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We deal with the problem faced by a portfolio manager in charge of multiple accounts. We argue that because of market
impact costs, this setting differs in several subtle ways from the classical (single account) case, with the key distinction
being that the performance of each individual account typically depends on the trading strategies of other accounts, as well.
We propose a novel, tractable approach for jointly optimizing the trading activities of all accounts and also splitting the
associated market impact costs between the accounts. Our approach allows the manager to balance the conflicting objectives
of maximizing the aggregate gains from joint optimization and distributing them across the accounts in an equitable way.
We perform numerical studies that suggest that our approach outperforms existing methods employed in the industry or
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1. Introduction

Since the seminal work of Markowitz (1952), multiple
facets and extensions of the portfolio optimization prob-
lem have been studied in the literature of modern portfo-
lio theory. A key realization in this context has been that
maintaining an optimal portfolio for a client often involves
considerable levels of trading, which incur transaction costs
that can be substantial enough to erase true investment
returns (see, e.g., Perold 1988, Kolm 2009, Johnson and
Tabb 2007). From a regulatory angle, this has led to the
Securities and Exchange Commission (SEC) adopting clear
rules governing the behavior of investment advisers, com-
monly referred to as best execution rules: “As a fidu-
ciary, an adviser has an obligation to obtain ‘best execu-
tion” of clients’ transactions. In meeting this obligation,
an adviser must execute securities transactions for clients
in such a manner that the clients’ total cost or proceeds
in each transaction is the most favorable under the cir-
cumstances” (Securities and Exchange Commission 2011).
From an academic viewpoint, this has resulted in the devel-
opment of several models that appropriately capture the
many sources of transaction costs incurred when execut-
ing trades and mitigate their negative effects on net returns
(see Fabozzi et al. Chap. 11, 2010 and references therein
for a detailed discussion). In the vast majority of these stud-
ies, researchers have focused on a setting where a financial
adviser is acting on behalf of a single client in order to
optimally select, rebalance, or liquidate her portfolio.

In practice, however, financial service providers rarely
manage a single portfolio (or account) because they typi-
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cally offer their services to multiple clients simultaneously.
Such providers range from wealth management firms serv-
ing few individual investors to large investment firms in
charge of many hundreds of pension, mutual, and insur-
ance funds. In fact, there is also a recent trend in the U.S.
finance industry toward consolidation of asset management
firms, the most notable examples being the acquisition of
Barclays Global Investors by BlackRock and the Morgan
Stanley/Smith Barney merger in 2009. As a result, the same
manager can often end up advising multiple portfolios, with
either similar or quite different sizes and compositions,
reflecting potentially different objectives and requirements,
levels of risk aversion, etc.; see Savelsbergh et al. (2010).
Some of the challenges faced by a financial adviser in
charge of multiple portfolios are common with the classical
(single) portfolio case, e.g., the uncertainty of the returns,
the constraints on the positions that can be taken or on the
risk involved, etc. Thus, a natural question to ask is whether
the models and results developed in the literature for a sin-
gle portfolio should be directly applied in the case of mul-
tiple portfolios. More precisely, is it optimal to simply treat
the portfolios independently and simply apply the princi-
ples of (single) portfolio theory to manage each? Unfortu-
nately, the answer to both questions is no: leading practi-
tioners from Deutsche Bank, Goldman Sachs, and Axioma
Inc. have recently recognized that as the number and/or
size of portfolios under management grows, unique issues
pertaining to the transaction costs arise, which—if not prop-
erly accounted for—can erase true investment gains (see
O’Cinneide et al. 2006, Khodadadi et al. 2006, Stubbs and
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Vandenbussche 2009). This calls for a new approach that
extends existing single portfolio models by explicitly cap-
turing all the relevant aspects that pertain specifically to a
multiportfolio setting, while remaining well suited for use
in practice. This is the main goal of the present paper.

The crux of the difference between the single and multi-
portfolio setting lies in market impact costs. These originate
from price impact, as well as limited “at-the-money” lig-
uidity and are the primary drivers of transaction costs as the
trading volume increases.! A problematic interaction arises
between the multiple portfolios because of market impact
because the transaction costs incurred by each portfolio
heavily depend on the trading activity of other portfolios
as well. For instance, consider a situation where an adviser
manages two portfolios, A and B. Portfolio A submits a
large buy order for a particular asset. In case portfolio B
now also wanted to submit a buy order for the same asset,
the market impact costs that it would incur would be dis-
proportionately high because of reduced liquidity and price
impact from the trading activity of portfolio A.

This problem arises frequently in practice (O’Cinneide
et al. 2006, Stubbs and Vandenbussche 2009) because man-
agers often invest in similar or related assets coming from
the same pool of available risky investments; this reflects a
particular investment style, as well as issues of efficiency
(e.g., managers becoming familiar with particular invest-
ment sectors or firms). The coupling between the accounts is
furthermore exacerbated if the manager trades by aggregat-
ing the orders from several accounts together. For instance,
in the example above, the manager would typically place a
single (large) aggregate buy order for the asset, on behalf
of both portfolios A and B. This latter practice is so com-
mon that it is explicitly mentioned in the SEC regulations
(Securities and Exchange Commission 2011, see paragraph
on “Duty of Best Execution”): “In directing orders for the
purchase or sale of securities to a broker-dealer for execu-
tion, an adviser may aggregate or ‘bunch’ those orders on
behalf of two or more of its accounts, so long as the bunch-
ing is done for purposes of achieving best execution, and no
client is systematically advantaged or disadvantaged by the
bunching. An adviser may include accounts in which it or
its officers or employees have an interest in a bunched order.
Advisers must have procedures in place that are designed to
ensure that the trades are allocated in such a manner that all
clients are treated fairly and equitably.”

In view of the remarks above, it can be seen that the
problem faced by a manager advising multiple clients raises
several unique challenges compared to the classical (single
portfolio) setting. First, ignoring the problematic interac-
tions between trading activities of multiple accounts can
lead to inefficiencies that drastically reduce the benefits
of rebalancing (Khodadadi et al. 2006, O’Cinneide et al.
2006). For a management scheme to be scalable, it is there-
fore a requirement to accurately reflect such interactions,
and account for the cumulative effect of trading. This also
entails the need to specify a fair way of splitting the market
impact costs between the various accounts that are being

rebalanced. Second, since the accounts are coupled by mar-
ket impact, there are potential gains from a joint optimiza-
tion framework and the coordination of the rebalancing
trades of individual portfolios. Since such benefits could
be achieved by sharing information across the accounts,
this raises a third issue, namely the question of when and
what information to make available, so that the resulting
gains are distributed in an equitable fashion among all the
accounts.

To the best of our knowledge, the above problem, which
we refer to as the multiportfolio optimization (MPQO) prob-
lem, has been originally considered by practitioners. Sev-
eral more or less ad hoc solution approaches have been
recently documented (see Savelsbergh et al. 2010 for an
account). The one that has become the industry standard
and perhaps the simplest is to optimize each account inde-
pendently (ignoring the presence of others), perform aggre-
gated trades, and then split the resulting costs in a pro rata
fashion, i.e., charging each account proportionally to its
share of the aggregate trading activity. Such an approach
of treating the accounts in isolation suffers from multiple
weaknesses. For instance, it typically severely underesti-
mates the (true) market impact costs incurred when trading
and results in poor performance for all the clients; in fact,
this approach may not yield Pareto optimal trades, which
means that there may exist another set of trades for which
each account performs at least as well and at least one
account obtains strictly improved expected performance.
We review this approach in §2 in more detail.

In the academic literature, the first paper to introduce
the problem was O’Cinneide et al. (2006), which recog-
nized the problematic interactions between the accounts
and the resulting questions of fairness and potential bias-
ing during simultaneous rebalancing. The authors propose
a model for the MPO problem in which the objective to
be maximized is the social welfare, i.e., the sum of the
objective functions of the individual accounts, and argue
that this is fair since the solution obtained is the same as if
the clients directly competed against each other in a mar-
ket for liquidity. The issue of splitting the market impact
costs is not discussed, and the authors implicitly use in
their model the de facto solution in the industry, namely,
the pro rata scheme. Acknowledging that the social welfare
scheme may result in severe inequalities in the distribution
of the gains, Savelsbergh et al. (2010) propose solving the
MPO problem by identifying the set of portfolios that form
a Cournot—Nash equilibrium. In this model, each account
optimizes its own objective assuming the trade decisions
of all other accounts participating in the pooled trading are
given by their best response. The resulting solution has the
property that no account would have an incentive to unilat-
erally change its trades. For the case of quadratic utilities
and quadratic trading costs, Savelsbergh et al. (2010) show
how such a solution can be found by solving one instance
of a multiportfolio optimization problem. A Cournot—Nash
equilibrium solution, however, is neither necessarily Pareto
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optimal nor fair because it forces clients to participate in
an artificial game, a practice that might well violate the
SEC best execution rules. Finally, it remains a stylized
model that is intractable in the absence of strong assump-
tions. We discuss both the social welfare and Cournot—Nash
approaches in §2 in more detail.

Our contributions in the present paper are as follows.

1. We introduce a model that explicitly acknowledges
and addresses the three main challenges distinguishing the
MPO problem from the single portfolio case. Our formu-
lation is general and integrates well within the modern
portfolio theory literature. It accommodates general market
impact cost models and different trading schemes, and it
can be utilized to extend a plethora of models dealing with
a single portfolio in a multiportfolio setting (e.g., portfo-
lio construction, optimal liquidation or execution, dynamic
multiperiod models).

2. Our framework leads to a tractable convex optimiza-
tion problem, which is scalable and can be routinely and
reliably solved for large instances in practice.

