhn et al. (2009) find similar
results for a related example.

In view of this observation, the goal of the present paper
is to enhance the understanding of the modeling assump-
tions and problem structures that underlie the optimality of
affine policies. We seek to do this, in fact, by bridging the
strengths of the two approaches suggested above (DP and
affine decision rules). Our contributions are as follows.

• We show that if the uncertainty sets are integer
sublattices of the unit hypercube, the DP value functions
are convex and supermodular in the uncertain parameters,
and a certain technical condition is satisfied, then decision
rules that are affine in the uncertain parameters are opti-
mal. The reason why such conditions are useful is that one

can often conduct meaningful comparative statics analyses,
even in situations when a DP formulation is computation-
ally challenging. If the optimal value functions and poli-
cies happen to match our conditions, then one can forgo
numerically solving the DP, and can instead simply focus
attention on affine decision rules, which can often be com-
puted by solving particular tractable (convex) mathematical
programs.
Our conditions critically rely on the convexity and super-

modularity of the objective functions in question, as well
as the lattice structure of the uncertainty set W . To the best
of our knowledge, these are the first results suggesting that
lattice uncertainty sets might play a central role in con-
structing dynamic robust models, and that they bear a close
connection with the optimality of affine forms in the result-
ing problems. Our proof techniques combine ideas from
three areas of optimization typically studied separately—
robust optimization, combinatorial optimization (the theory
of lattice programming and supermodularity), and global
optimization (the theory of concave envelopes)—and may
be of independent interest.
• Using these conditions, we reexamine Problem 1, and

show that—once the strategic decisions are fixed—affine
ordering policies are provably optimal, under any convex
ordering and inventory costs. Furthermore, the worst-case
optimal ordering policy has a natural interpretation in terms
of fractional satisfaction of backlogged demands. This gen-
eralizes and simplifies the results in Bertsimas et al. (2010),
and it enforces the notion that optimal decision rules
in robust models can retain a simple form, even as the
cost structure of the problem becomes more complex: for
instance, when ordering costs are convex, replenishment
policies that are affine in historical demands remain opti-
mal, whereas policies parameterized in inventory become
considerably more complex (see the discussion in §3.3.1).
• Recognizing that, even knowing that affine policies

are optimal, one could still face the conundrum of solv-
ing complex mathematical programs, we provide a set of
conditions under which the maximization of a sum of sev-
eral convex and supermodular functions on a lattice can be
replaced with the maximization of a single, linear func-
tion. With these conditions, we show that, if all the costs
in Problem 1 are jointly convex and piecewise affine (with
at most m pieces), then all the decisions in the problem
(strategic and optimal ordering policies) can be obtained by
solving a single linear program (LP), with O4mT 25 vari-
ables. This explains the empirical results in Ben-Tal et al.
(2005b, 2009) and identifies the sole modeling component
that renders affine decision rules suboptimal in the latter
models. Additionally, if some strategic decisions are dis-
crete, then this LP becomes a mixed-integer linear program
(MILP), with the same size.
The rest of the paper is organized as follows. Section 2

contains a precise mathematical description of the two main
problems we seek to address. Sections 3 and 4 contain our
main results, with the answers to each separate question,
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and a detailed discussion of their application to Problem 1
stated in the Introduction. Section 5 concludes the paper.
The online appendix (available as supplemental material at
http://dx.doi.org/10.1287/opre.2013.1172) contains relevant
background material on lattice programming and super-
modularity (§EC.1), concave envelopes (§EC.2), as well as
some of the technical proofs (§EC.3).

1.1. Notation

We use ✓̄ def= ✓ [ 8à9 to denote the set of extended reals.
Throughout the text, vector quantities are denoted in bold
font. To avoid extra symbols, we use concatenation of
vectors in a liberal fashion, i.e., for a 2✓n and b 2 ✓k,
we use 4a1b5 to denote either the row vector 4a11 0 0 0 1an1
b11 0 0 0 1bk5 or the column vector 4a11 0 0 0 1an1 b11 0 0 0 1bk5

T .
The meaning should be clear from context. The operators
min, max, æ and ∂ applied to vectors should be interpreted
in component-wise fashion.

For a vector x 2 ✓n and a set S ✓ 811 0 0 0 1n9, we use
x4S5 def= P

j2S xj , and denote by xS 2 ✓n the vector with
components xi for i 2 S and 0 otherwise. In particular, 1S is
the characteristic vector of the set S, 1i is the ith unit vector
of ✓n, and 1 2✓n is the vector with all components equal
to one. We use Á4S5 to denote the set of all permutations
on the elements of S, and è4S5 or ë4S5 denote particu-
lar such permutations. We let SC = 811 0 0 0 1n9\S denote the
complement of S, and, for any permutation è 2Á4S5, we
write è4i5 for the element of S appearing in the ith position
under permutation è, and èÉ14i5 to denote the position of
element i 2 S under permutation è.

For a set P ✓✓n, we use ext4P 5 to denote the set of its
extreme points, and conv4P 5 to denote its convex hull.

2. Problem Statement

As discussed in the Introduction, both the DP formula-
tion and the decision rule approach have well-documented
merits. The former is general purpose, and allows very
insightful comparative statics analyses, even when the DP
approach itself is computationally intractable. For instance,
one can check the monotonicity of the optimal policy or
value function with respect to particular problem param-
eters or state variables, or prove the convexity or sub-
modularity/supermodularity of the value function. Such
recent examples in the inventory literature are the mono-
tonicity results concerning the optimal ordering policies
in single or multiechelon supply chains with positive lead
time and lost sales (Zipkin 2008 and Huh and Janakira-
man 2010). For more examples, we refer the interested
reader to several classical texts on inventory and revenue
management: Zipkin (2000), Topkis (1998), Heyman and
Sobel (1984), Simchi-Levi et al. (2004), and Talluri and
van Ryzin (2005).

In contrast, the decision rule approach does not typically
allow such structural results, but instead takes the prag-
matic view of focusing on practical decisions, which can

be efficiently computed by convex optimization techniques
(see, e.g., Ben-Tal et al. 2009, chapter 14).
The goal of the present paper is to provide a link between

the two analyses, and to enhance the understanding of the
modeling assumptions and problem structures that underlie
the optimality of affine decision rules. More precisely, we
pose and address two main problems, the first of which is
the following.

Problem 2. Consider a one-period game between a deci-
sion maker and nature

max
w2W

min
u4w5

f 4w1u51 (2)

where w denotes an action chosen by nature from an uncer-
tainty set W ✓✓n, u is a response by the decision maker,
allowed to depend on nature’s action w, and f is a total cost
function. With u

⇤4w5 denoting the Bellman-optimal policy,
we seek conditions on the set W , the policy u

⇤4w5, and the
function f 4w1u⇤4w55 such that there exists an affine policy
that is worst-case optimal for the decision maker, i.e.,

9Q 2✓m⇥n1 q 2✓m such that

max
w2W

min
u4w5

f 4w1u5=max
w2W

f 4w1Qw+q50

To understand the question, imagine separating the
objective into two components, f 4w1u5= h4w5+ J 4w1u5.
Here, h summarizes a sequence of historical costs (all de-
pending on the unknowns w), while J denotes a cost to go
(or value function). As such, the outer maximization in (2)
can be interpreted as the problem solved by nature at a
particular stage in the decision process, whereby the total
costs (historical + cost to go) are being maximized. The
inner minimization exactly captures the decision maker’s
problem, of minimizing the cost to go.
We remark that the notion of worst-case optimal policies

in the previous question is different than that of Bellman-
optimal policies (Bertsekas 2001). In the spirit of DP,
the latter requirement would translate in the policy u

