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Abstract. Currently available medication for treating many chronic diseases is often effec-
tive only for a subgroup of patients, and biomarkers accurately assessing whether an
individual belongs to this subgroup typically do not exist. In such settings, physicians
learn about the effectiveness of a drug primarily through experimentation—i.e., by initiat-
ing treatment and monitoring the patient’s response. Precise guidelines for discontinuing
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treatment are often lacking or left entirely to the physician’s discretion. We introduce a
framework for developing adaptive, personalized treatments for such chronic diseases.
Our model is based on a continuous-time, multi-armed bandit setting where drug effec-
tiveness is assessed by aggregating information from several channels: by continuously
monitoring the state of the patient, but also by (not) observing the occurrence of partic-
ular infrequent health events, such as relapses or disease flare-ups. Recognizing that the
timing and severity of such events provide critical information for treatment decisions is a
key point of departure in our framework compared with typical (bandit) models used in
healthcare. We show that the model can be analyzed in closed form for several settings of
interest, resulting in optimal policies that are intuitive and may have practical appeal. We
illustrate the effectiveness of the methodology by developing a set of efficient treatment
policies for multiple sclerosis, which we then use to benchmark several existing treatment
guidelines.
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1. Introduction

Costs associated with the delivery of healthcare in the
United States have risen sharply in recent years, both
in terms of total expenditure (e.g., as a percentage of
gross domestic product) and in spending recognized
as wasteful, redundant, or inefficient (Young and Olsen
2010). In conjunction with advances in the field of
medicine and the use of information technology, this
has created increasing pressure for healthcare solutions
that deliver better outcomes in a cost-effective manner.

Despite this impetus, however, the design of adaptive
treatment policies for chronic conditions (e.g., multi-
plesclerosis, Crohn’s disease, and depression) has often
been perceived as slow,! with some of the complicat-
ing factors intrinsically related to the specifics of disease
progression and available medication.

Currently available disease-modifying therapies
(DMTs) for several chronic diseases are only effec-
tive in a subset of the population (“responders”), and
biomarkers that accurately assess a priori whether a
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given patient belongs to this subgroup are not avail-
able.? In such cases, the main way to evaluate DMT
efficacy is by initiating treatment and then continu-
ously monitoring the patient through self-reported sur-
veys, periodic check-ups, or more in-depth scans and
evaluations.

If the role of treatment were the reversal of an obvi-
ous short-term abnormality, such monitoring would
provide sufficient evidence for how well the patient is
responding. However, the primary goal of DMTs for
chronic diseases is to prevent disease progression in the
long run, which often translates to limiting the occur-
rence of infrequent negative health events (e.g., disease
flare-ups) that can severely diminish a patient’s quality
of life. As such, the (non)occurrence or the exact tim-
ing and severity of such episodes often convey critical
information concerning a DMT'’s effectiveness for the
patient. Quantifying the impact of such information
and translating it into actionable guidelines for medical
decision making is often not straightforward.
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A primary example of a chronic disease with these
features is multiple sclerosis (MS), an autoimmune
inflammatory disease of the central nervous system
that is a leading cause of disability in young adults.
MS is incurable; DMTs attempt to slow its progression
by decreasing the frequency and severity of clinical
attacks, known as “relapses” (see, e.g., Cohen et al.
2004, National Multiple Sclerosis Society 2017). While
newly available drugs represent advances for MS man-
agement, none is fully effective (Rovaris et al. 2001),
and the question of identifying patients who are not
responsive to treatment is centrally important. In the
words of the National Clinical Advisory Board of the
National Multiple Sclerosis Society (2004, p. 1),

Whatever the relative merits of these drugs, all can
only be considered partially effective agents. This real-
ity raises the difficult problem of the identification of a
suboptimal response or treatment failure in an individ-
ual case and, once identified, leads to consideration of
the appropriate avenues for alternative treatments.

As the quote highlights, the problem of identify-
ing patients who do not respond to DMTs is quite
challenging. For a newly diagnosed patient, current
guidelines recommend immediately starting treatment,
and assessing effectiveness by continually monitor-
ing the disease progression, through MRI scans and
self-reported assessments of disability, such as the
Expanded Disability Status Scale (EDSS) (National
Multiple Sclerosis Society 2008). The guidelines empha-
size the critical role of learning and explicitly recognize
that the timing and frequency of relapses, as well as
more continuous measurements such as EDSS and/or
MR, can all be informative.> However, they stop short
of providing a systematic way to use this information
and suggest only simple rules for discontinuing treat-
ment. To the best of our knowledge, these rules are not
the outcome of a quantitative framework and have not
been tested for efficiency (see, Cohen et al. 2004). Fur-
thermore, while several studies have attempted to iden-
tify early predictors of nonresponse (Horakova et al.
2012, Romeo et al. 2013), the results have not been used
to inform the design of optimal treatment plans in a
quantitative fashion.

Further underscoring the need for fast and accu-
rate identification of nonresponders is the fact that
DMTs can cause significant side effects, such as per-
sistent flu-like symptoms, injection-site necrosis, and
liver damage, which result in poor compliance and
large dropout rates (Prosser et al. 2004). Additionally
and quite importantly, treatment is expensive, with
mean annual costs of $60,000 per diagnosed case in the
United States (Hartung et al. 2015). This has resulted in
a significant amount of debate around policies for MS
treatment, in the United States and elsewhere.*

This example and the preceding discussion give
rise to several natural research questions. Given the
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available medications, what is the optimal treatment
plan for chronic diseases such as MS? Does an opti-
mal plan involve discontinuation rules—i.e., is it opti-
mal to start a patient on treatment and then stop at
a particular point in time? How can a medical deci-
sion maker optimally aggregate all of the information
acquired during treatment to design optimal treatment
plans? Would such optimized plans outperform cur-
rent existing medical guidelines?

This paper can be viewed as one step toward answer-
ing such questions. We propose a framework that can
be used to inform treatment decisions for chronic dis-
eases that have the features described above: treatment
is effective only for a subset of patients that is a priori
unidentifiable; the frequency and/or severity of side
effects and major health events depends on a patient’s
response type; and information regarding the effective-
ness of treatment is obtained gradually over time. Our
main contributions can be summarized as follows:

¢ We formulate the problem of determining an opti-
mal adaptive treatment policy as a continuous-time
stochastic control problem. A key point of departure
from other work in medical decision making is that
we incorporate information from both the day-to-day
monitoring of disease progression, as well as the timing
of major health events. Our framework thus implicitly
trades off the immediate and the long-term impact of
treatment, providing a systematic way to incorporate
new information in the design of optimal treatment
plans.

* When choosing between two treatments with lin-
ear dose-response, our model can be analyzed in
closed form, resulting in intuitive optimal policies that
take the form of discontinuation rules. In an extension
discussed in Online Appendix A, we show how these
analytical results can be used to derive optimal policies
for choosing among several treatments by solving very
simple (one-dimensional, convex) optimization prob-
lems. We also discuss conditions under which the opti-
mal policy is no longer a simple discontinuation rule,
such as when dose-response curves are nonlinear or
when the severity of major health events is indicative of
treatment effectiveness.

* We apply our results to MS, for which we develop
and test adaptive treatment policies for administering
interferon-B. Our framework allows an explicit trade-
off between the benefits of treatment and its associated
costs, and can be used to generate an entire frontier
of cost-effective treatment policies, depending on the
amount a decision maker is willing to pay for one addi-
tional quality-adjusted life-year (QALY), expressed as
a willingness-to-pay (WTP) value. We use these poli-
cies to benchmark and test the performance of three
treatment guidelines: a “no-treatment” policy, which
does not prescribe any interferon; a “standard” policy,
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which administers interferon to all patients and dis-
continues treatment on progression to an EDSS score
of 6-7.5 (Rio et al. 2011); and a “consensus” policy,
which discontinues treatment when patients experi-
ence two or more relapses in a year or progress to an
EDSS score of 6-7.5 (Cohen et al. 2004).

Our first finding suggests that a no-treatment policy
is optimal if the WTP does not exceed $150,000/ QALY.
Furthermore, the gains from interferon treatment are
generally not large in absolute terms and come at
steep costs: even the best adaptive policy, requiring
a WTP exceeding $800,000/QALY, can only increase
QALYs by 3.45% relative to a no-treatment alternative,
while increasing costs by 16.2%. Since interventions are
generally considered cost-effective when the costs per
QALY gained do not exceed three times the country’s
per-capita GDP (Drummond 2005, Hunink et al. 2014),
this suggests that interferon treatment is not necessar-
ily cost-effective, and that no-treatment may be opti-
mal under lower WTP. However, this finding should be
interpreted with caution: even though the increases in
QALYs may not be large in absolute terms, they may
nonetheless be significant, particularly for a chronic
disease as debilitating as MS.

Our results provide validation of the consensus cri-
teria proposed by Cohen et al. (2004): the resulting
policy is close to being efficient at intermediate val-
ues of WTP, and achieves net monetary benefits close
to a fully adaptive policy. Thus, these simple discon-
tinuation rules may represent a viable alternative to
implementing a complex optimal adaptive policy, par-
ticularly at intermediate WTP values.

Finally, we find that none of the treatment guide-
lines are satisfactory at very large WTP: the consensus
and no-treatment policies generate low QALYs, and
the standard policy is inefficient. An adaptive policy
derived from our framework under a WTP of $800,000/
QALY generates the most QALYs without incurring
significant costs, and attains a good balance between
administering sufficient treatment to responders and
identifying nonresponders early.

While we apply our model to MS and interferon-f
primarily because of data availability, we note that the
treatment of many other chronic diseases could ben-
efit from our framework. Examples include rheuma-
toid arthritis, where increased disability is associated
with higher mortality (Pincus et al. 1984); Crohn’s dis-
ease, where treatment often involves the same classes
of medications as MS; and depression and other mental
illnesses, where psychiatrists must choose between var-
ious treatments without knowing a priori which one
might be effective.

1.1. Relevant Literature

Our model builds on the theory of continuous-time
multi-armed bandits (Berry and Fristedt 1985, Mandel-
baum 1987, Bank and Kiichler 2007, Cohen and Solan
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2013, Harrison and Sunar 2015). Closest to our work
are papers on strategic experimentation (Bolton and
Harris 1999, Keller et al. 2005, Keller and Rady 2010),
which study free riding among a team of agents in an
experimentation context. We adapt their framework in
a medical decision-making setting, and extend their
model and analysis by allowing the decision maker
to learn from observing the rewards generated by
two stochastic processes whose parameters depend on
the choice of treatment: a Wiener process (Brownian
motion) that models the day-to-day side effects experi-
enced by the patient, and a Poisson process that cap-
tures the arrival of major health events—i.e., disease
flare-ups and progression.

Our paper is related to the clinical trials literature
and in particular to the growing number of studies that
consider adaptive rules for assigning patients to treat-
ments (e.g., Berry 1978, Berry and Pearson 1985, Ahuja
and Birge 2016, Bertsimas et al. 2016). These approaches
typically assume that the outcome of a clinical trial is
binary (success/failure), and that the decision maker
can learn from multiple patients since outcomes are
positively correlated. It is difficult to implement such an
approach in the context of a chronic disease, however,
as one patient’s response to treatment is independent
from another’s, and information about the quality of
treatment is obtained gradually over time, with no sin-
gle event providing sufficient evidence for or against a
given treatment plan.