3. Our framework allows the manager to jointly optimize
the trades and the split of market impact costs. In con-
trast with existing approaches where the split is constrained
(or determined ex ante) to have a specific form, our novel
approach leverages that regulations offer the flexibility to
managers to decide on the split in a fair and transparent
way, under few constraints.

4. By maximizing a suitably modified objective func-
tion, our formulation always produces Pareto optimal solu-
tions, while allowing the manager to explicitly trade off
social welfare and fairness. In effect, by utilizing our
scheme, one can virtually optimize efficiently over all
prominent and tractable solution concepts in welfare eco-
nomics, including utilitarianism, Nash bargaining solution
(Nash 1950), generalized utilitarianism (Mas-Colell et al.
1995), maximin, etc.

2. The Multiportfolio Optimization
Problem

The main goal of the present section is to formalize the
multiportfolio optimization problem and discuss the main
solution approaches used in practice and proposed in the
literature for addressing it. For simplicity of exposition, we
consider a stylized, one-period rebalancing problem; this
allows us to better emphasize the key differences between
the MPO and the single account setting as well as to com-
pare our approach with the existing literature and practice,
in §3. In §4, we discuss how the framework readily extends
to more general settings.

A financial adviser is managing n distinct portfolios (or
accounts), indexed by .7 & {1, ..., n}. For simplicity, we
assume that the same pool of m risky assets, denoted by
F={1,...,m)}, is available for investment for all clients
(for instance, this could be the entire universe of stocks in
the Standard & Poor 500).

There is a single rebalancing period, and we use w; € R™
and x; € R™ to denote the initial wealth and the rebalanc-
ing trades of the ith account, respectively. More precisely,
w;; and x; denote the initial holding and traded amounts
in the jth asset on behalf of the ith account, respectively,
and we assume that both are expressed in units of currency.
Let X = (X, X,, ..., X,) € R™ be the vector containing all
trades. Furthermore, the trades x; of the ith account are con-
strained to lie in a set of feasible trades €;,* assumed to be
a convex subset of R™. Constraints such as self-financing
requirements, proximity to a target portfolio, sector expo-
sure, and turnover can all be modeled in this framework
(see, e.g., Bertsimas et al. 1999a, Fabozzi et al. 2007,
references therein).

For each account, we introduce a function u;: R" — R
to quantify the expected utility derived by the account from
its rebalancing trades;® that is, the utility derived by the
ith account after rebalancing is u,(x;). The only require-
ments on functions {u,},.; are that they are concave and
expressed in units of currency for all accounts. The former
requirement is standard in microeconomics and portfolio
theory (Mas-Colell et al. 1995, Fabozzi et al. 2007), and the
latter becomes relevant when discussing multiple portfolios
since it allows comparing and aggregating the utilities of
several accounts (O’Cinneide et al. 2006, Savelsbergh et al.
2010). We note that the most prominent examples of such
utility functions are already expressed in units of currency,
for instance, expected return p”(w; +x;) (where p € R”
is a vector of expected returns), risk-adjusted expected
return p7(W; +x,) — A; /(W +x,)7 (W, +x;) (where 3, is
a covariance matrix, and A; > 0 reflects risk aversion), etc.

As discussed in the introduction, we consider a case
where trading is not frictionless, and as such, the transac-
tion costs incurred by the manager when rebalancing the
portfolios are nonzero. These transaction costs are com-
monly referred to as implementation shortfall in the liter-
ature. In practice, several sources of transaction costs can
be encountered, some of which are explicit (e.g., broker-
age commissions and fees, taxes, foreign exchange costs),
whereas others are implicit (e.g., bid-ask spread, market
impact, random price movement risk, opportunity cost).
We direct the interested reader to Fabozzi et al. (2010,
Chapter 11) and references therein for a detailed discussion.
In the present paper, we focus on transaction costs due to
market impact and use the terms transaction costs, imple-
mentation shortfall, and market impact costs interchange-
ably; i.e., we ignore all other sources of transaction costs.
We initially assume that the market impact cost model
used by the manager exactly corresponds to the model
that governs the actual implementation shortfall incurred
when executing trades.* After presenting our base model,
we relax this assumption and show how our framework can
be adapted to a more realistic setting, where the manager
only has partial knowledge of the actual model.
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Let the market impact costs resulting from the execution
of trades x be

;(zx;, ZX;>, (1)

i€y i€y

where x;” = max(x;, 0) and x;” = max(—x;, 0) are the buy
and sell orders for the ith account, respectively, and #: R} x
R — R is a market impact cost function, expressed in
currency units. That is, the function ¢ takes as arguments
the buy and sell orders submitted for execution and returns
the market impact costs of the orders upon execution.

Several clarifications are in order. First, note that the
arguments of 7 in (1) correspond to a trading mechanism
whereby the manager first aggregates (or bunches) all the
buy and sell orders from the accounts into a single buy and
a single sell order, respectively. As discussed in the Intro-
duction, this is common practice in multiportfolio man-
agement and is typically done for purposes of efficiency
(Securities and Exchange Commission 2011, O’Cinneide
et al. 2006, Fabozzi et al. 2007, Savelsbergh et al. 2010).
Second, by taking the arguments of ¢ to be separate buy
and sell vectors, we are effectively forbidding the possi-
bility of cross-trading, i.e., the netting of a buy and sell
order for the same security “in-house,” followed by a mar-
ket order for the remainder of the bigger trade. In §B.1
of the online appendix (available as supplemental material
at http://dx.doi.org/10.1287/opre.2014.1310), we relax this
assumption, and show how our model readily extends to
settings where cross-trading is allowed.

There is a growing literature on market microstructure
seeking to accurately model the functional form of ¢ and the
pricing and trading mechanisms resulting in such market
impact costs (see, e.g., Rosu 2009, Obizhaeva and Wang
2013, Fabozzi et al. 2010, Tsoukalas et al. 2012). For the
scope of our study, we do not adopt a particular pricing or
market impact cost model. Instead, we only make the mild
assumption that the function 7 is jointly convex in its argu-
ments, and componentwise increasing. The former require-
ment reflects that the marginal market impact cost increases
with the size of the trade, whereas the latter reflects the
natural feature that more trading results in larger costs (for
instance, due to reduced “at-the-money” liquidity). This is
a commonly made assumption in the literature and is well
aligned with empirical observations and practice (e.g., see
Bertsimas and Lo 1998, Bertsimas et al. 1999a, Almgren
and Chriss 2000, O’Cinneide et al. 2006, Brown et al. 2010,
Lim and Wimonkittiwat 2011, Moallemi and Saglam 2012).

For simplicity of exposition, we furthermore assume that
the trading activity in a particular asset does not affect mar-
ket impact costs associated with trading other assets (see,
e.g., O’Cinneide et al. 2006, Brown et al. 2010, Fabozzi
et al. 2010, Moallemi and Saglam 2012). In other words,
t is separable across assets and can be expressed as

(Zx o5 ) =0 (T 20 ) o)

i€ i€y Jjey i€y i€y

where 7;: R% — R is the associated market impact cost
function for the jth asset, and is jointly convex and com-
ponentwise increasing. In §4, we relax this assumption,
and argue how our model readily extends to deal with
cross-asset effects that may be encountered in practice
(Savelsbergh et al. 2010, Tsoukalas et al. 2012).

Before formally introducing the MPO problem, let us
first consider the standard setting, where there is a single
account, e.g., .¥ = {i}. In view of market impact costs, the
net utility derived by the account, which we denote by U,,
is the utility from its holdings, u,(W; + X;), minus market
impact costs, #(x;",x;).> The portfolio selection problem
can then be succinctly formulated as maximizing U,, sub-
ject to trading constraints, i.e.,

maximize {u,(x;) —t(x;,x;)}

subject to X; € G,. 3)

This is a direct expression of the manager’s duty to obtain
“best execution” for the clients’ transactions and has been
studied extensively in the literature since Markowitz (1952).

Consider now the case where the manager is in charge of
n portfolios, with n > 2. In contrast with the standard single
portfolio optimization problem we just discussed, the MPO
problem is more subtle. The three differentiating elements
are the following:

1. Splitting the market impact costs. The net market
impact costs incurred by the manager depend on the aggre-
gate trades and thus on the activity of all the accounts,
by (1). This immediately raises the question of how these
costs should be split between the various participants. The
SEC regulation is very strict on the matter, requiring a
“fair and equitable” treatment of each client (Securities and
Exchange Commission 2011), yet it does not specify a par-
ticular splitting mechanism.

2. Optimizing over multiple objectives. Because of mar-
ket impact costs, the net utilities of the accounts are cou-
pled. As such, a manager’s fiduciary duty requires solving a
multiobjective optimization problem, whereby the net util-
ities {U,},.s of all accounts are jointly optimized.

3. Coordination benefits. In a joint optimization frame-
work, benefits are potentially achieved by coordination and
sharing of information across the accounts. This raises the
question of when and what information to make avail-
able, so that the resulting savings are distributed equitably,
and all accounts are treated according to the “best execu-
tion” rules.

As a side remark, note that the reader might be tempted
to conclude at this point that the coupling between the
accounts has been artificially introduced in our model, as a
result of the aggregate trading done by the manager. While
aggregation is extremely common in practice, so that this
reason alone should warrant the model, we note that, even
if trading occurred separately (e.g., by deciding rebalanc-
ing trades and placing separate orders for each account),
the transaction costs incurred by each client would still
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depend on the activity of other clients because of market
impact. Furthermore, this effect would exist no matter how
the trades were executed, e.g., by splitting the order exe-
cution across larger periods of time, by placing separate
simultaneous orders, etc.

We now review the most prominent solutions proposed
in the industry and the academic literature for dealing with
the three questions above.