⇤4w5
being the optimal response by the decision maker for any
revealed w 2W , whereas the former notion only requires
that u4w5=Qw+q is an optimal response at points w that
result in the overall worst-case cost (while keeping the cost
for all other w below the worst-case cost). This distinction
has been drawn before (Bertsimas et al. 2010), and is one
of the key features distinguishing robust (min–max) models
from their stochastic counterparts, and allowing the former
models to potentially admit optimal policies with simpler
structure than those for the latter class. Although one could
build a case against worst-case optimal policies by arguing
that a rational decision maker should never accept poli-
cies that are not Bellman optimal (see, e.g., Epstein and
Schneider 2003, Cheridito et al. 2006 for pointers to the
literature in economics and risk theory on this topic), we
adopt the pragmatic view here that, provided there is no
degeneracy in the optimal policies (i.e., there is a unique set
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of optimal policies in the problem), one can always repli-
cate the true Bellman-optimal policies for a finite-horizon
problem through a shrinking horizon approach (Bertsekas
2001), by applying the first-stage decisions and resolving
the subproblems of the decision process.

As remarked earlier, an answer to this question would be
most useful in conjunction with comparative statics results
obtained from a DP formulation: if the optimal value (and
policies) matched the conditions in the answer to Prob-
lem 2, then one could forgo numerically solving the DP,
and could instead simply focus attention on disturbance-
affine policies, which could be computable by efficient
convex optimization techniques (see, e.g., Löfberg 2003;
Ben-Tal et al. 2004, 2005a, 2009; or Skaf and Boyd 2010).

Although answering the above question is certainly very
relevant, the results might still remain existential in nature.
In other words, even armed with the knowledge that affine
policies are optimal, one could be faced with the conun-
drum of solving complex mathematical programs to find
such policies. To partially alleviate this issue, we raise the
following related problem.

Problem 3. Consider a maximization problem of the form

max
w2W

X

t2T
ht4w51

where W ✓✓n denotes an uncertainty set, and T is a finite
index set. Let J ⇤ denote the maximum value in the problem
above (assumed finite). We seek conditions on W and/or
ht such that there exist affine functions zt4w5, 8 t 2T ,
such that

zt4w5æ ht4w51 8w 2W 1 8 t 2T

J ⇤ =max
w2W

X

t2T
zt4w50

In words, the latter problem requires that substituting a
set of true historical costs ht with potentially larger (but
affine) costs zt results in no change of the worst-case cost.
Since one can typically optimize linear functionals effi-
ciently over most uncertainty sets of practical interest (see,
e.g., Ben-Tal et al. 2009), an answer to this problem, com-
bined with an answer to Problem 2, might yield tractable
and compact mathematical programs for computing worst-
case optimal affine policies that depend on disturbances.

We note that conditions involving a linearization of
the objectives have been discussed in the recent paper of
Gorissen and den Hertog (2013), where the authors show
that if the functions ht are all piecewise affine and con-
vex, then

P
t2T zt exactly corresponds to the Fenchel dual

of the function
P

t2T ht , which is generally a strict upper
bound of the latter. By contrast, Problem 3 seeks conditions
under which this upper bound yields the same value (when
maximized) as the original function.

3. Discussion of Problem 2

We begin by considering Problem 2 in the Introduction.
With u

⇤4w5 2 argmin
u

f 4w1u5 denoting a Bellman-optimal

response by the decision maker, the latter problem can be
summarized compactly as finding conditions on W , u

⇤,
and f such that

9Q2✓m⇥n1q2✓m2 max
w2W

f 4w1u⇤4w55=max
w2W

f 4w1Qw+q50

To the best of our knowledge, two partial answers to this
question are known in the literature. If W is a simplex, and
f 4w1Qw+ q5 is convex in w for any Q1q, then a worst-
case optimal policy can be readily obtained by computing
Q1q so as to match the value of u⇤4w5 on all the points
in ext4W 5 (see Bertsimas and Goyal 2010, Ben-Tal et al.
2009, Lemma 14.3.6). This is not a surprising result, since
the number of extreme points of the uncertainty set exactly
matches the number of policy parameters (i.e., the degrees
of freedom in the problem).
A separate instance where the construction is possible

is provided in Bertsimas et al. (2010), where W = Hn
def=

60117n is the unit hypercube in ✓n, u2 W !✓, and f has
the specific form

f 4w1u5= a0 + a

T
w+ c · u+ g4b0 +b

T
w+ u51

where a0, b0, c 2✓, a, b 2✓n are arbitrary, and g2 ✓!✓
is any convex function. The proof for the latter result heav-
ily exploits the particular functional form above, and does
not lend itself to any extensions or interpretations. In par-
ticular, it fails even if one replaces c ·u with c4u5, for some
convex function c2 ✓!✓.
In the current paper, we also focus our attention on

uncertainty sets W that are polytopes in ✓n. More pre-
cisely, with V = 811 0 0 0 1n9, we consider any directed graph
G = 4V 1E5, where E ✓ V 2 is any set of directed edges,
and are interested in uncertainty sets of the form

W = �w 2Hn2 wi æwj18 4i1 j5 2E
 
0 (3)

It can be shown (see Tawarmalani et al. 2013, and ref-
erences therein for details) that the polytope W in (3) has
Boolean vertices, since the matrix of constraints is totally
unimodular. As such, any x 2 ext4W 5 can be represented
as x = 1Sx

, for some set Sx ✓ V . Furthermore, it can also
be checked that the set ext4W 5 is a sublattice of1 80119n

(Topkis 1998),

8x1y 2 ext4W 52 min4x1y5= 1Sx\Sy 2 ext4W 51

max4x1y5= 1Sx[Sy 2 ext4W 50

Among the uncertainty sets typically considered in the
modeling literature, the hypercube is one example that fits
the description above. Certain hyperrectangles, as well as
any simplices or cross-products of simplices could also be
reduced to this form via a suitable change of variables2

(see, e.g., Tawarmalani et al. 2013). For an example of such
an uncertainty set and its corresponding graph G, we direct
the reader to Figure 1.
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Figure 1. Example of a sublattice uncertainty set.

1.0

(1, 0, 0)

(1, 0,1)

(1,1,1)

(1,1,0)

(0,0,0) 0.5

000.20.40.60.81.0

0

0.2

0.4

0.6

0.8

1.0

w
3

w1
w2

(b) ∑ = {w 2 ®3: w1 ≥ w2, w1 ≥ w3}.

3

1

2

(a) G = (V, E ), where V = {1, 2, 3} and E = {(1, 2), (1, 3)}.

Notes. Figure 1(a) displays the graph of precedence relations, and Fig-
ure 1(b) plots the corresponding uncertainty set. Here, ÁW=841121351
41131259, and the twocorresponding simplicies are„4112135= conv4840101051
41101051 41111051 411111595 and „4113125 = conv4840101051 41101051
41101151 411111595, shown in different shades in (b). Also, S 4010105 =
S 4110105 = S 4111115 = ÁW , while S 4110115 = 841131259, and S 4111105 =
841121359.