Also closely related is a growing literature (e.g.,
Denton et al. 2009, Zhang et al. 2012, Mason et al. 2014,
Helm et al. 2015) that uses Markov decision processes
with fully or partially observed states and dynamic lin-
ear Gaussian systems to derive adaptive treatment poli-
cies. We formulate the problem using a continuous-time
bandit model and derive closed-form expressions for
optimal treatment decisions that, as we discuss in the
paper, may have several advantages.

In the medical literature, Murphy (2003, 2005),
Murphy and Collins (2007), Pineau et al. (2007), and
Almirall et al. (2012), among others, propose adaptive
treatment schemes in the context of psychiatric condi-
tions such as depression, anxiety disorders, and drug/
alcohol abuse. In particular, Murphy (2003) motivates
and lays the foundation for developing dynamic treat-
ment regimes—i.e., a set of rules for choosing effective
treatments that are tailored to the individual charac-
teristics of patients. The methodology in these studies
varies from nonquantitative approaches (e.g., predefin-
ing a protocol to switch therapies after a certain time
if a criterion is not met (Almirall et al. 2012)), to rein-
forcement learning (Pineau et al. 2007) and statistical
frameworks for optimizing a general outcome while
achieving a desired level of power or bias (Murphy
2005). Although we share the same motivation and use
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similar methodological tools as some of these stud-
ies, i.e., dynamic programming (albeit, in continuous
time), the emphasis in these papers is not on deriving
explicit optimal treatment policies nor on preserving
the computational tractability of the resulting frame-
work. In contrast, our explicit characterization of the
optimal adaptive policies allows us to compute use-
ful comparative statics with respect to features of the
underlying environment and to derive optimal policies
for the case of multiple treatments by solving very sim-
ple (one-dimensional) convex optimization problems in
an offline fashion (see Online Appendix A).

Finally, our work is also related to empirical cost-
effectiveness studies for MS, which have found DMTs
to be very expensive for the benefits they provide, with
costs of up to $1.6 million per additional QALY gained
(Phillips 2004, Tappenden et al. 2009, Noyes et al. 2011).
Although we use a similar disease evolution model,
the key point of departure is that we assess cost-
effectiveness based on optimal adaptive treatments
that utilize all available information, instead of heuris-
tic treatment guidelines. We find that the optimal inter-
feron treatment is not necessarily cost-effective, and we
quantify the WTP values under which no-treatment is
optimal.

2. Model Formulation

We first introduce our model in an abstract setting,
and then discuss the connection and relevance to the
medical applications motivating our work. In an effort
to make the paper accessible to a broad audience, we
deliberately keep the exposition style less formal, plac-
ing more emphasis on the intuition and connection
with the applications. Readers interested in the math-
ematical details can refer to El Karoui and Karatzas
(1994), Bolton and Harris (1999), Keller and Rady
(2010), and references therein, which form the basis of
our model.

2.1. Model Framework

We consider a continuous time frame, indexed by t €
[0, 0). A single decision maker (DM) is faced with the
problem of choosing how to allocate the current period
[t,t + dt) between two possible alternatives (“arms”):
a “safe” alternative, with known characteristics, and a
“risky” alternative, which can be of either good (G) or
bad (B) type, unbeknownst to the DM.

Each arm brings the DM immediate rewards that
accrue continuously over time. More precisely, the
“safe” arm generates instantaneous rewards governed
by a Brownian motion with drift rate y, and volatil-
ity o, and a risky arm of type 0 € {G, B} generates
instantaneous Brownian rewards with drift rate u, and
volatility 0. When the DM allocates a fraction a;, € [0, 1]
of the time interval [t,t + df) to the risky arm and
the remaining fraction 1 — a, to the safe arm, the total
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instantaneous rewards received are dm!(t) + dn’(t),
where

dr'(t)E a,ug dt + a0 dZ\(t), (1a)
dr’(t) = (1 - a,)uedt +y1-a,0dZ°(t). (1b)

Here, dZ°(t) and d Z'(t) are independent, normally dis-
tributed random variables, with mean zero and vari-
ance dt. To understand the scaling used, note that the
DM'’s instantaneous rewards from the risky and safe
arm are normally distributed, with mean «a, uydt and
variance a,0%dt, and mean (1 — a,)uydt and variance
(1 — a;)0*dt, respectively. As such, the total instanta-
neous reward exactly equals a fraction a, of the risky
reward and 1 — a, of the safe reward.

In addition to the instantaneous rewards, each arm
also induces relatively rare “life events,” as well as a
special “stopping event” that terminates the decision
process. The occurrence of any life event generates a
deterministic “reward” of —D. The frequency of such
events depends on the allocation used by the DM.
More precisely, when «a, € [0,1] of the period is allo-
cated to the risky arm, life events occur according to
a Poisson process with rate (1 — a;)A, + a,;Ay, where
Ay (Ay) denotes the rate of life events under a safe
arm (a risky arm of type 0, respectively). Similarly, the
stopping event occurs at a time T that is exponentially
distributed with rate (1 — «,)n, + a, 1y, and generates a
reward of magnitude V. We assume that, conditional
on the risky arm’s type 6 and on the allocation «a;, the
stopping event is independent from the Poisson pro-
cess for life events.®

The DM knows all of the underlying parameters gov-
erning the arms and the reward structure (i.e., y,, A,
0,D,V, ug,and Ay, for 6 € {G, B}), but does not know
the type O of the risky arm. At time t =0, he starts
with some initial belief p, that the risky arm is good,
which he then updates during the rest of the planning
horizon, depending on the observed instantaneous and
lump-sum rewards. This generates an updated belief p,
at time ¢£.

The DM’s goal is to find a nonanticipative allocation
policy {a,},5, that maximizes the total expected dis-
counted rewards [] up to the stopping event—i.e.,

T
l_ldzef[E[/ e [dn (£) +dr(£) = (N, g = N,) D]
0

+e V|, ()

where N, denotes the total number of life events occur-
ring in [0, t].

Some observations regarding the problem formula-
tion are in order. First, note that the integrand in the
expression for [] contains three terms. The first two,
dn'(t) and dn’(t), correspond to the instantaneous
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rewards received from the risky and safe arms, given
in (1a) and (1b), respectively. The third term corre-
sponds to the expected lump-sum reward received on
the occurrence of a life event during period [t,t + dt].
The integral is taken over the total (instantaneous and
lump-sum) rewards discounted at a fixed rate r > 0,
and the term outside of the integral corresponds to
the reward received on the occurrence of the stopping
event at time T. The expectation in (2) is with respect to
the stochastic processes dZ°(t),dZ'(t), a,, and also p,.
The latter reflects the DM’s use of the belief p, at time ¢
with regard to the type 6 of the risky arm.°

Note that in choosing a policy a; to maximize the
expected rewards, the DM is faced with the clas-
sical trade-off between “exploration” and “exploita-
tion” (Powell and Ryzhov 2012)—i.e., between acquir-
ing information about an unknown alternative, which
may entail higher rewards, versus using a safe option.
In this sense, @, trades off the rate at which new infor-
mation is gained with the risks entailed by the exper-
imentation. With a choice a, = 0, the DM would only
gain instantaneous and lump-sum rewards from the
safe arm, hence completely eliminating the exposure to
the risky arm as well as the ability to update the belief
p;. It is important to emphasize that new information
in our model is acquired through two channels: (1) by
observing the instantaneous rewards d7'(t) from the
risky arm, and (2) by (not) observing life events and
the stopping event. Whenever a, > 0, these channels all
convey meaningful information to the DM, potentially
tilting his belief p, toward (or away from) deeming the
risky arm as good.

2.2. Application in the Context of Chronic Diseases
We now discuss how our mathematical framework can
be applied to the design of an adaptive treatment pol-
icy for chronic diseases such as MS.

The arms. In a medical context, the arms of our model
correspond to available treatments, and the DM is a
physician choosing the optimal treatment policy for
the patient. Depending on the focus, the “rewards”
could correspond to either a patient’s health utility or
a cost-adjusted health utility that also accounts for the
cost of treatment (see our more detailed discussion
in Section 4). As such, an arm’s instantaneous reward
denotes the impact of treatment on the patient’s imme-
diate (cost-adjusted) quality of life. “Life events” corre-
spond to sudden health episodes associated with nor-
mal disease progression, which bring about immediate
disutility (and costs) to the patient, without altering
the fundamental underlying disease evolution or the
efficacy of treatments. Examples of life events include
relapses in MS or panic attacks in anxiety disorders.
Depending on the circumstance and the exact dis-
ease modeled, the “stopping event” could be a spe-
cial instance of a life event or an entirely separate
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event, which changes the disease evolution or the treat-
ment options (e.g., a heart attack, kidney failure, malig-
nancy, or death). We elaborate on these distinctions
further when discussing the objective. We note that our
base-case model only allows choosing between two
arms/treatments. We discuss the important extension
to multiple arms in Online Appendix A.

Safe arm. A “safe” arm represents a treatment with
homogenous response in the population. In MS, this
typically consists of medication aimed at reducing or
controlling MS-specific symptoms such as bowel and
bladder function, spasticity, and pain, without modify-
ing disease progression. In our model, such a treatment
may still yield stochastic outcomes in terms of both
instantaneous (cost-adjusted) health utility and life/
stopping events, as one would expect in practice. The
critical assumption is that the parameters governing
these outcomes (ug, 0, A¢, 1) are known to the physi-
cian. This is reasonable, since physicians often have
more information about the natural disease progres-
sion when patients are not subjected to treatment (e.g.,
from studies of large historical cohorts of patients (Scal-
fari et al. 2010)).

Risky arm. The “risky” arm is only effective for a
subset of the population (i.e., when the type is good
(0 =G)). We assume that the physician is unable to
determine a priori whether a new patient belongs to
this subset. This is in keeping with the fact that pre-
cise biomarkers do not exist for many chronic diseases.
For instance, treatments for MS such as interferon-f
are effective only in a subgroup of patients (Cohen
et al. 2004, Prosser et al. 2003, Horakova et al. 2012). In
such cases, the only way to assess the impact of a drug
or therapy is by subjecting the patient to treatment
and relying on periodic examinations or self-reported
assessments, such as the EDSS for MS. When patients
respond to treatment, their condition may improve
(i.e., pg > W), the frequency of life events may be
diminished (i.e., A¢ < Ay), and the likelihood of a major
health event or disease progression may also decrease
(i.e., ng < 1y). When patients do not respond, their con-
dition may remain the same or even deteriorate slightly
(e.g., due to side effects from treatment). A central
assumption underlying our model is that physicians
are able to separately assess the parameters governing
how responders and nonresponders are impacted by
treatment (i.e., g, Ay, and 1y). This is reasonable since
medical studies often track patients for a relatively
long period of time and retrospectively assign them to
responder and nonresponder groups (e.g., Horakova
et al. 2012).