2.1. Splitting the Market Impact Costs

Industry. To the best of our knowledge, the most com-
mon approach employed in practice is to split the market
impact costs for a particular asset in a pro rata fashion,
i.e., to charge each portfolio a cost proportional to its share
of the total trade for that particular asset (O’Cinneide et al.
2006, Savelsbergh et al. 2010). The pro rata scheme is well
defined for market impact costs that are separable across
the assets, as in (2). In this context, when the trades for the
jth asset are {x;;};. s, the ith account is charged a cost of

Xij T _ . .
ﬁl‘j(g Xgjs E xaj>, VlEj,]EZ.
acf “aj ae.f aey

Hence, the total market impact cost charged to the ith
account is

ZZ(H (Zxaj,Zx ) Vie.s. 4)

Jjey aeg ae g

The pro rata scheme is easy to comprehend and apply
and is often perceived as fair by portfolio managers
(Fabozzi et al. 2007). However, it is not required by regu-
lators, and it is inappropriate for market impact costs that
are nonseparable across assets.® Moreover, it is also inad-
equate in case some of the accounts buy and some of
the accounts sell a particular asset. In fact, in those cases
expression (4) will not be well defined if the denominator
were zero, i.e., if the net trade were zero. Also, according
to (4), some accounts might end up being charged nega-
tive market impact costs. To overcome both these potential
issues, managers typically resort to the otherwise unreal-
istic assumption of market impact costs that are separable
for buy and sell orders; see Savelsbergh et al. (2010) and
O’Cinneide et al. (2006) for more information. Further-
more, a pro rata scheme may lead to tractability issues,
since the expression (4) is typically neither convex nor con-
cave in x. Finally, we argue in §3 that the pro rata scheme
also fails to properly reflect all interactions between the
accounts in an MPO setting, potentially resulting in an
unfair split.

Literature. The question of how to split market impact
costs has received little attention in the literature. Within
the line of research focusing on the MPO problem, all
papers that we are aware of either do not deal with that
question or adopt the pro rata split without providing any

theoretical justification (Fabozzi et al. 2007, O’Cinneide
et al. 2006, Savelsbergh et al. 2010).

A related body of work that studies fair and efficient cost
sharing mechanisms is cooperative game theory. In a coop-
erative (cost) game, there are n players contemplating form-
ing coalitions in undertaking particular projects. Typically,
the collective costs incurred by the players are lower if they
form a coalition, compared to the case where they act inde-
pendently (as is also the case in the MPO problem). Coop-
erative game theory then suggests various solution con-
cepts in sharing costs among the players in a fair way, for
instance, the Shapley value and the nucleolus concepts (see
Young 1995, Shapley 1953, Schmeidler 1969). All of these
concepts critically rely on the existence of a characteristic
function, which determines the collective costs incurred by
any coalition of players. In the case of the MPO problem,
however, the characteristic function cannot be defined: we
can only determine the collective costs of all players, i.e.,
accounts in the MPO setting, through the aggregate market
impact cost function ¢, but not the costs of any coalition
formed as a strict subset of the players. The reason is that the
costs of any coalition always depend on the trading activi-
ties of all the accounts because of market impact; thus, there
are externalities between players involved in a coalition and
players who are not, unlike the classical cooperative games.
Finally, the solution concepts of cooperative game theory
typically exhibit high computational complexity (the input
characteristic function is already exponential in ), which
renders them impractical for large n. For more details, see
Deng and Papadimitriou (1994).

2.2. Independent Solution

With regard to the second and third problems above, the
simplest approach, which seems to be the industry standard,
is to optimize each account in isolation, ignoring the pres-
ence of others (Savelsbergh et al. 2010, Fabozzi et al. 2007,
Khodadadi et al. 2006). The resulting costs are then split
pro rata. More precisely, a manager using the independent
scheme would proceed as follows:

1. Solve problem (3) for each account i € .7, and let x]"°
denote the optimal solution obtained.

2. Execute the aggregated buy and sell orders,

Z(XzI‘ND)+ and Z(XlI.ND)f ,

i€y ief

respectively, incurring a total cost according to (2).
3. Charge the ith account in a pro rata fashion for the
market impact costs, resulting in a realized net utility of

IND

UIND —u. (XIND) Z

Z IND
jey aesX aj

oS se

acy acy

), VieJ. 5)
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Note that for concave functions {u;},.s, convex func-
tion ¢, and convex sets {€,(W,)},cs, Step 1 above requires
solving a convex optimization problem in variables x;", x;°
and can be efficiently solved to optimality via convex opti-
mization techniques in many cases of practical interest
(Boyd and Vandenberghe 2004). Therefore, this approach
remains computationally tractable for a large number of
accounts and assets. Since accounts are optimized indepen-
dently and no information is shared across them, managers
often regard the solution as being “fair” with respect to all
clients (although this argument is sometimes challenged;
Savelsbergh et al. 2010).

The approach is also known to have several seri-
ous weaknesses. First, by ignoring the presence of other
accounts, it can significantly underestimate the true mar-
ket impact costs incurred by each participant. In particu-
lar, in step 1, a client anticipates a utility of u;(x]"°) —
1((xINP)*, (x}ND) ). However, the realized utility derived
by the client is actually U™P, in step 3, which is typically
smaller than the anticipated utility (O’Cinneide et al. 2006,
Savelsbergh et al. 2010). Second, based on the trades x™NP
and the pro rata split, the resulting utilities {U™P},_; in (5)
are not necessarily Pareto optimal for the MPO problem:
one can find another set of portfolio trades such that the
utility of every account is at least as large as U™P, with
some accounts further strictly improving.

2.3. Social Welfare Solution

A different approach, suggested by O’Cinneide et al.
(2006), is the social welfare scheme, whereby the manager
decides the trades so as to maximize the aggregate utility
of all the accounts, i.e., the sum of the individual utili-
ties derived from the holdings, minus the aggregate market
impact costs. In other words, the manager would use the
following scheme:
1. Solve the following optimization problem

maximize {Z 0, (x) — z(zx;, Zx;>}

ey ief ie¥
subject to x, €6€;, Vie.J, 6)
and let {x7°C},_; denote the optimal solution obtained.
2. Execute the aggregate buy and sell orders.
3. Split the resulting market impact costs in a pro rata
fashion, resulting in a realized utility of

Neoo

X
—u. (XSOC) Z ij t

soc j
jey Zae ¥ x

(S o

acy ae.¥

USOC

), VieJ. @)

As with the independent case, for concave functions
{u;};cy, convex function ¢, and convex sets {€;(W;)};.s,
problem (6) above is convex and can be solved efficiently

for realistic sizes. The formulation is grounded in micro-
economic theory (Mas-Colell et al. 1995), and the optimal
solution is known to be Pareto optimal. Furthermore, the
anticipated net utility exactly corresponds to the realized
net utility for every account.

O’Cinneide et al. (2006) argue that the solution is also
“fair” because it corresponds to the same trades obtained
if clients were competing in an open market for liquidity.
However, this notion of fairness is questionable, as one can
construct simple examples to show that particular accounts
can benefit disproportionately from the solution, at the
expense of others (see, e.g., Savelsbergh et al. 2010). More-
over, accounts that derive a net utility strictly smaller than
that obtained when they were optimized independently, i.e.,
U°¢ < UNP, could rightfully deem the social scheme as
“unfair” since it coerces them to share their complete infor-
mation with other accounts (through (6)) but results in
worse outcomes (while increasing the utility of others).

2.4. Cournot—Nash Solution

Motivated by the shortcomings of the previous two ap-
proaches, Savelsbergh et al. (2010) suggest obtaining the
trades for all the accounts by solving an equilibrium
problem. More precisely, the manager would proceed as
follows:

1. Compute the (best response) trades for the ith account
by fixing x_;, £ (x,: a #i € .¥) and solving the following
optimization problem in variables x;:

masimie {u)- T 5o (£ 0 £ )|

Jjey aeg aeg
subject to x; €6,. (8)

Solve the equilibrium problem; i.e., let xX*N be a solution
with the property that every xN is a best response to x°Y,
for any i € .F.

2. Execute the trades xN

3. Split the transaction costs in a pro rata fashion, yield-
ing a realized net utility of

CN
_u (XCN) Z Z lJ — j(Z(XCN + Z(xaCJN —>’

jey t—acy Xaj ac.y aeg

Vie¥. (9)

The solution x*N is known as the Cournot—Nash solution
and has solid foundations in microeconomics (Mas-Colell
et al. 1995). It also has the property that the anticipated
net utility corresponds to the realized net utility, for every
account.

However, a pitfall with the approach is that the optimal
solution is not necessarily Pareto optimal. Furthermore, just
as with the social welfare scheme, it is possible to have
UN < UM™P, raising the issue of fairness and willingness
to share private information.
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A third complication with the approach lies in the com-
plexity of solving the overall equilibrium problem in Step 1.
Although determining the best response in (8) can some-
times be done via convex optimization (e.g., when the utili-
ties and market impact costs are quadratic; Savelsbergh et al.
2010), the overall problem is a mathematical program with
equilibrium constraints, which is generally hard to solve
(Luo et al. 1996). One approach to bypass intractability is
to approximate the Cournot—Nash solution via an iterative
scheme: the trades x; are determined for each account i
under a guess for x_; and then the best responses are used
as a guess in the next step (Fabozzi et al. 2007). Of course,
if this process converges, it may do so very slowly and to a
solution that is not necessarily Pareto optimal.

3. Our Model

In this section, we develop our framework to deal with
the multiportfolio optimization (MPO) problem. We present
our approach for the setting and assumptions introduced
in §2; several relevant extensions are included in §4.

We first discuss our modeling choices for the three ele-
ments differentiating the MPO from the well-studied single
portfolio optimization problem, namely,

(a) splitting the market impact costs of the aggregated
trades between the individual accounts;

(b) optimizing over multiple objectives, i.e., the utilities
of the individual accounts; and

(c) guaranteeing coordination benefits to every individ-

ual account in a joint optimization framework.
We then provide the formulation of our model, followed by
a discussion. We also highlight how our formulation can be
generalized for the case where the actual transaction cost
model is unknown, with the manager having only partial
knowledge.