For any polytope of the form (3), we define the corre-
sponding set ÁW of permutations of V that are consistent
with the preorder induced by the lattice ext4W 5, i.e.,

ÁW def= �è 2Á4V 52 èÉ14i5∂èÉ14j518 4i1 j5 2E
 
0 (4)

In other words, if 4i1 j5 2 E, then i must appear before j
in any permutation è 2ÁW . Furthermore, with any permu-
tation è 2Á4V 5, we also define the simplex „è obtained
from vertices of H in the order determined by the permu-
tation è, i.e.,

„è
def= conv

✓⇢
0+

kX

j=1

1è4j52 k= 01 0 0 0 1n
�◆

0 (5)

It can then be checked (see, e.g., Tawarmalani et al.
2013) that any vertex w 2 ext4W 5 belongs to several such
simplices. More precisely, with w = 1Sw

for a particular
Sw ✓ V , we have

w2„è1 8è2Sw
def=�è2ÁW 2 8è41510001è4óSwó59=Sw

 
0

(6)

In other words, w is contained in any simplex correspond-
ing to a permutation è that (a) is consistent with the
preorder on W , and (b) has the indices in Sw in the first
óSwó positions. An example in included in Figure 1.
Since ext4W 5 is a lattice, we can consider functions

f 2 W !✓ that are supermodular on ext4W 5, i.e.,

f 4min4x1y55+ f 4max4x1y55æ f 4x5+ f 4y51

8x1 y 2 ext4W 50

The properties of such functions have been studied exten-
sively in combinatorial optimization and economics (see,
e.g., Fujishige 2005, Schrijver 2003, Topkis 1998, for
detailed treatments and references). The main results
that are relevant for our purposes are summarized in
§§EC.1 and EC.2 of the online appendix.
With these definitions, we can now state our first main

result, providing a set of sufficient conditions guaranteeing
the desired outcome in Problem 2.

Theorem 1. Consider any optimization problem of the form

max
w2W

min
u4w5

f 4w1u51 (7)

having a finite optimal value, where W is of the form (3),
and f 2 W ⇥ ✓m ! ✓̄ is an extended-real function. Let
u

⇤2 W ! ✓m denote a Bellman-optimal response of the
decision maker, and f ⇤4w5 def= f 4w1u⇤4w55 be the corre-
sponding optimal cost function. Assume the following con-
ditions are met:

Assumption 1 (A1). f ⇤4w5 is convex on W and super-
modular in w on ext4W 5.

Assumption 2 (A2). For Q 2 ✓m⇥n and q 2 ✓n, the func-
tion f 4w1Qw+q5 is convex in 4Q1q5 for any fixed w.

Assumption 3 (A3). There exists ŵ 2 argmax
w2W f ⇤4w5\

ext4W 5 such that, with S
ŵ

given by (6), the matrices
8Qè9è2S

ŵ

and vectors 8qè9è2S
ŵ

obtained as the solutions
to the systems of linear equations

8è 2S
ŵ

2 Qè
w+q

è = u

⇤4w51 8w 2 ext4„è51 (8)

are such that the function f 4w1 Q̄w+ q̄5 is convex in w and
supermodular on ext4W 5, for any Q̄ and q̄ obtained as

Q̄= X

è2S
ŵ

ãèQ
è1

q̄= X

è2S
ŵ

ãèq
è1 where ãè æ 01

X

è2S
ŵ

ãè = 10
(9)

Then, there exist 8ãè9è2S
ŵ

such that, with Q̄ and q̄ given
by (9),

max
w2W

f ⇤4w5=max
w2W

f 4w1 Q̄w+ q̄50
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Before presenting the proof of the theorem, we provide
a brief explanation and intuition for the conditions above.
A more detailed discussion, together with relevant exam-
ples, is included immediately after the proof.

Note first that, since f is taken to be extended real,
it can capture constraints on the policy u by suitable barrier
functions, provided that these constraints still yield a finite
optimal value, and preserve the Assumptions (A1–A3).

The interpretation and the test for conditions (A1)
and (A2) are fairly straightforward. The idea behind (A3)
is to consider every simplex „è that contains the maxi-
mizer ŵ; there are exactly óS

ŵ

ó such simplices, character-
ized by (6). For every such simplex, one can compute a
corresponding affine decision rule Qè

w + q

è by linearly
interpolating the values of the Bellman-optimal response
u⇤4w5 at the extreme points of „è . This is exactly what
is expressed in condition (8), and the resulting system is
always compatible, since every such matrix-vector pair has
exactly m rows, and the n+ 1 variables on each row par-
ticipate in exactly n + 1 linearly independent constraints
(one for each point in the simplex). Now, the key condi-
tion in (A3) considers affine decisions rules obtained as
arbitrary convex combinations of the rules Qè

w+q

è , and
requires that the resulting cost function, obtained by using
such rules, remains convex and supermodular in w.

3.1. Proof of Theorem 1

In view of these remarks, the strategy behind the proof of
Theorem 1 is quite straightforward: we seek to show that, if
conditions (A1–A3) are obeyed, then one can find suitable
convex coefficients 8ãè9è2S

ŵ

so that the resulting affine
decision rule Q̄w+ q̄ is worst-case optimal. To ensure the
latter fact, it suffices to check that the global maximum of
the function f 4w1 Q̄w+ q̄5 is still reached at the point ŵ,
which is one of the maximizers of f ⇤4w5. Unfortunately,
this is not trivial to do, since both functions f 4w1 Q̄w+ q̄5
and f ⇤4w5 are convex in w (by (A1–A3)), and it is there-
fore hard to characterize their global maximizers, apart
from stating that they occur at extreme points of the feasi-
ble set (Rockafellar 1970).

The first key idea in the proof is to examine the con-
cave envelopes of f 4w1 Q̄w+ q̄5 and f ⇤4w5, instead of the
functions themselves. Recall that the concave envelope of
a function f 2 P ! ✓ on the domain P , which we denote
by concP 4f 52 P ! ✓, is the pointwise smallest concave
function that overestimates f on P (Rockafellar 1970) and
always satisfies argmax

x2P f ✓ argmax
x2P concP 4f 5. (The

interested reader is referred to §EC.2 of the online appendix
for a short overview of background material on concave
envelopes, and to the papers Tardella 2008 or Tawarmalani
et al. 2013 for other useful references.)

In this context, a central result used repetitively through-
out our analysis is the following characterization for the
concave envelope of a function that is convex and super-
modular on a polytope of the form (3).

Lemma 1. If f ⇤2 W !✓ is convex on W and supermodu-
lar on ext4W 5, then the following results hold:
1. The concave envelope of f ⇤ on W is given by the

Lovász extension of f ⇤ restricted to ext4W 5:

concW 4f ⇤54w5= f ⇤405

+ min
è2ÁW

nX

i=1


f ⇤
✓ iX

j=1

1è4j5

◆
É f ⇤

✓iÉ1X

j=1

1è4j5

◆�
wè4i50 (10)

2. The inequalities 4gè5Tw+ g0 æ f ⇤4w5 defining non-
vertical facets of concW 4f ⇤5 are given by the set
ext4Df ⇤1W 5= 84gè1g05 2✓n+12 è 2ÁW 9, where

g0
def=f ⇤4051 g

è def=
nX

i=1


f ⇤
✓ iX

j=1

1è4j5

◆
Éf ⇤

✓iÉ1X

j=1

1è4j5

◆�
1è4i51

8è 2ÁW 0 (11)

3. The polyhedral subdivision of W yielding the concave
envelope is given by the restricted Kuhn triangulation,

KW def= 8„è2 è 2ÁW 90

The result is essentially Corollary EC.2 in the online
appendix, to which we direct the interested reader for more
details. This lemma essentially establishes that the concave
envelope of a function f ⇤ that is convex and supermod-
ular on an integer sublattice of 80119n is determined by
the Lovász extension (Lovász 1983). The latter function
is polyhedral (i.e., piecewise affine), and is obtained by
affinely interpolating the function f ⇤ on all the simplicies in
the Kuhn triangulation KW of the hypercube (see §EC.2.1
of the online appendix). A plot of such a function f and
its concave envelope is included in Figure 2.
With this powerful lemma, we can now provide a result

that brings us very close to a complete proof of Theorem 1.