Lump-sum rewards. Our assumption that the lump-
sum “reward” —D received on life events is indepen-
dent of the type O is particularly pertinent for dis-
eases such as MS and anxiety disorder. For instance,
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relapses in MS correspond to periods of acute disease
activity when patients experience neurological symp-
toms such as sudden paralysis or loss of vision. Such
episodes generate immediate disutility and have sim-
ilar severity/consequences in all patients, but occur
less often among patients responding to treatment
(Kremenchutzky et al. 2006, Horakova et al. 2012). Our
framework can be extended to stochastic rewards that
are independent of 6, as only their expected value
would matter. We discuss the extension to rewards
dependent on 6 in Online Appendix B.

Fractional allocations. Our model assumes that frac-
tional allocations of treatment are possible, and that
the response (i.e., the reward) is directly proportional
to the allocation. Fractional allocations allow model-
ing cocktails of drugs (Rudick et al. 2006) or admin-
istering a lower dosage of a drug (e.g., by adjusting
the frequency and/or the magnitude of doses). The
assumption that the response is linear renders our
model analytically tractable and is a reasonable first-
order approximation, as dose-response functions are
often S-shaped and thus linear in a central band of val-
ues (see, e.g., the MS study of OWIMS 1999). We dis-
cuss this limitation further in Section 5, and we exam-
ine its impact numerically in Online Appendix D.

Objective. Considering a planning horizon T that cor-
responds to an exponentially distributed “stopping”
event allows for modeling flexibility without sacrific-
ing analytical tractability. The horizon T could capture
the first occurrence of a life event, which is appropri-
ate when the risky treatment improves the immediate
quality of life of a patient but incurs a higher risk of
severe side effects. For instance, studies have shown
that certain rheumatoid arthritis treatments improve
pain and disability, but may cause malignancies or
severe infections (Mariette et al. 2011). More broadly,
T could correspond to any major event that perma-
nently alters the state of the patient, the disease evolu-
tion, or the response/rewards from treatment. Exam-
ples could include progression to severe disease (e.g., in
MS, transitioning from the relapsing-remitting phase
to the secondary—progressive phase (Lee et al. 2012))
or the release of a new drug that alters the set of feasi-
ble treatment options or drastically reduces the cost of
treatment, impacting the reward rates in a cost-adjusted
objective. The rewards V received on the stopping event
can be interpreted as continuation values, which allows
using our model as a building block for studying dis-
eases with more complex dynamics, involving poten-
tially nonstationary reward rates or phase transitions.
For more details, we refer the reader to our case study
in Section 4, which implements this idea.

Our model includes a fixed discount rate r > 0, in
keeping with the recommendations of the U.S. Panel on
Cost-Effectiveness in Health and Medicine that costs
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and quality-adjusted life years should be discounted
when estimating the cost-effectiveness of healthcare
interventions (Gold 1996).

Simplifying assumptions. To preserve analytical trac-
tability, our model makes a number of simplifying
assumptions: arms/treatments are characterized by
Brownian rewards and Poisson arrivals with known
and stationary parameters; dose-response curves are
linear; information collection and treatment updating
can be conducted very frequently; and patients fully
adhere to treatment recommendations. In Section 5, we
discuss these limitations more extensively, providing
several extensions and robustness checks, and outlin-
ing interesting directions for future research.

Although our model simplifies the reality of chronic
diseases, it has the advantage of allowing exact analyt-
ical results, with simple and intuitive interpretations,
as we discuss next.

3. Analysis

Letting 7, denote the information set available to the
DM at time t,” it can be seen that the belief that the
risky arm is good, p, £ P{0 = G | %,}, is a sufficient
statistic of the history up to time ¢. Thus, we take p,
as the state of the system, and we take the fraction of
treatment allocated to the risky arm «, as the DM’s
action (control). Finally, with & E {(a))s0lay: F —
[0,1]} denoting the set of all sequential, nonanticipa-
tive policies that are adapted to the available informa-

tion, the DM’s problem can be compactly formulated as

max E“ [/ e [dn(t)+dn’(t) = N,y — N,) D]

a€s]

+e7 V|,

where the expectation is with respect to the stochastic
processes dZ°(t),dZ'(t),N,, a, and p,. As a first step in
our analysis, we characterize the evolution of the DM’s
belief during time interval [¢, t +dt], as a function of the
current belief p, and action «,. We start with the case
when no life event or stopping event occurs during the
interval.
Lemma 1. When no life event or stopping event occurs dur-
ing time interval [t,t + dt]:

(i) the posterior belief p,.4 conditional on an observed
instantaneous reward from the risky arm d' (t) = y is given
by Bayes’ rule and takes a value of

Ptat = (PtF([JG/U)e_(ZGJrﬁG)dt) : [PtF(#G/O)e_(RGWG)dt
+(1—p)F(ug/o)e Bt~ (3)

where
o (l-a)&o+a,&y, VEE(A,N},VOE(G,B}, (4a)
a1 _ 1 _ 2).
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(ii) the change in the DM'’s belief p,,, — p; is nor-
mally distributed, with mean a,p,(1—p,)((Ag + ng) —
(Ag+ng))dt and variance a,((p,(1—p,)(pc — pp))/0) dt.

We make several observations about this result. First,
note that when no life event or stopping event occurs
during [¢,t + dt), the belief evolution only depends on
the characteristics of the merged process of life and
stopping events, which is Poisson under our assump-
tions. Thus, all the results depend on the sum of the
rates of life events and stopping events (i.e., A;+17;,
Vie{0, G, B}).

Part (i) of the result provides the update rule for
the DM’s belief. Note that changes only occur when
the risky arm is used (i.e., when a, > 0), and the pos-
terior only depends on the observed instantaneous
reward from the risky arm (dn'), but not from the safe
arm (d7°). This is intuitive, since the safe arm conveys
no information about the risky arm’s type. Note that
the result implicitly requires the ability to separately
observe the risky rewards, which may be problematic
when the DM only observes the total instantaneous
rewards dn’ + dn! and «a, € (0,1). As our later results
will show, this issue becomes moot in our setting, since
the optimal policy will always entail a, € {0, 1}, so the
DM will never observe a mix of safe and risky instan-
taneous rewards.

Part (ii) establishes that the belief change is normally
distributed, with parameters that depend on the arms’
characteristics. The belief drifts upward—i.e., the risky
arm is deemed more likely to be good—if and only if
events under a good arm are less likely than under a
bad arm (i.e., A + 15 < Ay + 1p). This is intuitive, since
the absence of an event under such conditions can be
viewed as “good news” for the DM. Consistent with this
observation, note that “more learning” occurs (i.e., the
mean belief update grows) as the difference between the
rates of events under a good and a bad arm increases.
More learning also occurs as p,(1 — p,) grows (i.e., as
the DM has more uncertainty a priori about the arm’s
type, as measured through the variance of the prior):
as p, gets closer to the extremes (zero or one), it takes a
much stronger signal to alter the belief as compared to
whenp, is close to 0.5. Lastly, as expected, more learning
occurs as the DM experiments more aggressively with
the risky arm (i.e., as a, grows). However, such aggres-
sive experimentation also leads to a larger variance in
the updates (i.e., “more noise”). Updates also get nois-
ier as the DM has more uncertainty a priori concerning
thearm’s type (i.e., as p,(1 — p,) grows), as the difference
in mean rewards under a good and bad arm is larger
(i-e., (ug — pg)* grows), or as the rewards get less noisy
(i.e., o0 decreases).

Our next result completes the characterization of the
DM'’s belief update, by focusing on the case when a life
event occurs during the interval [t, t + dt).
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Lemma 2. When a life event occurs during [t,t +dt):

(i) the posterior belief p,,, conditional on an observed
instantaneous reward from the risky arm dn' = y is given
by Bayes’ rule and takes a value of

Pivar = (PfF(yc/o)(l — e’/‘Gd’)e*ﬁG df)
peF(ug/o)1 —e ey mc
+(1_pt)F(‘lB/U)(l—e_int)g_ﬁEdt]_l; (5)

(ii) the change in the DM’s belief p,, 4 — p, is normally
distributed, with

_ ap,(L—p)(Ag—Ap)

mean /_\(Pt) +atpt(1—pt)/_\c/_\B
.nB_T]G'F(/’lG_”B)”(Pt)/UZ gt
(A(py)? ’
1-p)AAs (s — p)\
variance = a, | PP cAs e = p) )y

o

where Ag, A, i, s, F are defined in (4a)—(4b), and &(p) =
pEc+(1—p)&g, VEE{A, u}.

Part (i) of the result provides an expression for the
posterior of the DM’s belief, which now depends sep-
arately on the rates of life events and stopping events
under a good/bad arm. Part (ii) shows that the belief
update remains normally distributed, but with modi-
fied mean and variance.

The mean update in (ii) now involves two terms.
The first term is independent of dt and constitutes
a jump in the belief caused by the occurrence of a
life event. It can be readily verified that the poste-
rior belief accounting for this jump (i.e., j(a;, p,) = p; +
a,p,(1=p)(Ag—Ap)/A(p,)), is increasing in p, and Ag,
and decreasing in Ap. This confirms the intuition that,
ceteris paribus, the occurrence of a life event makes it
relatively more likely that a risky arm is good when the
prior belief that it was good was larger, or when life
events become more (less) likely under a good (bad)
arm. Note that j(a,,p;) < p, if and only if A5 < Ay,
so that a life event makes it more likely that the arm
is good if only if life events are more likely under a
good arm than under a bad one. When A; < Ay, it can
also be verified that j(a,, p,) is decreasing in «,, so that
a DM who experiments more aggressively becomes
more skeptical about the risky arm on the occurrence
of a life event.

The second term, which is directly proportional
to dt, is a further drift in the belief caused by the
instantaneous rewards. These rewards also give rise to
variability (i.e., variance) in the belief update, and it
can be checked that this grows as the DM has more
uncertainty a priori concerning the arm’s type (ie.,
as p,(1-p,) grows), as the good and bad arm differ
more in their instantaneous rewards (i.e., as (y¢ — pp)?
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grows), as the processes describing life events get more
noisy (i.e., Ay, Ag, Az grow), or as the rewards get less
noisy (i.e., o decreases).

With these results, we can now provide a charac-
terization of the DM'’s optimal policy. We restrict our
subsequent analysis to the “interesting” case: we allow
belief updates to be noisy (i.e., i # 1), and we assume
that no arm can be eliminated a priori (i.e., a good arm
dominates the safe arm, which in turn dominates a bad
arm). This is summarized in Assumption 1.

Assumption 1. The primitives for the framework satisfy
Ug#ug and Ap<Ay<Ag,

where Ay = (g — Ao D +1y V)/(r +14), VO €{0, G, B}
denote the total rewards per unit time for a safe, good, and
bad arm, respectively.