3.1. Splitting the Market Impact Costs

We allow the split of market impact costs to be a decision
variable of the multiportfolio optimization problem. That
is, we do not impose a particular functional form (e.g.,
pro rata, as in (4)) or any other mechanism for splitting
the market impact costs ex ante. Instead, we introduce a
minimal set of natural constraints on the split. We next
describe our approach in more detail.

To introduce some notation, let 7;; be the amount charged
to the ith account for trading the jth asset, for all i € .¥
and j e ¥. Let T € R™ be the vector containing all those
values. The net charges to the ith account, denoted by 7,
are in that case

=T,

i€y

Vie.f.

The utility that the ith account derives is then

U=u(x;)—7, Vield. (10)

Note that the individual accounts are ultimately interested
in a fair and equitable allocation of utilities {U;},.; and, as
such, in a fair decision concerning both the trades x and
the split of associated market impact costs 7.

From a regulatory perspective, there are few restrictions
pertaining to the values that the allocated market impact
costs T can take, as discussed in §2.1. As such, we only
impose the following natural constraints on 7:

(a) The amount charged to an account for trading a par-
ticular quantity of an asset is greater than or equal to the
market impact cost of trading only that quantity; i.e.,

+ —
(x5

ij’ <T"9

i

Vied, jef. (11)

(b) The amount charged to an account for trading a par-
ticular quantity of an asset is less than or equal to the exter-
nality it imposes on the aggregate market impact cost for
that asset; i.e.,

+ - + -
Tij<f1<2xaj’zxaj>_tj< DIENED'D xaj>’
ae.y acy aeI\{i} aeJ\{i}

Vied,jef. (12)

(c) The aggregate charge (to all the accounts) for trades
in a particular asset equals the aggregate market impact
cost for that asset; i.e.,

(5 T =X

acy acy acy

Vjeg. (13)

The constraints in (a) and (b) correspond to natural lower
and upper bounds on the charges to each account. In par-
ticular, (11) ensures that the charge to an account is no less
than the smallest possible it could incur, i.e., in a situation
where the other accounts would not trade. Similarly, (12)
requires that the charge is no larger than the additional mar-
ket impact cost incurred because of the account’s presence.
As a technical remark, constraints (11) and (12) are always
jointly feasible since functions ¢#; exhibit increasing differ-
ences because they are jointly convex and componentwise
increasing.

Note that there are several advantages to using our ap-
proach instead of pro rata, the only other alternative in con-
sideration. In fact, we now argue that a pro rata split may
not even be an appropriate choice for the MPO setting. To
this end, consider the following example.

EXAMPLE 1. (a) There are n =2 accounts and m = 2 assets.
Account 1 invests a unit of currency in asset 1, whereas
account 2 invests 6 units of currency in asset 1 and 1 — 6
is asset 2, where 0 < 0 < 1. That is, €, = {(1,0)} and
€, =1{(6,1—6)}. Both assets are equally attractive to the
accounts; i.e., #, and u, are constant. The market impact
cost functions for the two assets are

Ht xT) = (") 4 (x7)
tLxt, x) =32 +3(x)A
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Suppose that account 2 is ignorant of the trading activity of
account 1, e.g., as described in §2.2. In that case, it is easy
to see that account 2 would trade x, = (0.75,0.25), i.e.,
trade 0 = 0.75, in order to minimize its own anticipated
market impact costs. The associated market impact costs of
the pooled trades are

t,(14+0.75,0) = 1.75* = 3.0625,
1,(040.25,0) =3(0.25)> = 0.1875.

A pro rata split of the market impact cost for asset 1 would
charge account 1 with 1.75 and account 2 with 1.3125.
Similarly, for asset 2, account 1 would be charged 0 and
account 2 would be charged 0.1875. The net charges would
be 1.75 for account 1 and 1.5 for account 2.

(b) Consider the same setting as in (a), but where the
manager jointly optimizes the two accounts. In particular,
in view of the high trading activity of account 1 in asset 1
(since account 1 trades x; = (1,0)), account 2 lowers its
target level 6 in Asset 1 from 0.75 to 0.5, in anticipation
of high market impact costs. That is, account 2 now trades
x, = (0.5, 0.5). In this scenario, the resulting market impact
costs are

t,(14+0.5,0) = 1.5 =2.25,
,(0+0.5,0) =3(0.5)> =0.75,
and a pro rata split would charge both accounts with 1.5.

In comparing scenarios (a) and (b) in Example 1, note that
account 2 is charged the same amount in both, whereas
account 1 is charged 0.25 less in (B). That is, despite that
account 2 adjusts its trading activity to lower aggregate
market impact costs, it is unable to harvest any of those
gains. On the contrary, account 1 is awarded all the benefits.

The example above illustrates that the pro rata split fails
to account for adjustments in trading activities of individ-
ual accounts when a manager jointly optimizes. More gen-
erally, a pro rata split mechanism is based only on the
actual trading activity and does not incorporate all inter-
actions between the accounts in an MPO setting. In con-
trast, our approach allows the manager to account for such
interactions.

Furthermore, as discussed in §2.1, (a) the pro rata split
is inappropriate in cases where market impact costs are
nonseparable across assets or when some accounts buy and
others sell and (b) may lead to issues of tractability. Our
approach of allowing the market impact cost split to be a
decision variable of the optimization framework overcomes
all those weaknesses.

Finally, compared to deciding the splitting mechanism
ex ante, our approach provides more flexibility in opti-
mizing over the utilities of the accounts, which is dis-
cussed next.

3.2. Optimizing Over Utilities

The MPO problem is a classical multiobjective optimization
problem, where the manager needs to optimize performance
by balancing n objectives, namely, the utilities {U;,},. s of the

accounts. By deciding on the trades x and split of associated
market impact costs T, the manager decides, in essence, how
utility (and gains) are allocated among the n accounts.

The aforementioned utility allocation problem has been
well studied in welfare economics and bargaining (see
Nash 1950, Mas-Colell et al. 1995). The standard solution
approach in this line of literature is the introduction of a
welfare function f: R" — R of the allocation of utilities,
which is used by the manager to rank allocations (see, e.g.,
Bergson 1938, Samuelson 1947). That is, if for a particular
allocation of trades and split of costs, the accounts derive
utilities {U,},. s, the manager values this allocation accord-
ing to f(U,,...,U,). Consequently, the manager selects
the trades and split of costs that maximize f over the set
of feasible trades and splits.

Typically, f is assumed to be componentwise increasing
and concave. Monotonicity is a natural requirement in view
of the manager’s fiduciary duty to the clients. Concavity
allows f to exhibit diminishing marginal welfare increase
as utilities increase and thus to possess fairness proper-
ties. To illustrate this, consider a situation where account A
derives a lower utility than account B. A marginal increase
in the utility of account A would then yield a higher wel-
fare increase compared to a marginal increase in the utility
of account B. As such, the former would be more desirable
for the manager. This property of concave welfare func-
tions typically leads to more even or fair distributions of
utility; see also Bertsimas et al. (2012).

Some of the most prominent instances of welfare func-
tions are the following:

e The utilitarian welfare function, also referred to as
social welfare function, corresponds to the sum of the indi-
vidual utilities (see §2.3). It is a natural choice in appli-
cations where the sum of the utilities corresponds to some
measure of system efficiency. On the other hand, such an
objective is neutral toward potential inequalities in the util-
ity distribution among the players. It is therefore possible
that the utilitarian solution is achieved at the expense of
some players (see Young 1995, Savelsbergh et al. 2010
for an example). That is, the utilitarian objective puts no
emphasis on the fairness properties of the allocation but
rather on the net aggregate utility of all players.

Furthermore, note that the aforementioned shortcoming
of the utilitarian function is exacerbated in our setting by
differences in the sizes of the individual accounts. In par-
ticular, consider a situation where the size of one account is
considerably larger than all others. Naturally, trades associ-
ated with the large account are more likely to be larger and
thus to incur higher transaction costs. In optimizing aggre-
gate utilities, the utilitarian function is then more likely to
systematically focus on optimizing the trades of the large
account at the expense of the smaller accounts. To allevi-
ate this, a manager could use the relative utilitarian welfare
function instead, which maximizes relative profits instead
of absolute ones.”
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e The maximin welfare function corresponds to the min-
imum utility derived by the players.® Unlike the utilitarian
function, the maximin function has well established fair-
ness properties, based on the Rawlsian concept of justice;
see Rawls (1971) and Mas-Colell et al. (1995). However,
the equitable allocation of utility under the maximin objec-
tive is often achieved at the expense of aggregate utility,
i.e., social welfare; see Bertsimas et al. (2011).

e The constant elasticity (or a-fairness) parameterized
family of welfare functions, given by f(U,,...,U,) =
Y (UM /(1 —a), for a > 0. This family subsumes util-
itarianism (a = 0), the Nash bargaining solution (@ — 1),
as well as maximin (¢ — o0). In fact, by varying «, one
adjusts attitudes toward inequity. For more details, we refer
the reader to Bertsimas et al. (2012).

As the discussion above suggests, the manager needs to
select a welfare function that trades off social welfare
(sum of utilities) and fairness (equitable allocation of util-
ities). Such a selection problem is very relevant, but rather
involved in practice. It entails the adoption of a particu-
lar fairness scheme, out of the multiple proposals in the
abundant literature, ranging from welfare economics to phi-
losophy. A discussion of such a choice is outside the scope
of our paper, but we note that the framework introduced
here is flexible enough to capture most sensible existing
propositions. We direct the interested reader to Bertsimas
et al. (2012) for a thorough overview of the literature and
for guidelines of how the choice could be made in practice.