Lemma 2. Suppose f ⇤2 W !✓ is convex on W and super-
modular on ext4W 5. Consider an arbitrary ŵ 2 ext4W 5\
argmax

w2W f ⇤4w5, and let gè be given by (11). Then the
following results hold:
1. For any w 2W , we have

f ⇤4w5∂ f ⇤4ŵ5+ 4wÉ ŵ5T gè1 8è 2S
ŵ

0 (12)

2. There exists a set of convex weights 8ãè9è2S
ŵ

such
that g=Pè2S

ŵ

ãèg
è satisfies

4wÉ ŵ5T g∂ 01 8w 2W 0 (13)

Proof. The proof is rather technical, and we defer it to
§EC.3 of the online appendix. É
For a geometric intuition of these results, we refer to

Figure 2. In particular, the first claim simply states that the
vectors g

è corresponding to simplicies that contain ŵ are
valid supergradients of the function f ⇤ at ŵ; this is a direct
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Figure 2. A convex and supermodular function (a) and
its concave envelope (b).

(a) f : !2 → ", f (x, y) = (x + 2y – 1)2

(b) Conc!2
 ( f )

0.0

0.5

1.0

0.5

0.0

4

2

0

1.0

0.5
0.0 x

y

1.0
0

1

2

3

4
0.0

0.5

1.0

y

x

Notes. Here, W = H 2, ÁW = 8411251 421159, and KW = 8„411251„421159,
where „41125 = conv48401051 411051 411159 and „42115 = conv48401051
401151 41115959. The plot in Figure 2(b) also shows the two normals of
nonvertical facets of concW 4f 5, corresponding to g

41125 and g

42115.

consequence of Lemma 1, since any such vectors g

è are
also supergradients for the concave envelope concW 4f ⇤5
at ŵ. The second claim states that one can always find a
convex combination of the supergradients g

è that yields a
supergradient g that is not a direction of increase for the
function f ⇤ when moving in any feasible direction away
from ŵ (i.e., while remaining in W ).

With this lemma, we can now complete the proof of our
main result.

Proof of Theorem 1. Consider any ŵ satisfying the
requirement (A3). Note that the system of equations in (8)
is uniquely defined, since each row of the matrix Qè and
the vector qè participate in exactly n+ 1 constraints, and
the corresponding constraint matrix is nonsingular. Further-
more, from the definition of „è in (5), we have that 0 2
ext4„è5, 8è 2 S

ŵ

, so that the system in (8) yields q

è =
u

⇤405, 8è 2S
ŵ

.
By Lemma 2, consider the set of weights 8ãè9è2S

ŵ

, such
that g =P

è2S
ŵ

ãèg
è satisfies 4w É ŵ5T g ∂ 01 8w 2 W .

We claim that the corresponding Q̄ =P
è2S

ŵ

ãèQ
è , and

q̄=Pè2S
ŵ

ãèq
è provide the desired affine policy Q̄w+ q̄

such that

max
w2W

f ⇤4w5=max
w2W

f 4w1 Q̄w+ q̄50

To this end, note that, by (A3), the functions
f 4w1 Q̄w+ q̄5 and f è4w5 def= f 4w1Qè

w + q

è5, 8è 2 S
ŵ

are convex in w and supermodular on ext4W 5. Also, by
construction,

8è 2S
ŵ

1 f è4w5= f ⇤4w51 8w 2 ext4„è51

f 4ŵ1 Q̄ŵ+ q̄5= f ⇤4ŵ50
(14)

Thus, for any è 2S
ŵ

, the supergradient gè defined for the
function f ⇤ in (11) remains a valid supergradient for f è

at w= ŵ. As such, relation (12) also holds for each func-
tion f è , i.e.,

f è4w5∂ f è4ŵ5+ 4wÉ ŵ5T gè1 8è 2S
ŵ

0 (15)

The following reasoning then concludes our proof

8w2W 1 f 4w1Q̄w+q̄5
6A27

∂
X

è2S
ŵ

ãèf 4w1Q
è
w+q

è5

(15)

∂
X

è2S
ŵ

ãè6f
è4ŵ5+4wÉŵ5T gè7

(14)=f 4ŵ1Q̄ŵ+q̄5

+ X

è2S
ŵ

ãè4wÉŵ5T gè

(13)

∂f 4ŵ1Q̄ŵ+q̄50

3.2. Examples and Discussion of

Existential Conditions

We now proceed to discuss the conditions in Theo-
rem 1, and relevant examples of functions satisfying them.
We implicitly assume throughout that the optimal value of
the problem in (7) is finite. Condition (A1) can be generally
checked by performing suitable comparative statics analy-
ses. For instance, f ⇤4w5 will be convex in w if f 4w1u5
is jointly convex in 4w1u5, since partial minimization pre-
serves convexity (Rockafellar 1970). For supermodularity
of f ⇤, more structure is typically needed on f 4w1u5.
One such example, which proves instrumental in the

analysis of Problem 1, is f 4w1u5= c4u5+g4b0+b

T
w+u5.

To understand the significance in an inventory setting, the
reader can think of w as a sequence of historical demands,
with b0 +b

T
w denoting the (affine) dependency of the on-

hand inventory on w, u denoting an order quantity with
associated ordering cost c4u5 (which includes any potential
constraints on u), and g the value to go, depending on the
inventory position after receiving the order u.
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Proposition 1. Let f 4w1u5 = c4u5 + g4b0 + b

T
w + u5,

where c, g2 ✓! ✓̄ are arbitrary proper3 convex functions,
and bæ 0 or b∂ 0. Then, condition (A1) is satisfied.

Proof. If the optimal value in (7) is finite, then f ⇤ must be
a real-valued function on W . Since f is jointly convex in w

and u, f ⇤ is convex. Furthermore, note that f ⇤ only depends
on w through b

T
w, i.e., f ⇤4w5 = f̃ 4bT

w5, for some con-
vex f̃ . Therefore, since bæ 0 or b∂ 0, f ⇤ is supermodular
(see Example EC.1 in the online appendix). É

Condition (A2) can also be tested by directly examining
the function f . For instance, if f is jointly convex in w

and u, then (A2) is trivially satisfied, as is the case in the
example of Proposition 1.

In practice, the most cumbersome condition to test is
undoubtedly (A3). Typically, a combination of compara-
tive statics analyses and structural properties on the func-
tion f will be needed. We exhibit how such techniques
can be used by making reference, again, to the example in
Proposition 1.

Proposition 2. Let f 4w1u5 = c4u5 + g4b0 + b

T
w + u5,

where c1g2 ✓! ✓̄ are arbitrary proper convex functions,
and bæ 0 or b∂ 0. Then, condition (A3) is satisfied.

Proof. Let h4x1y5 def= c4y5 + g4x + y5. It is shown in
Lemma EC.1 of the online appendix that argminy h4x1y5 is
decreasing in x, and x+ argminy h4x1y5 is increasing in x.

