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Abstract  Testifying to more than 10 years of academic and practical developments, this tutorial
attempts to provide a succinct yet unified view of the robust multistage decision-
making framework. In particular, the reader should better understand (1) the dis-
tinction between static versus fully or partially adjustable decisions, (2) the root
of tractability issues, (3) the connection to robust dynamic programming, (4) some
motivation for using simple policies, especially in terms of optimality, (5) how time
consistency issues can arise, and (6) some relevant applications.

Keywords robust optimization; sequential decision making; time consistency;
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1. Introduction

The key underlying philosophy behind the robust optimization modeling paradigm is that,
in many practical situations, a complete stochastic description of the uncertainty may not
be available. Instead, one may only have information with less detailed structure, such as
bounds on the magnitude of the uncertain quantities or rough relations linking multiple
unknown parameters. In such cases, one may be able to describe the unknowns by specifying
a set in which all realizations should lie, the so-called uncertainty set. The decision maker
then seeks to ensure that the constraints in the problem remain feasible for any possible
realization while optimizing an objective that protects against the worst possible outcome.

In its original form, proposed by Soyster [71] and Falk [48], robust optimization was mostly
concerned with linear programming problems in which the data were inexact. Because of
the columnwise structure of the uncertainty considered, the robust optimization problem
amounted to taking the worst case for each parameter; because this was very conservative,
its adoption by the operations research community was therefore limited until new research
efforts in the late 1990s devised approaches to control for the degree of conservatism of the
solution. Papers by Ben-Tal and Nemirovski [7, 8, 9, 10], Ben-Tal et al. [14], El-Ghaoui
and Lebret [46], and El-Ghaoui et al. [47], followed by those of Bertsimas and Sim [26, 27],
and Bertsimas et al. [35], considerably generalized the earlier framework by extending it to
other classes of convex optimization problems beyond linear programming (quadratic, conic,
and semidefinite programs), as well as more complex descriptions of the uncertainty (inter-
sections of ellipsoidal uncertainty sets, uncertainty sets with budgets of uncertainty, etc.).
A key feature of these papers was that the uncertainty set was centered at the nominal
value of the uncertain parameters and that the size of the set could be controlled by the
decision maker to capture his level of aversion to ambiguity. Throughout these papers, the
key emphases were on

1. tractability, understanding the circumstances under which a nominal problem with
uncertain data can be formulated as a tractable (finite-dimensional, convex) optimization
problem and characterizing the complexity of solving this resulting robust counterpart, and
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2. the degree of conservatism and probabilistic guarantees, understanding when the robust
counterpart constitutes an exact or a safe (i.e., conservative) reformulation of the robust
problem, as well as developing models that can control the degree of conservatism of the
robust solution. For instance, in cases when the uncertainty is truly stochastic, one can
design uncertainty sets ensuring that any feasible solution for the robust problem is feasible
with high probability for the original stochastic problem.

Although robust optimization was initially developed for static problems with parameters
of unknown but fixed value, it quickly emerged as a high-potential technique to handle
both decision-making problems, where parameters are random and obey imprecisely known
distributions, and dynamic decision-making problems, where the decision maker is able to
adjust his strategy to information revealed over time.

Ben-Tal et al. [16] were the first! to discuss robust multistage decision problems, opening
the field to numerous other papers either dealing with theoretical concepts or applying the
framework to practical problems, such as inventory management (e.g., Ben-Tal et al. [15],
Bertsimas and Thiele [28], Bienstock and Ozbay [37]), facility location and transporta-
tion (e.g., Baron et al. [5]), scheduling (e.g., Lin et al. [60], Mittal et al. [64], Yamashita
et al. [78]), dynamic pricing and revenue management (e.g., Adida and Perakis [1], Perakis
and Roels [66], Thiele [72]), project management (e.g., Wiesemann et al. [75]), energy gen-
eration and distribution (e.g., Lorca and Sun [61], Zhao et al. [80]), or portfolio optimization
(e.g., Bertsimas and Pachamanova [25], Ceria and Stubbs [39], Goldfarb and Iyengar [52],
Pmar and Tiitiincii [67], Tutiincti and Koenig [74]). We refer the reader to the review papers
by Bertsimas et al. [29] and Gabrel et al. [50] and the book by Ben-Tal et al. [13] for a more
thorough discussion and additional applications.