For our purposes, we assume that the manager has
selected a concave, componentwise increasing welfare
function f that is to be maximized in order to decide the
trades x and split of associated market impact costs 7. In
§5, we discuss the utilitarian and maximin welfare func-
tions, adapted to the MPO setting, in more detail.

3.3. Coordination Benefits

Unlike the independent solution, where each account is
optimized separately and no private information is shared
(see §2.2), in an MPO setting the manager jointly optimizes
all accounts, and thus private information is being shared.
In accordance with the best execution rules, the manager
needs to ensure that such coordination yields gains to every
individual account or at least does not inflict losses. Hence,
we introduce the following constraints:

Ui=ui(xi)_7i>UiIND’ VieJ. (14)

That is, the utility of every account i needs to be at least
as large as its utility under the independent solution UMNP,
where no information is shared. Otherwise, the ith account
releases its information at a loss. Put differently, these
constraints ensure that the MPO framework results in a
Pareto improvement over the practice of treating accounts
independently.

3.4. Main Formulation

We next provide the formulation of our solution approach
for the MPO problem, based on our modeling choices

introduced above. The manager determines the trades x and
the split of market impact costs T by solving the following
convex optimization problem, in variables x, x*, x~ and 7:

maximize {f(u,(x,) =7, ..., u,(x,) —7,)}
Vie.¥,
Vie.¥,
VieJ,
Vie.¥,

subject to x; € G,
X, =X —X,
X, x; >0,
T, = ZTU,
je¥

+
ij

(P ) B S

ae.F\{i} ae.F\{i} aeI\{i}

t(x x;)<T1y, Vied, jef, (15a)

Vie¥, jet,

tj(Z X Z%}) <D Ty

ae.y ae.y acy

ui(x;)— 1. >U", Vied.

(15b)

Vie¥, (15¢)

(15d)

Constraints (15d) correspond to the coordination ben-
efits constraints (14). Constraints (15a)—(15c) correspond
to (11)—(13), where (12)—(13) are reformulated equivalently
so that the problem remains convex. To see this, note that
by combining (12) and (13), we get (15b) by substitution.
Finally, constraints (13) can be relaxed to inequalities, as
in (15¢), since they will be tight at optimality because f is
componentwise increasing.

We now discuss the relative merits of our approach:

1. Our formulation allows the manager to jointly opti-
mize the trades and the split of market impact costs in order
to maximize the welfare objective. In contrast with existing
approaches where the split is constrained (or determined
ex ante) to have a specific form, our approach leverages that
regulations offer the flexibility to managers to decide on the
split in a fair and transparent way, under few constraints.

2. Our formulation leads to a tractable, convex optimiza-
tion problem that is scalable and can be routinely and reli-
ably solved for large instances in practice.

3. Our formulation produces utilities {U;},.; that are
Pareto optimal while also allowing the manager to trade
off social welfare and fairness by selecting the welfare
function f. By utilizing the convex feasible set of prob-
lem (15), one can virtually optimize efficiently over all
prominent and tractable solution concepts in welfare eco-
nomics, including utilitarianism, Nash bargaining solution
(see Nash 1950), generalized utilitarianism (see Mas-Colell
et al. 1995), maximin, a-fairness, etc.

4. Our formulation is general enough to capture a mul-
titude of interesting extensions that could be relevant in
alternative settings. For instance, problem (15) accommo-
dates any market impact cost function ¢ (as long as it is
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convex and increasing), including market impact cost func-
tions that capture cross-asset effects. Problem (15) can also
be generalized to multiperiod models, settings where cross-
trading is allowed, etc. Finally, our formulation can also be
extended to capture uncertainty in the market impact cost
function and allow the manager to hedge against it.

3.5. Unknown Transaction Costs

A standing assumption made so far was that the manager’s
transaction cost model exactly corresponded to the model
governing the actual costs incurred upon execution. In real-
ity, however, the manager has access to models that are at
best capable of estimating transaction costs (e.g., in expec-
tation); realized costs are a priori unknown and potentially
deviate from estimates.

We now relax this assumption. When costs are a pri-
ori unknown, it is no longer appropriate for a manager to
decide the split using the static formulation (15); instead,
a dynamic mechanism is required to determine how real-
ized transaction costs should be divided among the multiple
portfolios ex post.’

We first refine the model for transaction costs. We
assume that the market impact costs associated with trades
xT and x~ in the jth asset are now random and are given
by 7;(x*,x",&). Here, £ is a random vector capturing
all sources of noise that affect the market impact costs.
In keeping with the assumptions in §2, we consider func-
tions 7 ; that are jointly convex and componentwise increas-
ing in their arguments, for any value of &. To avoid techni-
cal complications, we further assume that the distribution
for & is such that all the expectation operators are finite.

We assume that the manager has access to an unbiased
estimator of the true market impact costs, i.e., is able to
reliably estimate the function

(e, ) =E[5 (", x7, )], (16)

where E[-] denotes the expectation operator.

Using the predictive model above, the manager needs to
decide on the trades x for all the portfolios under manage-
ment. After the trades are executed, the manager is only
able to observe the realized transaction costs associated
with the actual trades, namely,

Z; gtj(Z Xgi» D Xaps ‘g)’

acy acy
for each asset j € ¥. She then needs to decide how to split
these costs among the portfolios.

The key distinction between this setting and the one we
have considered so far is that the manager is no longer
able to choose a (static) split of the market impact costs,
to be computed ex ante; instead, this split now depends
on the realized market impact costs. More precisely, let-
ting Z denote the random vector with components Z ;and z
denote a realization of Z, the manager now needs to select

a set of adjustable policies'® 7; such that 7,,(z) represents
the ex post amount charged to the ith portfolio for trad-
ing in the jth asset. These policies, which are now part of
the manager’s decision process, would then be required to
obey certain constraints that are natural counterparts of our
framework in §3.

In this context, the manager would solve the following
stochastic optimization problem to determine the trades x
and the policies 7;:

(SP)  maximize {f(u;(x,)—E[1,(Z)],...,u,(x,)

subject to
X, €6, Vield,
Xi:X:——Xi_, Viej,
xh,x; 20, Vield,
(Z)=Y1,(Z) as., Yield,
je¥
E[7,(x}. x;. &) <E[7;(Z)]. VieJ. jed. (17a)
[El:fj( Y xXbs Xois §>i|< [E[ > Tuj(Z)i|,
ae J\{i} aef\{i} ae.F\{i}
Vie¥,je¥, (17b)
fj(z X Zx;j,ij) =Y Taj(Z) as., Vje¥, (17¢)
aey aey aey
u(x) —E[7,(2)] > U™, Vies, (17d)

where “a.s.” denotes almost surely, i.e., for all realizations
except perhaps on a set of measure zero.

Let us comment on the formulation. First, note that the
objective function involves terms capturing the expected
total charge to each account. This is consistent with our
interpretation that u; are expected utilities and is the stan-
dard approach in the literature (Fabozzi et al. 2010).
Second, note that we require the constraints (17a), (17b),
and (17d) to hold in expectation. The main reason behind
this choice is pragmatic. Recall that the counterparts of
these constraints in our original deterministic framework,
i.e., Equations (11), (12), and (14), respectively, were all
based on counterfactuals, i.e., hypothetical scenarios of
what the market impact costs would have been under differ-
ent sets of trades. In the current setting, the manager does
not observe the true market impact costs under any set of
trades except the executed ones. However, ex ante, counter-
factual costs can still be inferred in expectation, using the
unbiased estimator 7;. Therefore, imposing these constraints
is still meaningful because they ensure that feasible cost
allocation policies do not systematically favor a portfolio
over another.

In contrast, note that we require constraints (17¢) gov-
erning the distribution of the total transaction cost to hold
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almost surely. Such a requirement is not based on any coun-
terfactuals and is necessary since the realized transaction
costs must always be covered, in every state of the world.

The main question remaining is how to solve prob-
lem (SP). Note that this is a two-stage stochastic program
since 7; are adjustable policies allowed to depend on the
realization of the random vector Z. The following result
provides a solution to this problem.

THEOREM 1. Let x}, (x})*, (x)7, 7}, and 7} be an optimal

solution to problem (15) with t; given by (16). Then X;,
(x)* (x)7,

—*

* def Tij
Tij(Z)=—j-Zj, VZ’ (18)

and

7 (2) =) _7(2)

jey
are an optimal solution for problem (SP).

A proof of the theorem is included in §A of the appendix.
The result above provides an implementable, optimal solu-
tion in case of unknown transaction costs: the manager first
decides on the trades and plans to split the market impact
costs “in expectation” by solving problem (15). The real-
ized transaction costs are then split in a pro rata fashion,
according to the values 7}, obtained originally.

We believe that from a practical perspective, the scheme
can be attractive to a manager. As an enhancement to the
deterministic framework in (15), it is simple, intuitive, and
relatively easy to justify to the account holders. To com-
pute the optimal trades and policy for splitting the ex post
costs, the same convex optimization problem (15) must be
solved. Critically important, the manager only requires an
unbiased estimator for the mean transaction costs, which
should be considerably easier to obtain than an accurate
model for fj and the distribution of &—for instance, the
manager could directly use one of the deterministic market
impact cost models in the literature (effectively assuming
that they provide unbiased estimates for the mean market
impact costs) and then prorate the ex post realized costs
according to (18).

4. Extensions

In this section, we present several important modeling
extensions that can be readily embedded in our framework
and conclude with a discussion.

4.1. Cross-Asset Price Impact

The base model we focused on in §§2 and 3 relied on the
assumption that the trading activity in one asset does not
affect the prices of other assets, which lead to the mar-
ket impact cost function having the separable form in (2).
In practice, however, that may not be true: for instance,

large trades in the stock of one company can often attract
more trading (and hence price impact) in stocks of related
companies; see Bertsimas et al. (1999b).