Consider any ŵ 2 argmax
w2W f ⇤4w5 \ ext4W 5. In this

case, the construction in (8) becomes

8è 2S
ŵ

2 4qè5Tw+ qè
0 = u⇤4w5⌘ y⇤4b0 +b

T
w51

8w 2 ext4„è51

for some y⇤4x5 2 argminy h4x1y5. Note that, since y
is scalar here, the affine parametrization is given by a
(row) vector 4qè5T 2 ✓1⇥n and a scalar qè

0 , instead of a
matrix Qè 2 ✓m⇥n and a vector qè 2 ✓m, respectively. We
claim that

bæ 0 ) q

è ∂ 0 and b+q

è æ 01 8è 2S
ŵ

(16a)

b∂ 0 ) q

è æ 0 and b+q

è ∂ 01 8è 2S
ŵ

0 (16b)

We prove the first claim (the second follows analogously).
Since 0 2 ext4„è5, we have qè

0 = y⇤4b05. If bæ 0, then the
monotonicity of y⇤4x5 implies that

qè
0 + qè

i = y⇤4b0 + bi5∂ y⇤4b051 8 i 2 811 0 0 0 1n91

which implies that qè ∂ 0. Similarly, the monotonicity of
x+ y⇤4x5 implies that b+q

è æ 0.
With the previous two claims, it can be readily seen that

the functions

f è4w5= c
�
4qè5Tw+ qè

0

�+ g
�
b0 + qè

0 + 4b+q

è5Tw
�

are convex in w and supermodular on ext4W 5 (see Exam-
ple EC.1 in the online appendix), and that the same con-
clusion holds for affine policies given by arbitrary convex
combinations of 4qè1qè

0 5, hence (A3) must hold. É
In view of Propositions 1 and 2, we have the following

example where Theorem 1 readily applies, which will prove
essential in the discussion of the two-echelon example of
Problem 1.

Lemma 3. Let f 4w1u5= h4w5+ c4u5+ g4b0 + b

T
w+ u5,

where h2 6l1 r7 ! ✓ is convex and supermodular on the
lattice ext46l1 r75 for some l∂ r 2✓n, and c1g2 ✓! ✓̄ are
arbitrary, proper convex functions. Then, if either b æ 0,
b∂ 0 or h is affine, there exist q 2✓n1q0 2✓ such that

max
w26l1 r7

f ⇤4w5= max
w26l1 r7

f 4w1qT
w+ q05 (17a)

sign4q5=É sign4b5 (17b)

sign4b+q5= sign4b50 (17c)

Proof. Assume first that l= 0 and r= 1. (1) When bæ 0
or b ∂ 0, the results follow directly from Propositions 1
and 2 (note that adding the convex and supermodular func-
tion h̃ does not change any of the arguments there). The
proofs for the sign relations concerning q follow from (16a)
and (16b), by recognizing that the same inequalities hold
for any convex combination of the vectors qè . (2) When h
is affine, the case with an arbitrary b can be transformed,
by a suitable linear change of variables for w, to a case
with bæ 0 and modified b0 and affine h.
The case with arbitrary l∂ r can be reduced to l= 0 and

r= 1 by a linear change of variables on w, which does not
affect the supermodularity and convexity of the functions
in question. É
The latter result directly generalizes that of Bertsimas

et al. (2010) in several ways, by allowing the possibility
of a nonaffine h, a nonlinear c, and also a nonhypercube
uncertainty set (the conclusions hold if the domain of h
is W , instead of 6l1 r7).

3.3. Application to Problem 1

In this section, we revisit the production planning model
discussed in Problem 1 of the Introduction, where the full
power of the results introduced in §3 can be used to derive
the optimality of ordering policies that are affine in histor-
ical demands.
As remarked in the Introduction, a very similar model

has been originally considered in Ben-Tal et al. (2005b,
2009); we first describe our model in detail, and then dis-
cuss how it relates to that in the other two references.
Let 11 0 0 0 1T denote the finite planning horizon, and

introduce the following variables:
•

K 2 ✓m: the strategic decisions, taken ahead of the
selling season, with an associated cost r4K5.
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• qt: the realized order quantity from the retailer in
period t. The corresponding cost incurred by the retailer is
ct4qt1K5, reflecting the nonlinear dependency on the strate-
gic decisions K. To reflect the possibility of constraints of
the form Lt ∂ qt ∂Ut , we take ct2 ✓⇥✓m ! ✓̄.

• It: the inventory on the premises of the retailer at
the beginning of period t 2 811 0 0 0 1T 9. Let ht4It+11K5
denote the holding/backlogging cost incurred at the end
of period t, also allowed to depend on the strategic deci-
sions. To allow constraints on the inventory of the form
Lx
t ∂ It ∂Ux

t , we take ht2 ✓⇥✓m ! ✓̄.
• dt: unknown customer demand in period t. We assume

that the retailer has very limited information about the
demands, so that only bounds are available, dt 2 Dt =
6dt1 d̄t7.

The problem of computing strategic and ordering deci-
sions that would minimize the system-level cost in the
worst case can then be rewritten as

min
K


r4K5+min

q1


c14q11K5+ max

d12D1


h14I21K5+ · · ·

+min
qT


cT 4qT 1K5+ max

dT 2DT

hT 4IT+11K5

�
0 0 0

���

s.t. It+1 = It + qt Édt1 8 t 2 81121 0 0 0 1T 90

By introducing the class of ordering policies that depend
on the history of observed demands,

qt2 D1 ⇥D2 ⇥ · · ·⇥DtÉ1 !✓1 (18)

we claim that the theorems of §3 can be used to derive the
following structural results.

Theorem 2. Consider a fixed K, and assume the corre-
sponding optimal worst-case cost is finite. If the costs
ct4q1K5 and ht4I1K5 are proper convex, then the following
results hold:

1. Ordering policies that depend affinely on the history
of demands are worst-case optimal.

2. Any such worst-case optimal order occurring after
period t is partially satisfying the demands that are still
backlogged in period t.

Before presenting the proof, we discuss the result, and
comment on the related literature. The first claim con-
firms that ordering policies depending affinely on historical
demands are (worst-case) optimal, as soon as the preseason
(strategic) decisions are fixed, provided that all the costs
are proper convex. The second claim provides a structural
decomposition of the worst-case optimal affine ordering
policies: every such order placed in or after period t can be
seen as partially satisfying the demands that are still back-
logged in period t, with the free terms (of the affine form)
corresponding to safety stock that is built in anticipation for
future increased demands. The latter point should become
clear after the formal statement and discussion following
Lemma 4.