Whereas robust static decision making is now relatively well understood, robust multistage
decision making continues to be a cutting-edge research area that provides a way to model
uncertainty that is well suited to the uncertainty at hand and offers the potential for both
strategic insights into the optimal policy and computational tractability. As a testimony to
more than 10 years of academic and practical developments revolving around the robust
multistage decision-making framework, this tutorial attempts to provide a succinct and
unified view of the methodology while highlighting potential pitfalls and indicating several
open questions. In particular, our objectives with the tutorial are to

1. provide tools for identifying a static versus a fully or partially adjustable decision
variable (§2),

2. highlight some tractability issues related to the formulation (§3),

3. clarify the connection to robust dynamic programming (§4),

4. provide motivations for using simple policies (§5), and finally

5. illustrate how time consistency issues might arise (§6).

1In the context of multistage decision making, we should note that a parallel stream of work, focusing on
similar notions of robustness, also existed for several decades in the field of dynamical systems and control.
Witsenhausens early thesis [76] and subsequent paper [77] first formulated problems of state estimation
with a set-based membership description of the uncertainty, and the thesis by Bertsekas [18] and paper
by Bertsekas and Rhodes [20] considered the problem of deciding under what conditions the state of a
dynamical system affected by uncertainties is guaranteed to lie in specific ellipsoidal or polyhedral tubes
(the latter two references showed that, under some conditions, control policies that are linear in the states
are sufficient for such a task). The literature on robust control received a tremendous speed-up in the 1990s,
with contributions from numerous groups (e.g., Doyle et al. [44], Fan et al. [49]), resulting in two published
books on the topic (Dullerud and Paganini [45], Zhou and Doyle [81]). Typically, in most of this literature,
the main objective was to design control laws that ensured the dynamical system remained stable under
uncertainty, and the focus was on coming up with computationally efficient procedures for synthesizing such
controllers.
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The target audience for our tutorial comprises primarily academics interested in learn-
ing more about robust multistage decision making, as well as practitioners seeking a gentle
introduction to the framework. The tutorial assumes basic knowledge of the robust opti-
mization paradigm for static problems, as well as basic familiarity with concepts in dynamic
optimization (dynamic programming, Bellman principle, etc.).

2. When to Worry About Adjustable Decisions

We start our discussion by considering a simple inventory problem in which a retailer needs
to order some goods in order to satisfy demand from his customers while incurring the lowest
total cost, which is the sum of the ordering, holding, and backlogging costs over a finite
time horizon. In a deterministic setting, this might take the shape of the following convex
optimization problem:

T
miggi,raize ;(ctxt + ht(yt+1)+ + bt(—yt+1)+)
st. Y1 =y +ax—di, Vi,
0 S Tt S Mta Vtv

Yy =a, (1)

where z; € R captures the number of goods ordered at time ¢ and received by time t + 1;
y; is the number of goods in stock at the beginning of time ¢, with y; = a as the initial
inventory (given); d; is the demand for the retailer’s goods between times ¢ and ¢+ 1; and
ct, he, and by denote the per-unit ordering, holding (i.e., storage), and backlogging costs,
respectively.? Finally, () := max(0,y) denotes the positive part of y.

It is well known that this deterministic problem can be reformulated as a linear program:

T
minimize Z(ctxt + hist 4+ bis; )

Too Y sy s, 401
st. Y1 =y +xe—dy, Vi,
sf>0,s, >0, Vt,
s§ > Y1, Vi,
5 > —Yiy1, Vi,
0<z <M, Vt,

Y1 =a,

where s € R and s; € R capture the amount of goods held in storage and the backlogged
customer demands during stage t, respectively.?