As we now argue, our framework readily extends to such
a case. In fact, the only modification required pertains to
the market impact cost split variables T and the associated
constraints (11)—(13). More precisely, instead of deciding
separate charges 7;; for each account i in each asset j, the
manager would directly decide the total charge 7; for the
ith account. This results in the following counterparts of
our prior constraints:

an: (xf.x7) <7, Vield,
(12): Ti<f<ZXZ’ZXZ)—f< 2Xi 2 x;>,
ac.¥ ac¥ aeF\{i} aeF\{i}
Vie ¥,
(13): 27a=t(zx;,zxa),
aeg aef ae ¥

The intuition is identical to that discussed in §3; the sole
modification is that the constraints are now written cumu-
latively across assets. The manager can then solve the fol-
lowing MPO problem to determine x and 7:

maximize {f(ul(xl) — Ty U, (X,) —Tn)}
Vie.J,
Vie.y,
Vie.¥,
Vie.t,

subject to x; € G,

X, =X —x-

i i i
+ -
X7, x; >0,

1

(T s T x)<xa

ae9\{i} ae9\{i} ae9\{i}

t(x,x;7) < 7,

Vie.¥,

(zx.Tx)<Tr

ac¥ ac¥ acy

u(x;)—1.=>UN", Vied. (19)

We note that nonseparable market impact costs pose a
challenge for standard schemes used in practice since the
pro rata sharing fails to capture the cross-asset effects, in
contrast to our model.

Note that formulation (19) subsumes our original
model (15) since it deals with a more general case. In fact,
the former problem is more compact, involving fewer vari-
ables than the latter, and @(n) constraints instead of @(mn).
A natural question to ask in this context is whether the two
formulations are equivalent when the market impact cost
function ¢ is separable across assets. The following theorem
formalizes this relationship.

THEOREM 2. Suppose that the market impact cost function t
is separable across assets; i.e., it satisfies (2), and t(0) = 0.
Then the feasible set of (19) is identical to the feasible set
of (15) projected on the variables {x;, X}, X, T;};c.¢. In par-

ticular, the two formulations have the same optimal values.
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A proof of the theorem is included in §A of the appendix.
The additional requirement #(0) = 0 is trivially true in prac-
tice. In this sense, the result in Theorem 2 becomes very
relevant from a pragmatic viewpoint: even when the mar-
ket impact costs are separable, the manager can find the
optimal trades x; and optimal charges 7; for each account
by solving the more compact formulation (19).

4.2. Multiperiod Models

The models discussed thus far have been primarily focused
on single period portfolio selection. In practice, however,
most portfolio optimization problems are dynamic, involv-
ing (investment) decisions taken at multiple points in time.
In this section, we demonstrate how our framework can be
extended to such a setting. The literature on multiperiod
models for single portfolio optimization is already vast,
covering various facets of the problem (see, e.g., Fabozzi
et al. 2010, Brown and Smith 2011 for more references).
For illustration purposes, we focus on one particular appli-
cation, which has attracted considerable interest, particu-
larly in the context of market impact costs.

More precisely, we consider the optimal execution prob-
lem faced by a manager liquidating a large portfolio and
seeking to minimize trading costs by splitting the trades
across several periods in time. Because of market impact,
short-term return predictability, and/or potential constraints
on trading, the problem of finding an optimal execution
schedule is nontrivial and has received considerable atten-
tion in the literature (see, e.g., Bertsimas and Lo 1998,
Almgren and Chriss 2000, Moazeni et al. 2010, Tsoukalas
et al. 2012, and references therein). The setting that we
adopt here is most closely aligned with that in Moallemi
and Saglam (2012), to which we direct the interested reader
for details and discussions of underlying assumptions. We
first describe the single portfolio model in the former paper
and then extend it to the MPO setting.

We consider a manager who would like to liquidate a
single portfolio with initial holdings w(0) € R before a
final time 7. We assume that trades occur at discrete times
k=1,2,...,T and define the execution schedule as the
collection (x(1),x(2), ..., x(T)), where x(k) € R™ denotes
the trades executed in time period k (positive and nega-
tive components denote buy and sell orders, respectively).
As such, the holdings of the portfolio at the beginning of
period k are given by w(k) = w(0) + >*_, x(k).

The portfolio holdings and the trading schedule must
typically also satisfy certain constraints. In an execution
problem, natural requirements are w(7') = 0, i.e., the entire
portfolio should be liquidated, and x(k) <0, i.e., only sell-
ing should occur during the trading horizon.

Let r(k+ 1) € R” denote the price changes in the m
assets from period k to k + 1. We assume that r(k+1)
are driven by K factors F(k) € RX, which follow a mean-
reverting process. More formally, we consider the following

dynamics for the price changes and factor realizations
(see Moallemi and Saglam 2012 for details):

F(k+1)=1—®)Fk)+eV(k+1),
r(k+1)=p+BF(k) +e?(k+1),

where B € R™*X is a constant matrix of factor loadings;
® € R¥*K is a diagonal matrix of mean reversion coeffi-
cients; p € R” is the mean return; and the noise terms are
independent (across time and returns/factors), normally dis-
tributed, with zero means and covariances

cov(eW(k+1)) =¥ e RF*K  and
cov(e®@(k+1)) =2 e Rm™,

When executing a trade x in any period k, the manager
incurs transaction costs (primarily due to market impact),
modeled as #(x) = 1x”Ax, where A € R™" is a positive
semidefinite matrix. As in Moallemi and Saglam (2012), we
assume that the manager is risk neutral, and his objective is
to maximize the total expected excess profits from trading,
net of transaction costs.

Since the returns are stochastic, the decisions taken by
the manager do not have to be fixed, i.e., static; instead, the
manager can choose trading schedules that consist of nonan-
ticipative dynamic policies."' Finding the optimal such pol-
icy is generally computationally intractable because of the
high dimensionality of the problem (one must keep track
of the portfolio weights in each asset). As such, a natu-
ral approach is to look for suboptimal policies with good
performance. For our subsequent analysis, we focus on
only one such policy, namely, model predictive control
(MPC), which is well established and often delivers good
performance in practice (we direct the interested reader
to Moallemi and Saglam 2012, who compare this with sev-
eral other alternatives).

In the MPC heuristic, at each trading time k, the manager
would solve a problem over the remaining periods &, k +
1,...,T, to determine a deterministic execution sched-
ule (x(k),x(k + 1),...,x(T)) conditional on the avail-
able information but would only implement the first trade
x(k). More formally, the manager would solve the following
quadratic program:

x(k),....x(T)

maximize {XT:(W(S)TB(I — @) FF(k) — %x(s)TAx(s))}

s=k
subject to x(s)=w(s) —w(s—1), Vselk,...,T},
x(s)<0,w(s) =20, Vseik,...,T},
w(T)=0. (20)

Let us now consider an MPO setting, where the manager
is in charge of liquidating n accounts, indexed by i € ..
Just as with the setting in §2, the presence of market impact
costs would again result in questions concerning an appro-
priate split of trading costs as well as designing the optimal
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execution schedules that appropriately take this subsequent
split into account.

We adopt the framework introduced in §3, suitably ex-
tended. In particular, at any stage k in time, the manager
would solve the following MPO equivalent of the MPC for-

T

maximize f(z (W ()" B(I— D) *—1,(s)),...,

;(wn(s)TBu—cb)”—n(s)))

subject to X;(s)=w;(s)—w,(s—1),

Vselk,...,T}, Vield,
x;(s)<0,w,(s) =20, Vsefk,...,T}, Viely,
w,(T)=0, VieJ,
x,()"Ax,(s)<7,(s), Vsefk,....T},

Vied?,

( > xa<s>)TA( > xa<s>)< PEACH

aeF\{i} aeF\{i} ae J\{i}
Vsefk,...,T}, VieJd,

%(g"““)> A@X“(S)) PRIC)
Vselk,...,T},

S (W) B~ ®) — 7.(5)) > UM (),

s=k

Vie . (21)

Few remarks are in order. First, U™P (k) has the same inter-
pretation as in §2—it reflects the realized net utility that
would be obtained by the ith account, when problem (20) is
solved for each account in isolation to determine the optimal
execution schedule conditional on the available information,
but then the trades are actually aggregated and the resulting
market impact costs are split in a pro rata fashion.

Second, cost allocation in the above formulation is per-
formed on a per-period basis, since in practice managers
often face accounting requirements and need to report trades
and cost allocations at every period. In the absence of
such requirements, however, problem (21) can be reformu-
lated using a single cost allocation, thus providing more
flexibility.

Third, note that extending the MPC scheme to an MPO
setting essentially entails solving the same class of prob-
lems, but with suitably enlarged sizes. As is typical in an
MPC scheme, a manager would only implement the deci-
sions for period k resulting from the solution of prob-
lem (21); i.e., he would effectively execute the first set of
trades {x;(k)};,c; and split the resulting transaction costs
according to {7;(k)};cs. In period k + 1, a similar model

would then be solved to determine trades and cost splits
for k + 1,..., T. Therefore, conceptually, the model is as
straightforward to implement and test as the single portfolio
setup in (20). However, it does require solving larger prob-
lems; for instance, problem (21) has @(mnT') variables and
constraints. We further explore this issue in §5.

Finally, note that Theorem 2 is readily applicable in this
setting as well; as such, one could equivalently reformulate
problem (21).