The model is related to that in Ben-Tal et al. (2005b,
2009) in several ways. In the latter model, the vector K

consists of a set of precommitments for orders, p11 0 0 0 1pT ,
one for each period in the selling season. The costs have
the specific form

r4K5= ÇÉ
t max401ptÉ1 Épt5+Ç+

t max401pt ÉptÉ151

ct4qt1K5= c̃t · qt +ÅÉ
t max401pt É qt5

+Å+
t max401qt Épt5+ 1qt26Lt 1Ut 7

1

ht4It+11K5=max4h̃tIt+11ÉbtIt+150

(19)

Here, c̃t is the per-unit ordering cost, Å±
t are the penal-

ties for overordering/underordering (respectively) relative
to the precommitments, Ç±

t are penalties for differences
in pre-commitments for consecutive periods, h̃t is the per-
unit holding cost, and bt is the per-unit backlogging cost;
1qt26Lt 1Ut 7

is the indicator function, equal to zero if qt 2
6Lt1Ut7, and +à otherwise. Such costs are clearly proper
convex, and hence fit the conditions of Theorem 2. Note
that our model allows more general convex production
costs, for instance, reflecting the purchase of units beyond
the installed capacity at the supplier, e.g., from a dif-
ferent supplier or an open market, resulting in an extra
cost comt max401qt ÉKt5. More general costs are also pos-
sible for holding and backlogging, as well as constraints on
the on-hand inventory.
The one feature present in Ben-Tal et al. (2005b), but

absent from our model, are cumulative order bounds, of
the form

L̂t ∂
tX

k=1

qt ∂ Ĥt1 8 t 2 811 0 0 0 1T 90

Such constraints have been shown to preclude the optimal-
ity of ordering policies that are affine in historical demands,
even in the simpler model of Bertsimas et al. (2010). There-
fore, the result in Theorem 2 shows that these constraints
are, in fact, the only modeling component in Ben-Tal et al.
(2005b, 2009) that hinders the optimality of affine ordering
policies.
The result above also strictly generalizes that of

Bertsimas et al. (2010) by allowing arbitrary convex order-
ing costs ct . As argued in the Introduction, this is a relevant
modeling extension, by allowing the possibility of captur-
ing multiple vendors with different production or distribu-
tion technologies.
We also mention some related literature in operations

management to which our result might bear some rele-
vance. A particular demand model, which has garnered
attention in various operational problems, is the martingale
model of forecast evolution (see Hausman 1969, Heath and
Jackson 1994, Graves et al. 1998, Chen and Lee 2009, Bray
and Mendelson 2012, and references therein), whereby
demands in future periods depend on a set of external
demand shocks, which are observed in each period. In such
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models, it is customary to consider so-called generalized
order-up-to inventory policies, whereby orders in period t
depend in an affine fashion on demand signals observed up
to period t (see Graves et al. 1998, Chen and Lee 2009,
Bray and Mendelson 2012). Typically, the affine forms are
considered for simplicity, and, to the best of our knowledge,
there are no proofs concerning their optimality in the under-
lying models. In this sense, if we interpret the disturbances
in our model as corresponding to particular demand shocks,
our results may provide evidence that affine ordering poli-
cies (in historical demand shocks) are provably optimal for
particular finite horizon, robust counterparts of the models.

3.3.1. Dynamic Programming Solution. In terms of
solution methods, note that Problem 1 can be formulated
as a dynamic program (Ben-Tal et al. 2005b, 2009). In par-
ticular, for a fixed K, the state space of the problem is
one-dimensional, i.e., the inventory It , and Bellman recur-
sions can be written to determine the underlying optimal
ordering policies q⇤

t 4It1K5 and value functions J ⇤
t 4It1K5,

Jt4I1K5=min
q

⇥
ct4q1K5+ gt4I + q1K5

⇤
1

gt4y1K5 def=max
d2Dt

⇥
ht4yÉd1K5+ J ⇤

t+14yÉd1K5
⇤
1

(20)

where JT+14I1K5 can be taken to be 0 or some other con-
vex function of I , if salvaging inventory is an option (see
Ben-Tal et al. 2005b for details). With this approach, one
can derive the following structural properties concerning
the optimal policies and value functions.

Lemma 4. Consider a fixed K such that the corresponding
optimal worst-case cost is finite. Then, the following results
hold:

1. Any optimal order quantity is nonincreasing in start-
ing inventory, i.e., q⇤

t 4It1K5 is nonincreasing in It .
2. The optimal inventory position after ordering is non-

decreasing in starting inventory, i.e., It + q⇤
t 4It1K5 is non-

decreasing in It .
3. The value functions J ⇤

t 4It1K5 and gt4y1K5 are convex
in It and y, respectively.

Proof. These properties are well known in the literature
on inventory management (see Heyman and Sobel 1984,
Examples 8–15; Bensoussan et al. 1983, Proposition 3.1;
or Topkis 1998, Theorem 3.10.2), and follow by backward
induction, and a repeated application of Lemma EC.1 in
the online appendix. We omit the complete details because
of space considerations. É

When the convex costs ct are also piecewise affine,
the optimal orders follow a generalized base stock policy,
whereby a different base stock is prescribed for every linear
piece in ct (see Porteus 2002).

In terms of completing the solution of the original prob-
lem, once the value function J14I11K5 is available, one
can solve the problem min

K

J14I11K5. However, as outlined
in Ben-Tal et al. (2005b, 2009), such an approach would

encounter several difficulties in practice: (i) one may have
to discretize It and qt , and hence only produce an approx-
imate value for J1; (ii) the DP would have to be solved
for any possible choice of K; (iii) J14I11K5 would, in gen-
eral, be nonsmooth; and (iv) the DP solution would pro-
vide no subdifferential information for J1, leading to the
use of zero-order (i.e., gradient-free) methods for solving
the resulting first-stage problem, which exhibit notoriously
slow convergence. These issues would be further exacer-
bated if some of the decisions in K were discrete.
These results are in stark contrast with Theorem 2, which

argues that affine ordering policies remain optimal for arbi-
trary convex ordering cost, i.e., the complexity of the policy
does not increase with the complexity of the cost function.
Furthermore, as we argue in §4, the exact solution for the
case of piecewise affine costs (such as those considered in
Ben-Tal et al. 2005b, 2009) can actually be obtained by
solving a single LP, with manageable size.

3.3.2. Proof of Theorem 2. To simplify the notation,
let d6t7

def= 4d11 0 0 0 1dtÉ15 denote the vector of demands
known at the beginning of period t, residing in D6t7

def=D1⇥
· · ·⇥DtÉ1. Whenever K is fixed, we suppress the depen-
dency on K for all quantities of interest, such as q⇤

t , J
⇤
t ,

ct , gt , etc. The following lemma proves the desired result
in Theorem 2.

Lemma 5. Consider a fixed K such that the correspond-
ing optimal worst-case cost is finite. For every period
t 2 811 0 0 0 1T 9, one can find an affine ordering policy
qaff
t 4d6t75= q

T
t d6t7 + qt10 such that

J ⇤
1 4I15

= max
d6t+172D6t+17

 tX

k=1

4ck4q
aff
k 5+hk4I

aff
k+155+J ⇤

t+14I
aff
t+15

�
1 (21)

where I affk 4d6k75 = b

T
k d6k7 + bk10 denotes the affine depen-

dency of the inventory Ik on historical demands, for any
k 2 811 0 0 0 1 t9. Furthermore, we also have

bt ∂ 01 qt æ 01 qt +bt ∂ 00 (22)

Let us first interpret the main statements. Equation (21)
guarantees that using the affine ordering policies in peri-
ods k 2 811 0 0 0 1 t9 (and then proceeding with the Bellman-
optimal decisions in periods t+11 0 0 0 1T ) does not increase
the overall optimal worst-case cost. As such, it proves the
first part of Theorem 2.
Relation (22) confirms the structural decomposition of

the ordering policies: if a particular demand dk no longer
appears in the backlog at the beginning of period t (i.e.,
b

T
t 1k = 0), then the current ordering policy does not depend

on dk (i.e., qT
t 1k = 0). Furthermore, if a fraction Ébt1k 2

40117 of demand dk is still backlogged in period t, the order
qaff
t will satisfy a fraction qt1k 2 601Ébt1k7 of this demand.