Theorem 1. Let Assumption 1 hold. Then, the DM’s opti-
mal policy is given by

0 ifp, <p,
* e 6
a;(py) {1 otherwise, ©

where

p*“‘:e‘ wg(Ag— Ap) (7a)

w(Ag—Ap) + we(Ag —Ay)’
w :H—UBV* (7b)
P+ Ay
. Ir'+1e .

wG——r+nG+AG(1+v), (7¢)

and

2 (te — pp)*
+ (e = wp)t =20*(Ag + 15 = A = 16))
+80°(r + Np + Ap)(ug — #3)4)1/2
[2(ug = pp)' T

Theorem 1 confirms that the optimal policy is a
threshold policy; in particular, fractional allocations are
not needed, and the DM can always select a single arm
at each point of time.

Note that the optimal threshold p* only depends on
suitably weighted relative differences of the (per unit
time) rewards for each arm type, A, A;, Ag. In particu-
laz, p* depends on the safe arm only through A,. It can
be readily verified that p* is increasing in p,, reflecting
the intuitive fact that, ceteris paribus, a safe arm with
higher instantaneous rewards makes the risky arm less
appealing. Furthermore, when A; < min(A, A) and
Uy = ¢ (as in the case of MS), it can also be veri-
fied that p* is decreasing in A, and in D. This shows
that a DM behaving optimally should be more prone
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to experimenting with a risky arm when life events
under the safe arm become more frequent/likely or
when they have more severe consequences. The thresh-
old p* is also strictly increasing in ¢ and r, confirming
that increased volatility and/or an increasing degree
of myopic behavior lead to strictly less experimentation
with the risky alternative. Finally, note that p* does not
depend on the prior belief p, that the arm is good. This
is a useful feature in an optimal policy, since it suggests
a certain separation between the (objective) effective-
ness of an arm and the (potentially subjective) prior.

We conclude this section with a brief discussion of
extensions and implications of the results. We start
by noting that, although our approach focuses on two
arms/treatments, some of the results generalize. In
Online Appendix A, we discuss the important case
where several arms with binary (good/bad) types
exist. Although we are unable to explicitly character-
ize the optimal policy, we argue that it remains index-
able—involving a single arm used at any point of
time—and we use our analytical results above to pro-
vide an algorithm that calculates the optimal policy
to within an arbitrary precision. Our proposed algo-
rithm only requires an offline solution for a small num-
ber of one-dimensional convex optimization problems,
and an online updating of the beliefs using Lemmas 1
and 2, making it appealing in settings with many arms
or frequent updating.

Second, we note that the “bang-bang” structure of
the optimal policy relies on several of our model-
ing assumptions. The “bang-bang” structure no longer
holds, for instance, when the response to the DM’s al-
location is nonlinear (see our Online Appendix D) or
when the lump-sum rewards received from life events
depend on the risky arm’s type (see Online Appen-
dix B). In such cases, a strictly fractional allocation that
trades off the benefits of the safe arm with those of the
risky arm turns out to be optimal, and this is true even
in cases when the risky arm is exactly known to be good
or bad.

In the context of chronic diseases that are consistent
with our framework, our results suggest that, given our
modeling assumptions, the optimal treatment policy is
a discontinuation rule: the patient is given the “risky”
treatment as long as the belief that she is responding
is above a threshold. Once the belief falls below this
threshold, the patient is taken off of treatment, and
since no “learning” occurs while on the safe treatment
exclusively, the process of experimentation essentially
stops. We next illustrate how the findings of our simple
analytical model can be potentially used for a disease
with more complex and realistic dynamics.

4. Case Study: Multiple Sclerosis

We illustrate our framework with a case study of MS.
In MS, affected individuals experience increasing dis-
ability to the point of becoming bedridden, as well as



Downloaded from informs.org by [171.67.216.21] on 15 November 2017, at 08:00 . For personal use only, al rights reserved.

Negoescu et al.: Dynamic Learning of Patient Response Types
Management Science, Articles in Advance, pp. 1-20, © 2017 INFORMS

blurred vision, muscle weakness, dizziness, fatigue and
various sensory abnormalities (Kremenchutzky et al.
2006). No cure currently exists, and treatments are only
effective for some patients, with no accurate biomark-
ers for assessing responsiveness a priori (Romeo et al.
2013). While the search for biomarkers in MS remains an
active area of research (Derfuss 2012), physicians cur-
rently rely mostly on MRI scans and surveys in which
patient-reported symptoms are used to compute the
EDSS score, which can be translated into quality-of-life
utilities for assessing disease evolution and treatment
effectiveness (Prosser et al. 2003).

We focus on the most common form of MS, re-
lapsing-remitting MS (RRMS), which comprises about
80% of cases. The initial stage of the disease, which
typically lasts for 10 years on average, is character-
ized by clearly defined relapses that occur on aver-
age once per year (Prosser et al. 2004), from which
patients may or may not fully recover. After this stage,
patients typically enter the progressive stage of the dis-
ease, characterized by gradual worsening of disability
(Kremenchutzky et al. 2006). Typically, relapse rates
decrease over time for all patients regardless of treat-
ment, with rates for responders generally lower than
for nonresponders (Horakova et al. 2012). Mortality for
MS patients depends on both age and current level of
disability (Prosser et al. 2004).

Although MS is incurable, DMTs attempt to slow
progression and reduce relapses (National Multiple
Sclerosis Society 2017). The most common treatments
are injectable DMTs such as interferon-§ preparations
and glatiramer acetate, and more recently oral DMTs
such as dimethyl fumarate (approved for use in the
United States in 2013), teriflunomide (approved in
2012), fingolimod (approved in 2010), and natalizumab
(approved in 2004) (see Rovaris et al. 2001 and National
Multiple Sclerosis Society 2017 for more details). Inter-
feron-f is often the first treatment prescribed, as
the newer therapies, especially fingolimod and natal-
izumab, have been associated with an increased risk
of severe side effects, such as potentially fatal infec-
tions, tumor development, lowering of cardiac rate,
and encephalitis (Cohen et al. 2010). The response pro-
file to interferon has been well documented (Horakova
et al. 2012, Romeo et al. 2013), but the long-term effec-
tiveness of oral medications has not been established
(Carroll 2010).

Our goal in this section is to build a support tool that
can inform medical decision makers about the bene-
fits of administering interferon-f treatment in addition
to conducting symptom management without DMT.
This decision problem is especially important because
patients receiving interferon-f experience a significant
decrease in quality of life due to side effects, such as pain
at the local injection site, flu-like symptoms, depres-
sion, and allergic reactions. Furthermore, interferon-f
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generates significant and rapidly escalating healthcare
costs, currently amounting to $60,000 per year for each
diagnosed case in the United States, and estimated to
increase at rates five to seven times larger than prescrip-
tion drug inflation (Hartung et al. 2015).

Despite the potential benefits, the problem of deter-
mining an optimal policy for administering interferon
has not received much attention in the medical liter-
ature. For a newly diagnosed patient, current guide-
lines recommend immediately starting treatment and
suggest simple discontinuation rules (Rio et al. 2011,
Cohen et al. 2004). These rules were not the outcome of
a quantitative framework and have not been tested for
efficiency.

With this motivation, we first describe a detailed
disease model from the medical literature, which we
use as a basis to design adaptive treatments using our
results in Section 3. The goals of our numerical study
are (1) to quantify how close existing treatment guide-
lines are to being optimal and cost-effective, and (2) to
understand the potential benefits of using a sophis-
ticated treatment policy that relies on very frequent
belief and treatment updating.

4.1. Disease Model

We implement a disease model similar to those in the
medical literature (Prosser et al. 2004, Lee et al. 2012).
Disease progression is modeled as a Markov chain,
with states given by the patient’s EDSS score® and
whether she is currently experiencing a relapse (see
Figure 1 for details).

Asin Lee etal. (2012), our simulation follows a hypo-
thetical cohort of 37-year-old RRMS patients with an
initial EDSS score of 0-2.5. The cohort includes 10,000
responders and 10,000 nonresponders, consistent with
studies documenting the proportion of responders
to interferon-f in the population to be around 52%
(Horakova et al. 2012). We utilize a one-month time
step and simulate patients over a 50-year time horizon.

Each patient can transition from the score of 0-2.5
(no or few limitations) to a score of 3-5.5 (mild to mod-
erate mobility limitations), from there to a score of
6-7.5 (requiring a walking aid), and finally to a score of
8-9.5 (bedridden). While in EDSS states 0-2.5 or 3-5.5,
patients can experience relapses, which can be either
mild/moderate or severe, and which last for exactly
one month, after which they can either remain in their
pre-relapse disability level or progress to the next dis-
ability level. Once in EDSS state 6-7.5, patients are
assumed to have entered the secondary—progressive
stage of the disease, characterized by no relapses
and gradual destruction of neurons. Consistent with
medical studies, we also assume that (a) relapses do
not occur in states with EDSS score above 6; (b) the
probability that relapses are severe is independent of
EDSS state, treatment, or response type; (c) disease
progression probabilities are independent of whether
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Figure 1. (Color online) MS Disease Model

No/Few Moderate
limitations limitations
(EDSS 0-2.5) (EDSS 3-5.5)
mild relapse mild relapse

No/Few Moderate
limitations limitations
(EDSS 3-5.5)

no relapse

(EDSS 0-2.5)
no relapse

No/Few Moderate
limitations limitations
(EDSS 0-2.5)
severe relapse

(EDSS 3-5.5)
severe relapse

Walking aid/
Wheelchair
(EDSS 6-7.5)
no relapse

Restricted to bed
(EDSS 8-9.5)
no relapse

Notes. All patients start in the lowest disability state (EDSS 0-2.5). In each month, a given patient can (1) remain in the same state, without a
relapse; (2) experience a relapse (in the two lowest disability states), which can be either mild or severe, and which lasts exactly one month; or
(3) progress to the next level of disability. Values for transition probabilities are shown in Table 1.

the patient is currently experiencing a relapse; and
(d) deaths can occur from all states depending on the
patient’s age, with MS-related deaths only occurring
in EDSS state 8-9.5. Furthermore, when simulating
patients on treatment, we allow patients in earlier dis-
ability states (with EDSS lower than 6) to abandon
treatment in any month within the first three years
with a fixed probability, consistent with the abandon-
ment rate observed in related medical studies (Cohen
et al. 2010, Prosser et al. 2004, O’'Rourke and Hutchin-
son 2005). We assume that once a patient discontinues
treatment, she will remain off of treatment for the rest
of her life.