4.3. Discussion

The extensions discussed above highlight that our frame-
work is general and adapts readily to important settings
other than the one considered in §2. In fact, we argue that
our framework can be leveraged to extend many models
proposed in modern portfolio theory that deal with man-
aging a single portfolio in frictional markets, to the case
of multiple portfolios. Our claim is because for piecewise
linear f,'? our framework does not change the underlying
complexity of an optimization model for a single portfolio.
That is, the addition of the extra variable 7 for the trading
costs split, the split constraints (11)-(13), and the coordina-
tion benefits constraints (14) do not change the complexity
of an optimization model for a single portfolio that already
accounts for transaction costs. For instance, consider the for-
mulation for asset allocation proposed by Bertsimas et al.
(1999a) that involved solving a mixed-integer linear opti-
mization problem. Their model can be readily extended to
a multiportfolio setting where one similarly needs to solve
a mixed-integer linear optimization problem. Similarly, the
deleveraging problem considered by Brown et al. (2010)
involves a quadratically constrained quadratic optimization
problem in the single portfolio case; the same holds true
if one were to extend that model for a multiportfolio set-
ting. In case the selected welfare function f is not piecewise
linear, our formulation still leads to a convex optimization
problem as long as the original single portfolio problem is
also convex.

As per the discussion above, our framework leads to scal-
able and tractable extensions of many single portfolio opti-
mization problems studied in the literature. Other relevant
extensions include situations where cross-trading of assets
is allowed between accounts, transaction cost models that
capture permanent price impact effects, and cases where
other types of nonseparable transaction costs are present
(e.g., fixed costs or fees, etc.) The first two aforementioned
extensions are discussed in detail in §B of the appendix.

5. Numerical Studies

We present studies that illustrate the performance of our
framework in practice.
Numerical Study 1. A manager is in charge of n = 3 port-
folios, investing in a market consisting of m = 100 assets.
There are 20 factors that drive the returns of the assets,
assumed to be independently and identically distributed fol-
lowing a standard normal distribution. The return of the jth
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assetis r; =pu; —l—aij +€;, where u; is the expected (annu-
alized) return, f is the vector of factors, a y is the vector of
exposure coefficients to the factors and €; is an idiosyncratic
noise term. The noise terms are independently and identi-
cally distributed, following a zero-mean normal distribution.
Let X be the covariance matrix of the returns {r;},.;. The
exposure coefficients and the volatilities of the noise terms
are randomly selected, subject to the (annualized) volatil-
ities of the returns being between 15% and 45%. Simi-
larly, the expected returns p are randomly selected between
—20% and 40%.

The market impact cost function is quadratic and separa-
ble across assets as well as separable and symmetric across
buys and sells. That is, the market impact cost for trading
the jth asset is given by

Lt ) = () 4 (0)2).

The coefficients {a;},.; are randomly selected between 2
and 10. We use such a simplistic and stylized model for
impact costs (a) for simplicity of the exposition and (b) in
order to be able to compare the performance of our frame-
work with all the solution concepts that have been proposed
so far."’

The initial holdings {w,};,.; are assumed to be three
different market indices that the portfolios are tracking.
Their compositions are randomly generated, subject to their
(annualized) volatilities being o, = 5%, o, = 10%, and
o3 = 20%, respectively. Accounts 1 and 3 are of the same
size, whereas account 2 is twice as large; i.e., 17w, =
117w, =1"w;, where 1 is the vector of all ones.

The manager needs to perform self-financing rebalancing
trades x, such that the turnover for each account is at most
10% and its risk exposure does not increase; i.e.,

€ ={xeR" [1"x,=0, x|, <10%-1"w,
(W, +x) 2w, +x,) < (0; 1"'w)*}, Vied.

For simplicity, we assume that the ith account derives
utility equal to the (expected monetary) profits it makes
because of trading; i.e.,

u;(x)=p'x;, Vied.
One could equivalently consider normalizing the utility of
each portfolio by its wealth. That is, one could consider the
quantities pw7x;/17w,, Vi € .¥, that correspond to the active
returns of the accounts and the quantities U,/ 1Twi, VieJ,
that correspond to the netr active returns of the accounts
(adjusted for transaction costs). In fact, these are the values
we report in our numerical results since they yield a (nor-
malized) performance measure that is more readily inter-
pretable and compared across the accounts.

We first consider the independent solution for deciding
the rebalancing trades (see §2.2) that we view as the baseline

case. We then consider the MPO solutions of social wel-
fare and Cournot—Nash (see §§2.3-2.4). We contrast them
with the maximin solution, which we obtain by utilizing our
framework (see §3). That is, we make a particular selection
for the welfare function f in our framework (15) that spec-
ifies how we trade off efficiency and fairness. Note that as
we discussed in §3, such a selection depends on what one
considers as “fair,” details of which are outside the scope
of this paper; the selection of the maximin function is made
here for illustration purposes and is discussed next.
For the maximin solution, we have

{—U" — U™ } (22)

f(Ul’Uz’---vUn)=rgn {/IND

J

Recall that U, is the utility of the ith account, adjusted for
transaction costs, for the maximin solution under consid-
eration; see (10). Similarly, U™P is the utility under the
independent solution; see (5). The welfare function f eval-
vated at {U,},.; equals to the minimum increase in utility,
relative to the utility under the independent solution, across
all accounts.!* One can think about the maximin solution
as follows. The independent solution is the case where the
accounts do not “cooperate” and are optimized indepen-
dently. Under the MPO maximin approach, the accounts do
“cooperate” and are jointly optimized. Moreover, the gains
from joint optimization are split in a way that maximizes
the minimum (relative) benefit of each account from this
“cooperation.”

The outcomes of the numerical study are included in
Tables 1 and 2. We report the active returns, transaction
costs, and net active returns of the portfolios under the dif-
ferent schemes we consider. We also report as Total the
corresponding values for the portfolios in aggregation.'
Figure 1 depicts the increase of the net active return of each
portfolio under the MPO schemes, relative to the indepen-
dent scheme.

The results confirm our earlier claims. In particular,

e By optimizing the accounts in isolation, the indepen-
dent scheme generates trades with significant overlap. This
translates in realized market impact costs that are signifi-
cantly larger then anticipated ones, which, in turn, imply
realized net utilities considerably smaller than anticipated
ones (as reflected in Table 1, the latter are by 15%-30%
smaller than the former).

e All MPO schemes (social, Cournot—-Nash, and maxi-
min) result in lower market impact costs for the accounts
(compare the results of Table 2 with those realized under
Table 1). In this particular study, this also translates into
strictly improved net utilities for all accounts compared to
the independent scheme, as reflected in Figure 1.

e The three schemes discussed have very different fair-
ness properties. As shown in Figure 1, both social and
Cournot—Nash tend to result in widely different improve-
ment levels for the accounts. Under social, the first two
accounts improve their net active returns (as compared to
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Table 1.

Anticipated and realized active returns (i.e., normalized utilities u,); transactions costs; and net active returns

(i.e., normalized utilities U, adjusted for transaction costs), for the three portfolios under the independent scheme

in numerical study 1.

Independent
Anticipated Realized
1 2 3 Total 1 2 3 Total
Active return (in %) 2.37 2.24 241 2.32 2.37 2.24 241 2.32
Transaction cost (in %) 0.39 0.84 0.64 0.67 0.98 1.05 1.23 1.08
Net active return (in %) 1.99 1.41 1.77 1.64 1.39 1.19 1.18 1.24

Table 2.

Realized active returns (i.e., normalized utilities u;); transactions costs; and net active returns (i.e., normalized

utilities U, adjusted for transaction costs), for the three portfolios under the social, Cournot—Nash, and maximin

schemes in numerical study 1.

Social Cournot-Nash Maximin
1 2 3 Total 1 2 3 Total 1 2 3 Total
Active return (in %) 2.06 2.18 2.24 2.17 2.24 2.17 2.35 2.24 2.06 2.18 2.24 2.17
Transaction cost (as %) 0.59 0.91 0.77 0.80 0.70 0.94 0.98 0.89 0.52 0.86 0.94 0.80
Net active return (in %) 1.48 1.27 1.47 1.37 1.54 1.24 1.37 1.35 1.54 1.32 1.30 1.37

the independent scheme) by roughly 6%, whereas the third
account achieves a staggering improvement of 25%. Under
Cournot—Nash, the first account improves by more than
10%, the second by less than 4%, and the third by more than
16%. As expected, under the maximin scheme, all accounts
improve by exactly the same amount (namely 10.7%).

e By definition, the social scheme maximizes the aggre-
gate performance of all portfolios (recorded under Total)
and achieves an active return that is 10.7% higher compared
to the independent scheme. This is strictly larger than the
increase achieved under Cournot—Nash but exactly equal to
that under maximin! This reflects an attractive feature of
maximin and our framework in this case, namely, that by
taking an approach that optimizes jointly over the trades and

Figure 1.  (Color online) Relative increase (in %) of the
net active returns, i.e., net utilities U,, of the
three portfolios in numerical study 1 under the
social, Cournot—Nash, and maximin schemes,
compared to the independent scheme.

30 : . .
| I Fund 1 B Fund 2 ] Fund 3 [ Total|
25} — 1
20 1
151 1
101 1
5 - 4

Social Cournot-Nash Maximin

split of transaction costs, one can achieve a considerably
fairer split of the improvements without sacrificing aggre-
gate performance.

Numerical Study 2. We consider a similar setup to the
one discussed in study 1, where the manager is in charge
of n = 6 accounts. The ith account derives utility equal to
the (expected monetary) profits it makes because of trading,
adjusted for risk, i.e.,
wi(x) =p'x; — (W, +x) 2(w, +x,), VielJ,
where A; is a parameter that measures risk aversion. The
values {A;},.; are randomly selected between 10~* and
2.5x 1074

The results mimic those of the previous study. In partic-
ular, the independent scheme again considerably underesti-
mates the market impact costs, resulting in lower realized
net utilities. MPO approaches partially correct for the effect
by resulting in improvements in net active returns. Figure 2
depicts the increase of the net active return of each port-
folio under the MPO schemes, relative to the independent
scheme.