Put differently, the affine orders decompose the fulfillment
of any demand dk into (a) existing stock in period k and
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(b) partial orders in periods k1 0 0 0 1T , which is exactly the
content of the second part of Theorem 2.

Proof of Lemma 5. The proof is by forward induction
on t. At t = 1, an optimal constant order is available from
the DP solution, qaff

1 = q⇤
14I15. Also, since I2 = I1+qaff

1 Éd1,
we have b2 ∂ 0.

Assuming the induction is true at stages k 2 811 0 0 0 1
tÉ19, consider the problem solved by nature at time tÉ1,
given by (21). The cumulative historical costs in stages
11 0 0 0 1 tÉ 1 are given by

h̃t4d6t75
def=

tÉ1X

k=1

�
ck4q

aff
k 5+hk4I

aff
k+15

�

=
tÉ1X

k=1

⇥
ck4q

T
k d6k7 + qk105+hk4b

T
k+1d6k+17 + bk+1105

⇤
0

By the induction hypothesis, qk æ 0, bk ∂ 0, 8k 2
811 0 0 0 1 t É 19, and bt ∂ 0. Therefore, since ck and hk are
proper convex, the function h̃t is convex and supermodu-
lar in d6t7 on the lattice ext4D6t75 (see Example EC.1 in
the online appendix). Recalling that J ⇤

t is derived from the
Bellman recursions (20), i.e.,

J ⇤
t 4It5=min

q
6ct4q5+ gt4It + q571

we obtain that Equation (21) can be rewritten equiva-
lently as

J ⇤
1 4I15= max

d2D6t7

h
h̃t4d5+min

qt
6ct4qt5+ gt4b

T
t d+ bt10 + qt57

i
0

(23)

In this setup, we can directly invoke the result of Lemma 3
to conclude that there exists an affine ordering policy
qaff
t 4d6t75

def= q

T
t d6t7+qt10, that is worst-case optimal for prob-

lem (23) above. Furthermore, Lemma 3 also states that
sign4qt5=É sign4bt5 and sign4qt + bt5= sign4bt5, which
completes the proof.

4. Discussion of Problem 3

As suggested in the Introduction, the sole knowledge that
affine decision rules are optimal might not necessarily pro-
vide a “simple” computational procedure for generating
them. An immediate example of this is Problem 1 itself: to
find optimal affine ordering policies qaff

t 4d6t75= q

T
t d6t7+qt10

for any fixed K, we would have to solve the following
optimization problem:

min
8qt 1qt109

T
t=1

max
d6T+172D6T+17

TX

t=1


ct4q

aff
t 5+ht

·
✓
I1 +

tX

k=1

4qaff
k Édk5

◆�
0 (24)

Note that the objective function is seemingly intractable,
even when the convex costs ct and ht take the piecewise
affine form (19) considered in Ben-Tal et al. (2005b, 2009).
With this motivation in mind, we now recall Problem 3

stated in the Introduction, and note that it is exactly geared
toward simplifying objectives of the form (24). In partic-
ular, if the inner expression in (24) depended bi-affinely4

on the decision variables and the uncertain quantities,
then standard techniques in robust optimization could be
employed to derive tractable robust counterparts for the
problem (see Ben-Tal et al. 2009 for a detailed overview).
The following theorem summarizes our main result of
this section, providing sufficient conditions that yield the
desired outcome.

Theorem 3. Consider an optimization problem of the form

max
w2P


a

T
w+X

i2I
hi4w5

�
1

having finite optimal value, where P ⇢ ✓k is any poly-
tope, a 2 ✓n is an arbitrary vector, I is a finite index
set, and hi2 ✓

n !✓ are functions satisfying the following
properties:

Property 1 (P1). hi are concave extendable from ext4P 51
8 i 2I ,

Property 2 (P2). concP 4hi +hj5= concP 4hi5+concP 4hj5,
for any i 6= j 2I .

Then there exists a set of affine functions zi4w5, i 2 I ,
satisfying zi4w5æ hi4w5, 8w 2 P , 8 i 2I , such that

max
w2P


a

T
w+X

i2I
zi4w5

�
=max

w2P


a

T
w+X

i2I
hi4w5

�
0

Proof. The proof is slightly technical, so we relegate it to
§EC.3 of the online appendix.

Let us discuss the statement of Theorem 3 and relevant
examples of functions satisfying the conditions therein.
(P1) requires the functions hi to be concave extendable
from ext4P 5; by the discussion in §EC.2 of the online
appendix, examples of such functions are any convex func-
tions or, when P =Hn, any component-wise convex func-
tions. More generally, concave extendability can be tested
using the sufficient condition provided in Lemma EC.2 of
the online appendix.
A priori, condition (P2) seems more difficult to test. Note

that, by Theorem EC.4 in the online appendix, it can be
replaced with any of the following equivalent requirements.

Property 3 (P3). concP 4hi5 + concP 4hj5 is concave
extendable from vertices, for any i 6= j 2I .

Property 4 (P4). For any i 6= j 2I , the linearity domains
Rhi1P

= 8Fk: k 2K9 and Rhj 1P
= 8Gl: l 2L9 of concP 4hi5

and concP 4hj5, respectively, are such that Fk \Gl has all
vertices in ext4P 51 8k 2K1 8 l 2L.

The choice of which condition to include should be
motivated by what is easier to test in the application of
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interest. A particularly relevant class of functions satisfying
both requirements (P1) and (P2) is the following.

Example 1. Let P be a polytope of the form (3). Then, any
functions hi that are convex and supermodular on ext4P 5
satisfy the requirements (P1) and (P2).

The proof for this fact is the subject of Corollary EC.3
of the online appendix. An instance of this, which turns
out to be particularly pertinent in the context of Problem 1,
is hi4w5 = fi4bi10 + b

T
i w5, where fi2 ✓ ! ✓ are convex

functions, and bi æ 0 or bi ∂ 0. A further subclass of the
latter is P = Hn and bi = b æ 018 i 2 I , which was the
object of a central result in Bertsimas et al. (2010) (§4.3 in
that paper, and in particular Lemmas 4.8 and 4.9).

We remark that, whereas maximizing convex functions
on polytopes is generally NP-hard (the max-cut problem is
one such example (Pardalos and Rosen 1986)), maximizing
supermodular functions on lattices can be done in poly-
nomial time (Fujishige 2005). Therefore, our result does
not seem to have direct computational complexity implica-
tions. However, as we show in later examples, it does have
the merit of drastically simplifying particular computational
procedures, particularly when combined with outer mini-
mization problems such as those present in many robust
optimization problems.

As another subclass of Example 1, we include the
following.

Example 2. Let P =Hn, and hi4w5=
Q

k2Ki
fk4w5, where

Ki is a finite index set, and fk are nonnegative, supermod-
ular, and increasing (decreasing), for all k 2 Ki. Then hi

are convex and supermodular.

This result follows directly from Lemma 2.6.4 in Topkis
(1998). One particular example in this class are all polyno-
mials in w with nonnegative coefficients. In this sense, The-
orem 3 is useful in deriving a simple (linear-programming
based) algorithm for the following problem.

Corollary 1. Consider a polynomial p of degree d in
variables w 2✓n, such that any monomial of degree at least
two has positive coefficients. Then, there is a linear pro-
gramming formulation of size O4nd5 for solving the prob-
lem max

w260117n p4w5.