Values for the transition probabilities are shown in
Table 1 and are consistent with medical studies (Prosser
et al. 2004, Horakova et al. 2012, Lee et al. 2012). These
probabilities depend on whether the patient is on treat-

ment and on the patient’s response type, with suc-
cessful treatment reducing the disease progression and
relapse rates by roughly 50% in responders compared
to nonresponders or patients not on treatment. We use
age-specific mortality rates published by the U.S. Cen-
ters for Disease Control and Prevention (Arias 2014).
Each state in the chain is associated with a mean
QALY value capturing a patient’s (quality-of-life) util-
ity (Table 2), with a year in perfect health having a util-
ity of one and death having a utility of zero. The real-
ized QALYs in a given state are normally distributed,
with a variance that is consistent with quality-of-life
surveys (Prosser et al. 2003, Lee et al. 2012). Mean util-
ities of low-disability states are higher than those of
high-disability states, and mean utilities of nonrelapse
states are higher than those of relapse states. Further-
more, being on treatment reduces the QALYs associated

Table 1. Transition Probabilities for the Disease Model in Figure 1

Parameter Value Range Source
If not in treatment or nonresponder
Monthly probability of disease progression
EDSS 0-2.5 0.004438 0.0033-0.0055 (1)
EDSS 3-5.5 0.009189 0.0070-0.0115 1
EDSS 6-7.5 0.003583 0.0027-0.0045 (1)
EDSS 9-9.5 0.000952 0.0007-0.0012 1
Monthly probability of relapse (EDSS states 0-2.5, 3-5.5) 0.0799 0.0566-0.0944 (1,2,3)
Conditional probability of severe relapse 0.23 0.14-0.56 1)
Responder on treatment
Probability of progression (relative to nonresponder) 0.5 0.38-1.00 2
Probability of relapse (relative to nonresponder) 0.5 0.33-0.90 2
Monthly probability of treatment discontinuation 0.0087 0-0.0174 1

Sources. (1) Lee et al. (2012), (2) Horakova et al. (2012), (3) Prosser et al. (2004).
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Table 2. Utility Values for Each Disease State

Parameter Value Range Source
Utility means (in QALYS per month)
Baseline utilities by disability level
EDSS 0-2.5 0.0687 0.0515-0.0833 1)
EDSS 3-5.5 0.0566 0.0424-0.0708 1)
EDSS 6-7.5 0.0444 0.0333-0.0555 (1)
EDSS 9-9.5 0.0409 0.0307-0.0512 (1)
Reduction in utility from treatment in first six months 0.0096 0.0038-0.0154 1)
Reduction in utility from treatment after first six months 0 0-0.0096 1,2)
Change in utility on treatment, due to response type
Responder +0.00058 0-0.002 —
Nonresponder —0.00058 —-0.002-0 —
Reduction in utility from relapse (in QALYS)
Mild or moderate 0.0076 0.0053-0.0099 1)
Severe 0.0252 0.0198-0.0305 1)
Utility standard deviation (in QALYS per month?) 0.0087 0.0034-0.0262 2)

Sources. (1) Lee et al. (2012), (2) Prosser et al. (2003).

*Values were converted from yearly to monthly values.

with each state for both responders and nonrespon-
ders, due to side effects, and this effect is more pro-
nounced during the first six months of treatment. To
the best of our knowledge, no study reports a difference
in quality of life between responders and nonrespon-
ders on treatment. We assume that a responder has a
small increase in quality of life compared to a nonre-
sponder (0.0012 per month on average), and we vary
this value in sensitivity analysis.

In addition to QALYSs, each state also has an associ-
ated cost (Table 3), representing the direct and indirect
monthly costs—which occur regardless of whether a
patient is on treatment—as well as the cost of inter-
feron-p treatment and the cost of managing (severe)
relapses.

4.2. Treatment Policies
Consistent with medical practice, we assume that all
treatments apply standard care and symptom man-

Table 3. Direct, Indirect, and Treatment Costs for MS

Monthly costs (in USD) Value Range
Interferon-f treatment 2,061 1,000-3,828
Direct costs by disability level
EDSS 0-2.5 536 402-607
EDSS 3-5.5 1,037 778-1,296
EDSS 6-7.5 2,460 1,845-3,075
EDSS 9-9.5 4,327 3,245-5,408
Direct costs per relapse
Mild or moderate 104 0-200
Severe 5,215 3,911-6,519
Indirect costs by disability level
EDSS 0-2.5 1,421 1,066-1,776
EDSS 3-5.5 2,964 2,223-3,705
EDSS 6-7.5 3,124 2,343-3,905
EDSS 9-9.5 3,182 2,387-3,978

Sources. Lee et al. (2012), Noyes et al. (2011).
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agement throughout the entire lifetime of the patient.
Thus, treatment policies choose between two arms,
with the “safe” arm corresponding to standard care
and the “risky” arm corresponding to prescribing
interferon-$ in addition to standard care. We consider
the following policies:

* No treatment: A policy that does not prescribe
interferon.

¢ Standard: A policy that immediately starts all
patients on interferon-f and only discontinues treat-
ment when patients reach EDSS disability state 6-7.5.
This policy is consistent with current recommenda-
tions to maintain patients on treatment indefinitely
(Rio et al. 2011) and has been modeled similarly in pre-
vious studies (Lee et al. 2012, Prosser et al. 2004);

* Consensus criteria: A policy proposed by Cohen
et al. (2004), where all patients are started on inter-
feron-f, but treatment is discontinued if patients expe-
rience two or more relapses in a year, or progress to an
EDSS state of 6-7.5;

* Adaptive: A set of adaptive treatment policies
based on our model, which we describe next.

We henceforth refer to the first three policies above (no
treatment, standard, and consensus criteria) as treat-
ment guidelines.

4.2.1. Implementation of Adaptive Treatments. Our
adaptive policies are derived by applying the analytical
results in Section 3 to the Markov model in Section 4.1.
Since this procedure is required whenever implement-
ing our framework for a complex disease model, we
elaborate on the critical steps below.

We identify “life events” with relapses and the “stop-
ping event” with disease progression. We apply our
model on a disease state basis, and in age-dependent fash-
ion. Consistent with practice, we assume that inter-
feron-f is not prescribed for patients with EDSS scores
exceeding 6 and thus design treatment only for patients
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with EDSS scores of 0-2.5 or 3-5.5, which we hence-
forth refer to as s; and s,, respectively. Since mortal-
ity is age-dependent, we allow treatment decisions to
depend on the patient’s age when transitioning into a
particular EDSS state. Applying our model thus gener-
ates policies in the form of belief thresholds p*(s, x) for
both EDSS scores s € {s;, s,} and for various initial age
values x. This requires fitting our model parameters—
the instantaneous reward rates p, g 3, the standard
deviation o, the relapse rates A 3, the disutility asso-
ciated with a relapse D, the stopping event rates 1, ¢ 3,
the terminal lump-sum reward V, and the discount
rate r—for each relevant state, as we discuss next.

Objective. We follow the typical approach in health-
care economics to combine the two objectives of QALYs
and costs into a single objective, using the net monetary
benefit (NMB) conversion (Hunink et al. 2014, Drum-
mond 2005). This requires predefining a WTP thresh-
old, which reflects how much policymakers are willing
to spend to gain one additional QALY. Then, the NMB
of an intervention that achieves additional QALYs of Q
at cost C is calculated as NMB = Q x WTP — C. Poli-
cies can then be compared in terms of their associated
NMB, with a higher WTP value shifting the weight
from costs to QALYs. We adopt this objective and solve
the model for various values of the WTP parameter;
this allows us to recover an entire frontier of cost-
effective treatments.

Instantaneous rewards (1, 0). A month in each disease
state s € {sy,s,} is associated with an average QALY
value and an average cost. We therefore have

u(s) = (mean monthly QALY in s)
X WTP — (monthly costs in s).

For instance, for a patient in EDSS state 3-5.5 who is
not on treatment, the reward p(s,) is determined by a
baseline utility of 0.0566 QALYs/month (per Table 2)
and a baseline cost of $4,001/month ($1,037 + $2,964,
per Table 3). For all patients on treatment, we use the
instantaneous reward rates based on the QALYs after
the first six months. For instance, a responder on treat-
ment in EDSS state 3-5.5 has a reward rate pi;(s,) deter-
mined by a mean QALY of 0.0566 — 0.001 + 0.00058
(per Table 2) and a monthly cost of $4,001 + $2,061 (per
Table 3). We set o equal to the standard deviation of
utility in Table 2.

Disutility from relapse (D). Each relapse causes a
decrement in the utility and an increment in the cost
for the month in which it occurs, by the amounts listed
in Table 2. Therefore,

D = (decrement in monthly QALY)
X WTP + (increment in monthly cost).

For instance, if a severe relapse occurs while in EDSS
0-2.5, the mean QALY per month decreases by 0.0252,
and the cost increases by $5,215.

RIGHTS LI L)

Relapse and progression rates (A, 17). Table 1 provides
the values for the monthly probabilities of relapse and
progression in the disease Markov model. Using our
assumption that relapse and progression events occur
according to Poisson processes, these monthly proba-
bilities can be converted into monthly rates using the
relationship pronmy =1 — e "temontly  We note that the
rates for responders on treatment are lower, according
to Table 1.

Discount rate (r). We take a societal perspective,
aggregating costs and QALYs across all patients, and
discount at an annual rate of 3% (Gold 1996). We incor-
porate patient death by viewing it as an exponentially
distributed event with a terminal reward equal to zero.
Since the mortality rate is the same for both respon-
ders and nonresponders, we can easily account for the
death event by directly adding the mortality rate to the
discount rate (this can be verified formally in the con-
text of Theorem 1). For simplicity, since mortality rates
increase with age, we set the mortality for a patient
of age x equal to the average mortality rate over years
x+1,x+2,...,x+ 1, where 7 is the average time spent
in a state by responders. The discount rates used in
each state s € {s;, s,} thus depend on the patient’s age
x on initially transitioning into state s.

Terminal reward (V). The lump-sum terminal reward
in any state corresponds to the expected NMB on tran-
sitioning from that state to the next disease state. Our
implementation requires such rewards for any state s €
{s1,5,} and for every initial patient age x on entering
state s, i.e.,, we need to specify V(s, x). Rewards may
also depend on the patient’s response type 6 when the
patient is subjected to treatment. To account for this, we
calculate the terminal rewards separately for respon-
ders and nonresponders (i.e., assuming perfect identi-
fication), and then weight these by the probability of
the patient being a responder.

To determine V(s,,x), we first simulate the Markov
model separately for each type 0, calculating the
expected remaining QALYs Qg ,5(x + 7¢) and costs
Ce_75(x+14) from the random time 7, when the patient
transitions into the next disease stage (with EDSS 6-7.5)
until her death. We then set V (s,, x)=E, [Qg75(x + 7o) X
WTP - Cq_;5(x +74)], where the weights are taken with
respect to the prior probability that the patient is a
responder. For V (s;,x), we proceed similarly, calculat-
ing rewards from the random transition into state s,
onwards.

Initial prior probability of the patient being a responder.
We start every patient in state s; with a prior of 0.52
of being a responder, in accordance with the distri-
bution of responders and nonresponders in the pop-
ulation. When simulating our adaptive policies, we
update this belief as long as the patient is on treat-
ment. The updates are done monthly, depending on the



Downloaded from informs.org by [171.67.216.21] on 15 November 2017, at 08:00 . For personal use only, al rights reserved.

Negoescu et al.: Dynamic Learning of Patient Response Types
Management Science, Articles in Advance, pp. 1-20, © 2017 INFORMS

13

observed quality-of-life utility and whether a relapse
occurred during the month, using the results in Lem-
mas 2(i) and 1(i), respectively.