Note that the social scheme again results in severe in-
equalities in the distribution of gains: as can be seen from
Figure 2, portfolio 5 achieves a 40% improvement over
the independent scheme, portfolio 2 achieves almost no
improvement, and portfolio 6 suffers a 5% decline in its
active return. On the other hand, the maximin approach
provides a constant improvement of 6.5% to each account.
In terms of aggregate performance, the aggregate improve-
ment under the social scheme is 6.6%, compared to 6.5%
under the maximin scheme. That is, the maximin scheme
again provides an equitable distribution of gains over
the portfolios, without sacrificing aggregate performance.
Finally, the Cournot—Nash scheme provides both an unequal
distribution of gains as well as inferior aggregate perfor-
mance improvement of 4.5%.
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Figure 2.  (Color online) Relative increase (in %) of the
net active returns, i.e., net utilities U,, of the
six portfolios in numerical study 2 under the
social, Cournot—Nash, and maximin schemes,
compared to the independent scheme.
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Numerical Study 3. In this study, we focus on the impact
of our proposal to allow the transaction cost splits to be deci-
sion variables, rather than pro rata. While this choice clearly
results in a more flexible model (and hence improved per-
formance), it is relevant to also examine the extent to which
trading patterns resulting from the two approaches differ.

To address this, we consider an identical setup to that of
study 1 and solve the following problem for determining the
optimal trades and market impact cost split under a maximin
objective:

maximize min

{ (ILTXi —7)— []iIND }

e UND
subject to x, € €;,, Vie.J,
X, =x'—x;, Vield,
xh,x; >0, Vield,
=Y 7, Vi€,
je¥

MTXi -T2 UiIND, Vie.¥,
+

2 _
X X
— 4 . + [
Tij 2 Z X+ a; <Z xaj) + Z X
ae.f “aj aey acg *‘aj

market impact cost for
buying the j-th asset

2
.aj<2xaj> , Vied, jeg.

ac¥

market impact cost for
selling the j-th asset

The MPO model above restricts the split of costs to be pro
rata. Note that the formulation is a nonconvex, quadratically
constrained quadratic program (QCQP), which is generally
an NP-hard problem (Boyd and Vandenberghe 2004)—this
is consistent with our claim in §2.1 that the pro rata split
readily results in intractable models. Several approaches

have been studied for obtaining approximate solutions to
this problem—we resort to the well-established lineariza-
tion technique, which entails solving a sequence of convex
QCQPs (see, e.g., d’Aspremont and Boyd 2003 for details).

In the approximate solution we obtained, each account
derived a relative increase of 10.57% in net active return—
slightly lower than the value of 10.7% achieved by the corre-
sponding maximin MPO model in study 1, where cost splits
were not constrained to be pro rata. Figure 3 also depicts the
associated trades generated by these two approaches—note
that the trading activity of each portfolio is not substantially
different (the largest weight change is 0.0038).

Numerical Study 4. We present an application of our
approach to a multiperiod setting in order to further evaluate
its performance as well as its computational burden.

We consider the execution problem analyzed in §4.2,
where a manager is in charge of liquidating n portfolios of
m assets, over a trading horizon split into 7 periods. We
study two problems of different sizes: (a) n =6, m = 30,
T =10, and (b) n=10, m =100, T = 10.

The remaining problem parameters are generated as fol-
lows. Initial portfolio weights for each portfolio are ran-
domly, uniformly sampled, and normalized so as to sum
up to one. We let K = 5. Factor loadings B and initial
factor values F(0) are sampled according to a standard
normal distribution. Mean reversion parameters ® are ran-
domly selected between zero and one. The volatilities ¥ of
the noise terms affecting the factors are randomly selected
between 0% and 10%. Transaction costs parameters A and
the welfare function f are chosen as in studies 1 and 2.

As described in §4.2, we use the MPC heuristic to solve
the multiperiod execution problem. We first optimize the
execution schedules of the accounts independently and allo-
cate the resulting market impact costs pro rata; i.e., we use
the independent solution concept. We then use our MPO
solution approach. In order to compare the two approaches,
we use the same set of 1,000 simulation factor and return
paths. We solve the resulting second-order cone programs
using CPLEX. Table 3 reports the average relative increase
of excess return (per account) under the MPO approach
compared to the independent approach. We also report CPU
times for the two approaches for the first trading period,
which is the most computationally intensive one.

The MPO approach delivers considerable improvements
in excess return. The additional computational burden is
manageable from a practical perspective. Nevertheless, for
larger scale instances, decomposition techniques can de
deployed to enable parallelization, which would drastically
reduce computational time requirements. An example of
such technique would be the cutting plane Dantzig-Wolfe
decomposition method, where constraints (12) and (13) are
treated as the coupling constraints; we refer the reader to
Bertsekas (1999, §6.4.1) for more details.

6. Conclusions

Modern portfolio theory encompasses a variety of powerful
tools and methods useful for investment management. The
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Figure 3. (Color online) Trades for the three portfolios
in numerical studies 1 and 2 under the max-
imin MPO scheme, when the split of costs is
constrained to be pro rata (dashed line) or not
(solid line).
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vast majority of those methods address different problems
faced by a single investor. In practice however, portfolio
managers or asset management firms are in charge of the
investments of numerous clients, with an ongoing trend
toward further consolidation in the U.S. finance industry.

Table 3. Average relative increase of excess return (per
account) under the MPO approach compared
to the independent approach, as well as CPU

times for the two approaches for the first trad-

ing period.
n=6, m=30, n=10, m =100,
Rel. return increase under 18.2 (2.8) 28.9 (4.7)
MPO (in %) (S.E.)
CPU time for independent 17 sec 18 sec
approach
CPU time for MPO 40 sec 122 sec
approach

In this paper, we discussed the unique challenges that
arise in portfolio management in case one is in charge of
multiple accounts. We argued that the problematic interac-
tions that arise between multiple accounts in a frictional
market call for a different approach that jointly optimizes/
manages the accounts, rather than independently according
to the classical portfolio theory paradigm. In the context of a
joint management framework, however, one needs to ensure
that the different portfolios are treated equitably; in fact, the
SEC requires joint management of portfolios to be carried
out in a transparent and fair way but without, however, pro-
viding further precise regulations or requirements.

We proposed a novel framework that allows a manager
to jointly optimize multiple portfolios, subject to the SEC
regulations. Our framework offers the manager the flexibil-
ity of selecting her preferred notion of fairness in balancing
the performance of all portfolios she is in charge of. Incor-
porated in the framework is also a novel method of split-
ting market impact costs (incurred by the trading activity
of the jointly managed accounts), in a way that is fair and
also captures the aforementioned problematic interactions
between them.

We compared our framework with the few of existing
solution concepts proposed in the literature and used in prac-
tice. We established that our framework outperforms them
by discussing both their theoretical properties and their per-
formance in the numerical studies we conducted.

Finally, we illustrated another unique feature of our ap-
proach, namely, its generality: we demonstrated how it can
be utilized to extend tractable single portfolio manage-
ment methods to multiportfolio settings without sacrificing
tractability or increasing the underlying computational com-
plexity of the original method.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/http://dx.doi.org/10.1287/opre.2014.1310.
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Endnotes

1. For more information on market impact costs, see Obizhaeva
and Wang (2013), Almgren and Chriss (2000), and Bertsimas and
Lo (1998).

2. The feasible set ‘€; can also depend on the initial holdings w;.
We omit writing this explicitly in order to simplify notation.

3. As with the feasible sets, the utility u; can also depend on the
initial holdings w;, which we also omit writing explicitly.

4. This assumption is standard in all treatments of the MPO prob-
lem in the literature, as well as in papers dealing with market
impact costs, which implicitly assume that the models are suffi-
ciently reliable for the purposes of assessing costs and deciding
trades (see, e.g., Almgren and Chriss 2000, Brown et al. 2010,
Moazeni et al. 2010, Moallemi and Saglam 2012, and references
therein).

5. We tacitly assumed here that the net utility of the ith account
is quasilinear. Our framework readily extends to the more general
case where the net utility U, is a concave function of the utility
u; and the associated market impact costs ¢.

6. In this case, a manager could still apply the scheme, provided
that individual cost components for each asset are available; this
would effectively amount to ignoring all cross-asset interactions,
which may be inappropriate.

7. For more information on utilitarianism, including relative util-
itarianism and a comparison of the two principles, we refer the
interested reader to Young (1995), Pivato (2008), and Dhillon and
Mertens (1999).

8. As a technical remark, note that the maximin welfare function
is not componentwise increasing but rather nondecreasing. Since
this can lead to inefficiencies, one can instead consider a lexi-
cographic maximization counterpart, known as max-min fairness;
see Bertsimas et al. (2011).

9. Note that this challenge is absent in the single portfolio setting
because the manager unequivocally allocates realized costs to the
single portfolio under management.

10. More formally, the policies 7; are adapted to the filtration
generated by the random vector Z.

11. More formally, the trades x, can be functions that are adapted
to the filtration induced by the stochastic processes s,(cl), 8}({2)
(see Moallemi and Saglam 2012 for details).

12. As we argued in §3, a piecewise linear functional form for
f already captures the two most useful welfare functions, the
utilitarian, i.e., sum of utilities, and maximin, i.e., min of utilities.
13. Recall that unlike our approach, the Cournot—Nash approach
leads to intractable equilibrium problems for other (more realistic)
impact cost models, such as the ones in Kolm (2009), Moallemi
and Saglam (2012), or Tsoukalas et al. (2012).

14. As a technical remark, note that in case the maximization
of f in (22) does not produce a Pareto optimal point, one can
always use a lexicographic maximin form for f; see Bertsimas
et al. (2011) for details.

15. For instance, the total active return reported is 7 (X, +X,+X3)/
17 (w, +w,+ws).
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