Proof. Note first that the problem is nontrivial because of
the presence of potentially negative affine terms. Represent-
ing p in the form p4w5= a

T
w+Pi2I hi4w5, where each hi

has degree at least two, we can use the result in Theorem 3
to rewrite the problem equivalently as follows:

max
w260117n

p4w5= min
t1 8zi1 zi109i2I

t

s.t. t æ a

T
w+X

i2I
4zi10 + z

T
i w51

8w 2 60117n1 4⇤5
hi4w5∂ zi10 + z

T
i w1

8w 2 60117n0 4⇤⇤5

By Theorem 3, the semi-infinite LP on the right-hand side
has the same optimal value as the problem on the left. Fur-
thermore, standard techniques in robust optimization can be
invoked to reformulate constraints 4⇤5 in a tractable fashion
(see Ben-Tal et al. 2009 for details), and constraints 4⇤⇤5
can be replaced by a finite enumeration over at most 2d

extreme points of the cube (since each monomial term hi

has degree at most d). Therefore, the semi-infinite LP can
be rewritten as an LP of size O4nd5. É

4.1. Application to Problem 1

To exhibit how Theorem 3 can be used in practice, we
again revisit Problem 1. More precisely, recall that one
had to solve the seemingly intractable optimization prob-
lem in (24) in order to find the optimal affine orders qaff

t

for any fixed first-stage decisions K, and this was the case
even when all the problem costs were piecewise affine.
In this context, the following result is a direct application

of Theorem 3.

Theorem 4. Assume the costs ct1ht , and r are jointly con-
vex and piecewise affine, with at most m pieces. Then, the
optimal K and a set of worst-case optimal ordering policies
8qaff

t 9t28110001T 9 can be computed by solving a single linear
program with O4m ·T 25 variables and constraints when all
decisions in K are continuous, or a mixed-integer linear
program of the same size when some of the decisions in K

are discrete.

Proof. Consider first a fixed K. The expression for the
inner objective in (24) is

TX

t=1

⇥
ct4q

aff
t 1K5+ht4I

aff
t+11K5

⇤
1

where I afft 4d6t75= I1 +
PtÉ1

k=14q
aff
k Édk5

def= b

T
t d6t7 + bt10 is the

expression for the inventory under affine orders. The func-
tions ct and ht are convex. Furthermore, by Lemma 4, there
exist worst-case optimal affine rules qaff

t 4d6t75= qtd6t7+qt10
such that

qt æ 01 bt+1 ∂ 01 8 t 2 811 0 0 0 1T 90

Therefore, ct4qaff
t 4d6t751K5 and ht4It+14d6t+1751K5, as func-

tions of d6T+17, are convex and supermodular on
ext4D6T+175, and fall directly in the realm of Theorem 3
(see Example 1).
In particular, an application of the latter result implies

the existence of a set of affine ordering costs cafft 4d6t75 =
c

T
t d6t7+ct10 and affine inventory costs zafft 4d6t+175= z

T
t d6t7+

zt10 such that

max
d6T+172D6T+17

TX

t=1

⇥
ct4q

aff
t 1K5+ht4I

aff
t+11K5

⇤

= max
d6T+172D6T+17

TX

t=1

4cafft + zafft 5
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cafft 4d6t+175æ ct4q
aff
k 1K51 8d6t7 2D6t71

8 t 2 811 0 0 0 1T 91 4⇤5
zafft 4d6t+175æ ht4I

aff
t+14d6t+1751K51 8d6t+17 2D6t+171

8 t 2 811 0 0 0 1T 90 4⇤⇤5

With this transformation, the objective is a bi-affine func-
tion of the uncertainties d6T+17 and the decision variables
8ct1 zt9. Furthermore, if the costs ct and ht are piecewise
affine, the constraints 4⇤5 and 4⇤⇤5 can also be written as
bi-affine functions of the uncertainties and decisions. For
instance, suppose

ct4q1K1p5=max
j2J t

⇢
¡T

j 4q1K5+Çj

�
1 8 t 2 811 0 0 0 1T 91

for suitably sized vectors ¡j1 j 2 St J t . Then, 4⇤5 are
equivalent to

c

T
t d6t7+ct10 æ¡T

j

�
q

T
t d6t7+qt101K

�+Çj1 8 t 2 811 0 0 0 1T 91

which are bi-affine in d6T+17 and the vector of decision
variables x

def= 4K1qt1qt101 ct1 ct101 zt1 zt105t28110001T 9. As such,
the problem of finding the optimal capacity and order pre-
commitments and the worst-case optimal policies can be
written as a robust LP (see, e.g., Ben-Tal et al. 2005b,
2009), in which a typical constraint has the form

ã04x5+
TX

t=1

ãt4x5 ·dt ∂ 01 8d 2D6T+171

where ãi4x5 are affine functions of the decision variables x.
It can be shown (see Ben-Tal et al. 2009 for details) that
the previous semi-infinite constraint is equivalent to

8
>><

>>:

ã04x5+
TX

t=1

 

ãt4x5 ·
dt + d̄t

2
+ d̄t É dt

2
· ét
!

∂ 01

Éét ∂ ãt4x5∂ ét1 8 t 2 811 0 0 0 1T 9 1

(25)

which are linear constraints in the decision variables x, Œ.
Therefore, the problem of finding the optimal parameters
can be reformulated as an LP with O4mT 25 variables and
O4mT 25 constraints, which can be solved very efficiently
using commercially available software.

When some of the decisions in K are discrete, the refor-
mulation above remains unchanged, and the LP becomes a
mixed-integer linear program of the same size. É

5. Conclusions

In this paper, we strive to bridge two well-established
paradigms for solving a particular class of dynamic robust
problems, in which a large number of first-stage decisions
must be made, which govern the constraints and cost struc-
ture of a simple (linear, one-dimensional) dynamical system.

The first is dynamic programming—a methodology with
very general scope, which allows insightful comparative
statics analyses, but suffers from the curse of dimensional-
ity, which limits its use in practice. The second involves the
use of decision rules, i.e., policies parameterized in model
uncertainties, which are typically obtained by restricting
attention to particular functional forms and solving tractable
convex optimization problems. The main downside of the
latter approach is the lack of control over the degree of sub-
optimality of the resulting decisions.
We focus our analysis on the popular class of affine deci-

sion rules, and discuss sufficient conditions on the value
functions of the dynamic program and the uncertainty sets,
which ensure their optimality. We exemplify our findings
in a class of applications concerning a retailer’s strategic
decisions and replenishment policies, where we show that
all the optimal decisions can be found by solving a sin-
gle linear (or mixed-integer) program of small size. From a
theoretical standpoint, our results emphasize the interplay
between the convexity and supermodularity of the value
functions, and the lattice structure of the uncertainty sets,
suggesting new modeling paradigms for dynamic robust
optimization.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1172.

Endnotes

1. We could also state these results in terms of W itself being
a sublattice of Hn. However, the distinction will turn out to be
somewhat irrelevant, since the convexity of all the objectives will
dictate that only the structure of the extreme points of W matters.
2. For a simplex, if W ‚ = 8w æ 02

Pn
i=1wi ∂ ‚9, then, with

the change of variables yk
def= 4

Pk
i=1wi5/‚ , 8k 2 811 0 0 0 1n9, the

corresponding uncertainty set in the y variables is W y = 8y 2
60117n2 0∂ y1 ∂ y2 ∂ · · ·∂ yn ∂ 19.
3. A function f is said to be proper if f 4x5 < +à for at least
one x, and f 4x5>Éà for every x (Rockafellar 1970).
4. That is, it would be affine in one set of variables when the
other set is fixed.
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