We note that, although our implementation captures
some of the features of the complex MS model in Fig-
ure 1, such as disease progression and age-dependent
mortality, it nonetheless remains an approximation.
For instance, it ignores the different magnitudes of side
effects in the first six months of treatment, the differ-
ent variances in QALYs in a relapse month, and the
patient abandonment rates, and does not rigorously
account for mortality rates. However, our simulation
accounts for all of these features, making the perfor-
mance assessment for all policies under consideration
considerably more accurate.

4.3. Results

We start by determining optimal adaptive treatments
based on our implementation, for different values of
the WTP parameter. This generates an efficient fron-
tier of policies that systematically trade off QALYs and
costs, and is useful for benchmarking potential alterna-
tives. We consider WTP values from $50,000/ QALY to
$800,000/QALY, consistent with MS studies that report
costs in excess of $500,000/ QALY gained (Noyes et al.
2011). For each WTP, we find the optimal belief thresh-
olds at which treatment should be discontinued for
each relevant EDSS state (0-2.5 and 3-5.5), and for
every patient age.

Table 4 shows these thresholds for a typical 37-year-
old patient. As expected, we find that the propensity
to recommend treatment increases with WTP and with
age. Note that for a typical patient starting with an
EDSS of 0-2.5 and a 52% prior probability of being
a responder, the optimal adaptive treatment would
prescribe interferon only for a WIP above $200,000/
QALY. Since interventions are generally considered
cost-effective when the cost per QALY is less than three
times the country’s per-capita GDP (Drummond 2005,
Hunink et al. 2014), this suggests that interferon treat-
ment might not be considered cost-effective, and that a
no-treatment policy is optimal if the WP is no more
than $150,000/QALY.

Table 4. Optimal Discontinuation Thresholds for a
37-Year-Old Patient in State s; (EDSS Score 0-2.5) and
State s, (EDSS Score 3-5.5), for Various WTP Values

WTP ($/QALY) (K) p*(s1,37) p*(s,,37)
50 1 1

100 1 1

150 0.77 1

200 0.48 0.67

250 0.36 0.45

300 0.28 0.34

500 0.16 0.18

800 0.10 0.11
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We next simulate all of the policies under consid-
eration—no-treatment, standard, consensus, and all of
our adaptive policies—using the detailed Markov dis-
ease model. It is important to emphasize that under
this simulation, all of the policies and information
sets/beliefs are updated on a monthly basis, so that all
of the results correspond to the realized performance
under this frequency. In particular, although all of our
adaptive policies were calculated under the assump-
tion of a continuous-time model, they are implemented
and assessed under discrete-time updates.

A visual summary of the results is shown in Fig-
ure 2, which displays the costs and QALYs per patient
averaged over responders and nonresponders, assum-
ing a 52% fraction of responders in the population. To
put the results into perspective, the figure also displays
the performance of a perfect hindsight policy, which cor-
rectly classifies all patients a priori and only prescribes
interferon to responders. In our simulation, this policy
would result in 16.389 QALYs and costs of $1,143,031.

The no-treatment policy yields the smallest num-
ber of QALYs on average (15.794) but is also the least
expensive ($1,036,656). The standard policy yields an
average of 16.333 QALYSs, an increase of 3.4% compared
to no-treatment, but is also the most expensive of all
policies, with an average cost of $1,281,692 per patient.
The consensus criteria policy falls in between, achiev-
ing 15.984 QALYs at a cost of $1,096,950.

As expected, the adaptive policies form an efficient
frontier that dominates all policies except the perfect-
hindsight one. At WTP values below $150,000/QALY, a
no-treatment policy is equivalent to adaptive policies.
The consensus policy is strictly dominated by adaptive
policies for a WTP value of $205,000-$220,000/QALY,
although the differences are not very substantial (with

Figure 2. (Color online) Population-Averaged Costs and
QALYs for All Policies
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Note. The arrows indicate the values of the WTP parameter under
which the adaptive policies were obtained.
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Figure 3. (Color online) Net Monetary Benefits (NMB)
Achieved by Each Policy Relative to the Optimal
Adaptive Policy
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QALYs increased by 0.4% or costs reduced by 1.2%).
The standard policy is dominated by an adaptive pol-
icy with a WTP of $800,000/QALY, which increases
QALYs slightly (by 0.006) but significantly reduces
costs (by $77,000, or 6%).

Figure 3 compares the policies in terms of their
achieved NMB, expressed as a percentage of the NMB
of the best adaptive policy. Consistent with our prior
observations, note that the highest NMB is achieved
by the no-treatment policy at low WTP, by the consen-
sus policy at intermediate WTP, and by the standard
policy at high WTP. Furthermore, all policies except
standard achieve a high NMB uniformly (i.e., for any
WTP value).

These results can be used by policy makers to quan-
tify the benefits of interferon treatment and weigh them
against the corresponding costs. Our findings suggest
that gains from interferon treatment are not large in
absolute terms and come at steep costs: even the best
adaptive policy can increase QALYs by only 3.45% rel-
ative to the no-treatment alternative, while increas-
ing costs by 16.2%.” We find that the WTP required
for such improvements exceeds $800,000/QALY; this

Table 5. QALYs and Costs for Each Policy, by Patient Type

confirms earlier studies reporting costs larger than
$500,000/ QALY for interferon (Noyes etal. 2011), show-
ing that this persists even when considering optimal
adaptive treatments instead of heuristic treatment poli-
cies. This reinforces our earlier observation that inter-
feron treatment is not necessarily cost-effective and
suggests that even in environments with larger WTP
(e.g.,above $150,000/ QALY), not prescribing interferon
may be the optimal action. However, this recommenda-
tion should be interpreted with caution—even though
improvements in QALYs may not be large in absolute
terms, they may nonetheless be significant in relative
terms, and particularly for chronic diseases as debili-
tating as MS. Furthermore, patients (and policy mak-
ers alike) may not easily accept the cost-benefit analysis
inherent in such a no-treatment recommendation.

Second, our results provide empirical validation of
the consensus criteria proposed by Cohen et al. (2004).
We find that the resulting policy is close to being
efficient at intermediate values of WIP and achieves
net monetary benefits close to a fully adaptive policy.
Thus, these simple discontinuation rules may repre-
sent a viable alternative to implementing a complex
optimal adaptive policy, particularly at intermediate
values of WTP.

Finally, the results suggest that none of the treatment
guidelines is satisfactory at very large WTP: the con-
sensus and no-treatment policies generate low QALYs,
while the standard policy is inefficient, dominated in
both QALYs and costs by an adaptive policy. To bet-
ter illustrate the differences in performance, and to
understand how the benefits are distributed among
responders and nonresponders, we examine this case
in more detail.

4.3.1. An Optimal Policy at High WTP. We compare
the three treatment guidelines with the adaptive pol-
icy calculated for a WTP of $800,000/QALY (Online
Appendix E provides a detailed description of this
policy). The simulation results by response type are
summarized in Table 5. As can be seen, the optimal
adaptive policy achieves QALYs for responders that are
close to those of the standard policy (which is opti-

Standard No-treatment Consensus Adaptive (800,000)

Resp Nonresp Resp Nonresp Resp Nonresp Resp Nonresp
QALY means 16.939 15.677 15.794 15.794 16.225 15.724 16.917 15.712
QALY stderr 0.037 0.035 0.035 0.035 0.035 0.035 0.036 0.036
Cost means ($) 1,241,224 1,325,533 1,036,656 1,036,656 1,099,763 1,150,516 1,236,178 1,170,188
Cost stderr ($) 3,778 4,095 4,214 4,214 3,963 4,227 3,912 4,208
NMB means ($) 12,309,976 11,216,067 11,598,544 11,598,544 11,880,237 11,428,684 12,297,348 11,399,254
NMB stderr ($) 15,673 15,311 17,026 17,026 16,346 17,162 16,159 17,210
NMB means ($) 11,784,899 11,598,544 11,663,491 11,866,262
NMB stderr ($) 13,377 17,026 14,615 14,586

Notes. “(Non)Resp” denotes a (non)responder to interferon-f3. The adaptive policy and all NMBs are calculated for a WTP of $800,000.
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Figure 4. (Color online) Proportion of Patients on Treatment Until Age 60 Under the Consensus, Standard and Adaptive
Policy (for WTP = $800,000/QALY), for Responders and Nonresponders

Responders
1.00 Label
— Adaptive
----- Consensus criteria

S === Standard
E 075

©

o

<

9

2

5

= 0.50 -

©

o

S

c

K]

€

8

) 0.25 -

o

40 45 50 55 60
Age

mal for this type), and considerably exceeds the no-
treatment and consensus policies, by 6.6% and 4.1%,
respectively. At the same time, the adaptive policy
also achieves higher QALYs than the standard policy
for nonresponders, by identifying them and removing
them from treatment earlier; no-treatment and con-
sensus, which are both more aggressive in removing
patients from treatment, are only marginally superior
to the adaptive policy for nonresponders, with QALY
improvements of less than 0.6%.

The outcomes of the policies are primarily driven by
the number of months each patient spends in treat-
ment. The standard policy incurs the most costs, as
it keeps patients on treatment for the longest time on
average (289 months for responders, and 208 months
for nonresponders). In contrast, the adaptive policy
keeps responders on treatment for 279 months on aver-
age and nonresponders for 78 months, achieving the
highest overall gain in QALYs. Perhaps the best illus-
tration of the effectiveness of the adaptive policy is
Figure 4, which plots the proportion of patients on
treatment over time, by response type. The proportion
of nonresponders on treatment converges to zero for
the adaptive policy, whereas the proportion of respon-
ders on treatment remains relatively high. The optimal
policy thus attains a good balance between the opti-
mal treatment for responders (standard) and for non-
responders (no-treatment).

These results can be observed consistently for each
year in our simulation, as displayed in Figures 5 and 6.
Note that both costs and QALYs decrease over time
under both the standard and the adaptive policy and
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under both response types; this is due to disease pro-
gression and the fact that all patients are taken off of
treatment once they reach EDSS state 6-7.5. Also, con-
sistent with reality, the disutility incurred by patients
due to side effects is higher for the first six months on
treatment, which is why both groups display a non-
monotonic pattern in the first year.

To test the robustness of our findings, we performed
a probabilistic sensitivity analysis in which we ran-
domly generated 1,000 problem instances. For each
instance, each parameter was randomly sampled from
a triangle distribution with mode given by the base
case value, and the lowest and highest values corre-
sponding to the ranges in Tables 1-3. The results of the
analysis are shown in Figure 7. In this scatter plot, each
point represents the result of a simulation with 10,000
responders and 10,000 nonresponders for a given set of
parameters. As can be seen, all statistically significant
differences in mean QALYs (and costs) between the
adaptive and standard policies were positive (respec-
tively, negative) for nonresponders, indicating that our
adaptive policy is especially cost-effective for nonre-
sponders compared to the standard policy.

5. Conclusions, Limitations, and

Future Directions
We have introduced a quantitative framework that can
inform treatment policies for chronic diseases sharing
the following features: (1) there is a priori uncertainty
about whether a patient will respond to an available
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Figure 5. (Color online) QALYs Experienced Under All Treatment Policies for Responders and Nonresponders: Yearly Means

and 95% Confidence Intervals for the Means
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treatment; (2) observations of the effectiveness of treat-
ment are noisy; and (3) learning about treatment effec-
tiveness occurs not only from monitoring day-to-day
disease progression, but also from observing the tim-
ing and severity of less frequent, major health events.
We showed that the problem of choosing between
two treatments with linear dose-response can be ana-
lyzed in closed form, resulting in intuitive optimal
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policies that take the form of discontinuation rules. We
also discussed how our analytical results can be used to
optimally select among several treatments by solving a
small number of one-dimensional, convex optimization
problems, and provided conditions when the optimal
treatment is no longer a simple discontinuation rule.
Finally, we used our framework to develop a set
of treatment policies for administering interferon to

Figure 6. (Color online) Costs Incurred Under All Treatment Policies for Responders and Nonresponders: Yearly Means and

95% Confidence Intervals for the Means
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Figure 7. (Color online) Results of Probabilistic Sensitivity Analysis: Incremental Costs and QALYs for Responders and
Nonresponders (Adaptive Treatment Policy Compared to Standard Treatment Policy)
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patients suffering from MS. Our policies explicitly
traded off treatment benefits and costs through a
parameter capturing the policy makers” WTP for every
QALY gained. Using these policies as benchmarks,
we then assessed several treatment guidelines used
in practice for administering interferon, which lead to
three conclusions that can inform policy makers and
medical practitioners:

1. At WTP values below $150,000/QALY, we found
that a no-treatment policy is optimal.

2. At WTP values between $150,000/QALY and
$500,000/QALY, we found that a policy based on the
consensus criteria discussed in Cohen et al. (2004)
delivers a good balance between QALYs and costs, and
is almost efficient. Considering its simplicity relative to
our adaptive policies, it thus emerges as the preferred
treatment guideline at intermediate WTP values.

3. At WTP values above $500,000/ QALY, none of the
treatment guidelines considered deliver adequate per-
formance; an adaptive policy derived from our frame-
work under a WTP of $800,000/ QALY attained a better
balance between administering sufficient treatment to
responders and identifying nonresponders early.

Several next steps can bring our research and find-
ings closer to a treatment recommendation. First, our
MS case study could be generalized to allow choosing
among multiple drugs for symptom management and
multiple disease-modifying agents (National Multiple
Sclerosis Society 2017). Online Appendix A provides
a computationally tractable procedure for a model
with multiple risky treatments/arms, which could
be a building block in this direction. To enable this
approach, one first requires a thorough understand-
ing of the patient response to each drug, so as to cali-
brate the corresponding reward, relapse, and progres-
sion rates. These could be obtained from clinical trials,
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such as those conducted as part of the drug approval
process.

Second, one could extend our model by relaxing
some of the assumptions made for analytical tractabil-
ity. Of key importance here are the assumptions con-
cerning the linear dose response and the ability to con-
tinuously measure rewards and update beliefs, which
we discuss next.

Linear dose response. Although exact response curves
are the subject of active research, response curves
reported in the literature for many drugs tend to be
S-shaped, exhibiting diminishing marginal returns at
high dosage values. The assumption of linearity may
nonetheless remain reasonable within a certain dosage
range. For instance, clinical trials with interferon $-la
for MS suggest an approximately linear reduction in
relapse rate when the dosage is below 66 micrograms
per week, and a decreasing rate for higher dosage
(OWIMS 1999).'? In Online Appendix D, we discuss in
detail the impact of the linearity assumption on optimal
policies and performance when the underlying dose—
response is S-shaped. We find that optimal policies are
no longer “bang-bang,” and that a strictly fractional
treatment allocation may be optimal even when the
patient is known to be a (non)responder. The optimality
loss varies from 0% to 16%, depending on the degree of
“nonlinearity,” which suggests that embedding nonlin-
ear response curves without sacrificing tractability may
be a practically (and theoretically) meaningful future
direction.

Continuous updates. Our framework allows for con-
tinuously measuring rewards and conducting belief
and treatment updates. This is reasonable when the
policies generated from our results are interpreted as
upper bounds, which are then used either to suggest
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or otherwise benchmark simpler treatments with less
frequent updates. Depending on the disease and treat-
ment in question, these assumptions may also be(come)
realistic. For instance, in MS, the use of wearable devices
has shown to have great potential for the collection
and relaying of real-time patient information (McIn-
inch et al. 2015).!' Combined with research aimed at
understanding how disease progression and treatment
response are related to observed mobility,'? such devel-
opments could potentially make a near-continuous-
time treatment policy feasible in the future (provided,
of course, that the benefits outweigh the costs). Despite
these examples, however, assuming continuous eval-
uations and treatment updates may not be reason-
able when extensive medical exams are required (e.g.,
involving doctor visits, MRI scans, etc.). Our model
could be extended to allow belief updates only at par-
ticular points in time, provided that the information
between these points can be suitably aggregated. In
Online Appendix C, we discuss the impact of monitor-
ing frequency in more detail, and provide several the-
oretical and computational results that characterize the
losses under less frequent updating. For our MS case
study, we find that the loss from a monthly monitor-
ing policy is less than 8%. However, we also find that
as treatments for MS become more efficient at reducing
the frequency of relapses in responders, these losses are
likely to increase, prompting the need for more research
that explicitly captures the costs of more frequent belief
and treatment updating.

In addition to these, one other assumption worth
relaxing would be the requirement that a risky (treat-
ment) arm have exactly two types. In practice, more
types may exist (e.g., corresponding to a patient fully,
partially, or not responding to treatment). Our results
would readily apply if the optimal treatment for each
patient type still involved a binary choice between
the same two alternatives, since then the various
types could be aggregated into two “macro-types.”
When different patient types require different dosages
or treatment options, our model would have to be
extended to explicitly allow learning for all types
simultaneously. This requires a multidimensional state
that tracks the probability for each type, which consid-
erably complicates the analysis.

Lastly, an important step in making the results im-
plementable is a clinical trial testing the performance
of our adaptive policy against other guidelines. To that
end, Online Appendix E provides an implementation-
driven description of our proposed policy, which could
guide such a design in conjunction with an appropriate
selection of a cohort of patients.

To conclude, although we illustrated our framework
with a case study on MS and interferon-, we believe
that the ideas could be used to inform the treatment of
other chronic diseases, such as celiac disease, rheuma-
toid arthritis, Crohn’s disease, or depression.
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Endnotes

1For instance, in an editorial paper, Murphy and Collins (2007, p. S2)
state that “[d]espite the activity in evaluating adaptive treatment
strategies, the development of data collection and analytic methods
that directly inform the construction of adaptive treatment strategies
lags behind.”

2Biomarkers exist for some chronic diseases (e.g., breast cancer). Our
focus is on diseases for which the existing biomarkers do not per-
fectly classify patients as responders and nonresponders, and thus
where there is scope for experimentation with the available treat-
ments. As we mention below, one such disease is multiple sclerosis.
It is worthwhile to note that the discovery of biomarkers for MS is a
very active field of research (e.g., Derfuss (2012)).

3“The effects of current therapies on attack rates and MRI measures
of newly accumulated lesion burdens [...] are the events that are
most readily available to the clinician when considering treatment
failure or suboptimal response in an individual patient” (National
Multiple Sclerosis Society 2004, p. 2).

4The National Institute of Health in the United Kingdom
launched an innovative risk-sharing scheme in 2002, according to
which patients would be closely monitored to evaluate the cost-
effectiveness of the drugs used in standard treatment, with an agree-
ment that prices would be reduced if overall patient outcomes
were worse than predicted. The scheme became controversial when
reports from observational cohorts suggested that the outcomes were
far below expectations—implying that treatment was generally not
cost-effective—yet the drug providers did not reduce their prices as
per the agreement (Raftery 2010, Sudlow and Counsell 2003, Bog-
gild et al. 2009). It is worth noting that personalized discontinuation
rules for patients were not considered, though such rules might have
reduced total costs and also improved patient outcomes.

5An alternative formulation could have considered the stopping
event as a “special instance” of a life event. Since splitting a Pois-
son process would yield an exponentially distributed time for the
stopping event, this would be equivalent to our current model.

6This effectively means that the expectations of quantities at time
t that depend on 6 should be taken with respect to a correspond-
ing two-point distribution given by p,. For instance, E[uy] = p, i +
(1 =pps

"Formally, 7, is the sigma-algebra generated by the allocations,
rewards, events, and lump-sum rewards up to time t (ie., 7, &of
G({[lT, dﬂO(T), dT(l(T), NT/ LT}US'(([))'

8We choose to focus on EDSS instead of MRI in our study for several
pragmatic reasons. First, EDSS is considerably more widespread, and
there is no consensus in the medical community concerning the use
of MRI for monitoring therapeutic response in MS (see Cohen et al.
2004). Second, MRI scans may not be available for a large subset of
the population or may be difficult or costly to administer frequently.
Third, there is insufficient data in medical studies concerning the
difference in MRI scans between responders and nonresponders.
9Similar observations can be made with respect to the perfect hind-
sight policy, which increases QALYs by 3.7% and costs by 10.2%
relative to no-treatment.

10The Once Weekly Interferon for MS Study Group reports a reduc-
tion in relapse rates of 9.6%, 19%, 33%, and 37% for respective weekly
dosages of 30 ug, 44 ug, 66 ug, and 132 ug (OWIMS 1999).
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"1In a recent study conducted by the nonprofit PatientsLikeMe and
Biogen Idec, 248 FitBit One™ devices were distributed to patients
suffering from MS, and the personal mobility data of all the patients
was collected and sent to centralized data servers. The results of the
study were reported in the 67th American Academy of Neurology’s
Annual Meeting (April, 2015), revealing “a high degree of patient
interest and perceived value in using activity tracking devices to help
patients manage their MS” (McIninch et al. 2015).

12This research endeavor has recently been taken up in a collabora-
tion by Biogen, Google X, and Cleveland Clinic (Chen 2015).

References

Ahuja V, Birge ] (2016) Response-adaptive designs for clinical trials:
Simultaneous learning from multiple patients. Eur. ]. Oper. Res.
248(2):619-633.

Almirall D, Compton S, Gunlicks-Stoessel M, Duan N, Murphy S
(2012) Designing a pilot sequential multiple assignment ran-
domized trial for developing an adaptive treatment strategy.
Statist. Medicine 31(17):1887-1902.

Arias E (2014) United States life tables, 2010. Natl. Vital Statist. Rep.
63(7), http: //www.cdc.gov/nchs/data/nvsr/nvsr63/nvsr63_07
pdf.

Bank P, Kiichler C (2007) On Gittins” index theorem in continuous
time. Stochastic Processes Their Appl. 117(9):1357-1371.

Berry D (1978) Modified two-armed bandit strategies for certain clin-
ical trials. J. Amer. Statist. Assoc. 73(362):339-345.

Berry D, Fristedt B (1985) Bandit Problems: Sequential Allocation of
Experiments (Chapman and Hall, London).

Berry D, Pearson L (1985) Optimal designs for clinical trials with
dichotomous responses. Statist. Medicine 4(4):497—450.

Bertsimas D, O’Hair A, Relyea S, Silberholz ] (2016) An analytics
approach to designing combination chemotherapy regimens for
cancer. Management Sci. 62(5):1511-1531.

Boggild M, Palace ], Barton P, Ben-Shlomo Y, Bregenzer T, Dobson C,
Gray R (2009) Multiple sclerosis risk sharing scheme: Two year
results of clinical cohort study with historical comparator. BMJ
339:b4677.

Bolton P, Harris C (1999) Strategic experimentation. Econometrica
67(2):349-374.

Carroll W (2010) Oral therapy for multiple sclerosis—Sea change or
incremental step? New England ]. Medicine 362(5):456—458.

Chen C (2015) Google, Biogen seek reasons for advance of multi-
ple sclerosis. Bloomberg (January 27), http://www.bloomberg
.com/news/articles/2015-01-27 / google-biogen-seek-reasons-for
-advance-of-multiple-sclerosis.

Cohen A, Solan E (2013) Bandit problems with Lévy processes. Math.
Oper. Res. 38(1):92-107.

Cohen BA, Khan O, Jeffery DR, Bashir K, Rizvi SA, Fox EJ, Agius M,
et al. (2004) Identifying and treating patients with suboptimal
responses. Neurology 63(12, Suppl. 6):S33-540.

Cohen ], Barkhof F, Comi G, Hartung H, Khatri B, Montalban X,
Pelletier J, et al. (2010) Oral fingolimod or intramuscular inter-
feron for relapsing multiple sclerosis. New England ]. Medicine
362(5):402—415.

Denton B, Kurt M, Shah N, Bryant S, Smith S (2009) Optimizing the
start time of statin therapy for patients with diabetes. Medical
Decision Making 29(3):351-367.

Derfuss T (2012) Personalized medicine in multiple sclerosis: Hope
or reality? BMC Medicine 10(1):116.

Drummond M (2005) Methods for the Economic Evaluation of Health
Care Programmes (Oxford University Press, Oxford, UK).

El Karoui N, Karatzas I (1994) Dynamic allocation problems in con-
tinuous time. Ann. Appl. Probab. 4(2):255-286.

Gold M (1996) Cost-Effectiveness in Health and Medicine (Oxford Uni-
versity Press, New York).

Harrison JM, Sunar N (2015) Investment timing with incom-
plete information and multiple means of learning. Oper. Res.
62(2):442-457.

RIGHTSE LI MN iy

Hartung DM, Bourdette DN, Ahmed SM, Whitham RH (2015) The
cost of multiple sclerosis drugs in the us and the pharmaceutical
industry too big to fail? Neurology 84(21):2185-2192.

Helm JE, Lavieri MS, Van Oyen MP, Stein JD, Musch DC (2015)
Dynamic forecasting and control algorithms of glaucoma pro-
gression for clinician decision support. Oper. Res. 63(5):979-999.

Horakova D, Kalincik T, Dolezal O, Krasensky ], Vaneckova M,
Seidl Z, Havrdova E (2012) Early predictors of non-response
to interferon in multiple sclerosis. Acta Neurologica Scandinavica
126(6):390-397.

Hunink M, Weinstein M, Wittenberg E, Drummond M, Pliskin ],
Wong J, Glasziou P (2014) Decision Making in Health and Medicine:
Integrating Evidence and Values (Cambridge University Press,
Cambridge, UK).

Keller G, Rady S (2010) Strategic experimentation with Poisson ban-
dits. Theor. Econom. 5(2):275-311.

Keller G, Rady S (2015) Breakdowns. Theor. Econom. 10(1):175-202.

Keller G, Rady S, Cripps M (2005) Strategic experimentation with
exponential bandits. Econometrica 73(1):39-68.

Kremenchutzky M, Rice GPA, Baskerville J, Wingerchuk DM,
Ebers GC (2006) The natural history of multiple sclerosis: A geo-
graphically based study—9: Observations on the progressive
phase of the disease. Brain 129(3):584-594.

Lee S, Baxter D, Limone B, Roberts M, Coleman C (2012) Cost-
effectiveness of fingolimod versus interferon beta-1a for relaps-
ing remitting multiple sclerosis in the United States. ]. Medical
Econom. 15(6):1088-1096.

Mandelbaum A (1987) Continuous multi-armed bandits and multi-
parameter processes. Ann. Probab. 15(4):1527-1556.

Mariette X, Matucci-Cerinic M, Pavelka K, Taylor P, van Vollen-
hoven R, Heatley R, Walsh C, Lawson R, Reynolds A, Emery P
(2011) Malignancies associated with tumour necrosis factor
inhibitors in registries and prospective observational studies: A
systematic review and meta-analysis. Ann. Rheumatic Diseases
70(11):1895-1904.

Mason J, Denton B, Shah N, Smith S (2014) Optimizing the simulta-
neous management of blood pressure and cholesterol for type 2
diabetes patients. Eur. J. Oper. Res. 233(3):727-738.

Mclninch ], Datta S, DasMahapatra P, Chiauzzi E, Bhalerao R,
Spector A, Goldstein S, Morgan L, Relton ] (2015) Remote
tracking of walking activity in MS patients in a real-world
setting. Neurology 84(14, Suppl. P3.209), https:// patientslikeme
_posters.s3.amazonaws.com/2015_Remote%20Tracking %200f
%20Walking %20Activity %20in%20MS%20Patients%20in%20Real
%20World.pdf.

Murphy S (2005) An experimental design for the development of
adaptive treatment strategies. Statist. Medicine 24(10):1455-1481.

Murphy SA (2003) Optimal dynamic treatment regimes. ]. Roy.
Statist. Soc. Ser. B Statist. Methodol. 65(2):331-355.

Murphy SA, Collins LM, Rush AJ (2007) Customizing treatment to
the patient: Adaptive treatment strategies. Drug Alcohol Depen-
dence 88(Suppl. 2):51-S3.

National Multiple Sclerosis Society (2004) Changing therapy in
relapsing multiple sclerosis: Considerations and recommenda-
tions of a task force of the National Multiple Sclerosis Society.
Expert opinion paper, http://www.nationalmssociety.org/
NationalMSSociety /media/MSNationalFiles /Brochures/Clinical
_Bulletin_Changing-Therapy-in-Relapsing-MS.pdf.

National Multiple Sclerosis Society (2008) Disease management
consensus statement. Expert opinion paper, http://www.
nationalmssociety.org/NationalMSSociety /media/MSNational
Files /Brochures /ExpOp_Consensus.pdf.

National Multiple Sclerosis Society (2017) Disease-modifying ther-
apies for MS. http://stage.nationalmssociety.org/National
MSSociety /media/MSNationalFiles /Brochures/Brochure-The
-MS-Disease-Modifying-Medications.pdf.

Noyes K, Bajorska A, Chappel A, Schwid S, Mehta L, Weinstock-
Guttman B, Holloway R, Dick A (2011) Cost-effectiveness of
disease-modifying therapy for multiple sclerosis: A population-
based study. Neurology 77(4):355-363.



Downloaded from informs.org by [171.67.216.21] on 15 November 2017, at 08:00 . For personal use only, al rights reserved.

20

Negoescu et al.: Dynamic Learning of Patient Response Types
Management Science, Articles in Advance, pp. 1-20, ©2017 INFORMS

Once Weekly Interferon for MS Study Group (OWIMS) (1999) Evi-
dence of interferon $-la dose response in relapsing-remitting
MS: The OWIMS study. Neurology 53(4):679-686.

O'Rourke KE, Hutchinson M (2005) Stopping beta-interferon therapy
in multiple sclerosis: An analysis of stopping patterns. Multiple
Sclerosis 11(1):46-50.

Phillips CJ (2004) The cost of multiple sclerosis and the cost effective-
ness of disease-modifying agents in its treatment. CNS Drugs
18(9):561-574.

Pincus T, Callahan L, Sale W, Brooks A, Payne L, Vaughn W (1984)
Severe functional declines, work disability, and increased mor-
tality in seventy-five rheumatoid arthritis patients studied over
nine years. Arthritis Rheumatism 27(8):864-872.

Pineau ], Bellemare MG, Rush AJ], Ghizaru A, Murphy SA
(2007) Constructing evidence-based treatment strategies using
methods from computer science. Drug Alcohol Dependence
88(Suppl. 2):552-560.

Powell WB, Ryzhov 10 (2012) Optimal Learning (John Wiley & Sons,
Hoboken, NJ).

Prosser L, Kuntz K, Bar-Or A, Weinstein M (2003) Patient and com-
munity preferences for treatments and health states in multiple
sclerosis. Multiple Sclerosis 9(3):311-319.

Prosser L, Kuntz K, Bar-Or A, Weinstein M (2004) Cost-effectiveness
of interferon beta-1a, interferon beta-1b, and glatiramer acetate
in newly diagnosed non-primary progressive multiple sclerosis.
Value Health 7(5):554-568.

Raftery J (2010) Multiple sclerosis risk sharing scheme: A costly fail-
ure. BMJ 340:c1672.

Rio J, Comabella M, Montalban X (2011) Multiple sclerosis: Current
treatment algorithms. Current Opinion Neurol. 24(3):230-237.

RIGHTS L1 N Hig

Romeo M, Martinelli-Boneschi F, Rodegher M, Esposito F, Mar-
tinelli V, Comi G, San Raffaele Multiple Sclerosis Clinical Group
(2013) Clinical and MRI predictors of response to interferon-beta
and glatiramer acetate in relapsing-remitting multiple sclerosis
patients. Eur. J. Neurol. 20(7):1060-1067.

Rovaris M, Comi G, Rocca M, Wolinsky J, Filippi M, European/
Canadian Glatiramer Acetate Study Group (2001) Short-term
brain volume change in relapsing-remitting multiple sclero-
sis: Effect of glatiramer acetate and implications. Brain 124(9):
1803-1812.

Rudick R, Stuart W, Calabresi P, Confavreux C, Galetta S, Radue E,
Lublin F, et al. (2006) Natalizumab plus interferon beta-1a for
relapsing multiple sclerosis. New England ]. Medicine 354(9):
911-923.

Scalfari A, Neuhaus A, Degenhardt A, Rice G, Muraro P, Daumer M,
Ebers G (2010) The natural history of multiple sclerosis, a geo-
graphically based study 10: Relapses and long-term disability.
Brain 133(7):1914-1929.

Sudlow C, Counsell C (2003) Problems with UK government’s risk
sharing scheme for assessing drugs for multiple sclerosis. British
Medical ]. 326(7385):388-392.

Tappenden P, McCabe C, Chilcott J, Simpson E, Nixon R, Madan J,
Fisk JD, Brown M (2009) Cost-effectiveness of disease-modifying
therapies in the management of multiple sclerosis for the Medi-
care population. Value Health 12(5):657-665.

Young P, Olsen L (2010) The Healthcare Imperative: Lowering Costs
and Improving Outcomes: Workshop Series Summary (National
Academies Press, Washington, DC).

Zhang ], Denton B, Balasubramanian H, Shah N, Inman B (2012)
Optimization of prostate biopsy referral decisions. Manufactur-
ing Service Oper. Management 14(4):529-547.