Consider now a setting where the future customer demand is uncertain. More precisely,
we assume that each d; depends on a set of “primitive” uncertainty drivers z, which are

2 For simplicity, we assume that orders are received instantaneously (i.e., with zero lead time) and that the
cost of any remaining inventory or backlog following stage T+ 1 is accounted for in hp and bp.

3 Note that, for the purposes of this deterministic formulation, one could also use a single decision vari-
able s; > 0, constrained to satisfy s¢ > Y41, 5t > —y¢+1. We retain separate decision variables for the positive
and negative parts of ys41 for clarity.
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only known to belong to an uncertainty set Z. A naive but incorrect approach to robustify
this problem would be to simply state the robust counterpart as

T
minimize Z(ctmt +hs +besy)

Ty stisy 1y
st. Y=yt —di(z), VzeZ Vi,

55 >0, >0, VYt,

st >y, Vi,

8¢ = —Yt+1, Vi,

0<az, <M, Vt,

h =aq,
where we simply robustified each constraint that involved uncertain parameters by enforcing
that the constraint should hold for any value of the uncertainty.

Unfortunately, there are obvious issues with this formulation. The first one is the infeasi-

bility of the constraint
Y1 =Yy + 2 —di(2), Vz€EZ,

because neither the x nor the y variables are allowed to depend on the uncertainty z in this
equality constraint. Indeed, the above constraint is equivalent to

Y=yt —d, Vde {JGRHZEZ,J:dt(z)}.

Unless the implied uncertainty set for d is an interval of zero length (i.e., no uncertainty
about d;), which is unlikely, this constraint is impossible to satisfy.
. . . . t .
A simple way of resolving the above issue is to replace y; :=y1 + Y, _;(zpy — dy) in
the deterministic problem before deriving the robust counterpart. This would lead to the
deterministic model

minimize ciy + hesT +bisy
mt,sj,s; ;( tLt tot t t)
s.t. sf >0,s; >0, Vt,
st >+ Yy ze —dy, Y,
S; 2 —U + Zi’:l dt’ — T, Vtv
0 Smt S Mt Vt, (2)

where y; = a.
The robust counterpart of this model now takes the form

T
minimize Z(ctxt + hesf +besy)

w850 i
st. s >0,s7 >0, Vt,
s>y S e —du(2), Vz€Z,Vt,
s; >~y + Y do(2) —me, Vz€Z,Vt,
0<zy <My, V¢t (3)
When Z is bounded, a solution to this model necessarily exists since one can set x; =0 for

all t. Unfortunately, this model still suffers from two important pitfalls, which could easily
mislead a practitioner to conclude that robust solutions are necessarily overly conservative.
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First, there is the fact that this model makes an important assumption about what type
of policy is used. Namely, it assumes that the decision x; is predefined at time ¢ =0 and
never modified, even though some information about early demand might be obtained. This
is acceptable when all orders must be placed with suppliers at time t =0 and the contract
prevents the retailer to make future modification to these orders. In general, however, it
might be possible to adjust a new order placed so as to exploit the available demand infor-
mation. In this case, we need to allow z; to be adjustable with respect to {dy }£,!,. We will
show how this can be done shortly, after considering the second pitfall.

To understand the second issue, which is more subtle, it helps to consider a problem
instance in which there is only one stage, y1 =0, ¢y = 0.5, and hy = b, = 1. In this context,
we might be interested in the robust counterpart of the deterministic model:

minimize 0.5z1 + (1 —d1) " + (1 +dp)™
z1
st. 0<x <2,

for a case when d; € [0,2]. Since the problem only has one stage, it is reasonable to assume
that no new information will be obtained by the time that the order is implemented. The
robust counterpart of this problem instance using the model described in (3) would take the
following form:

minimize 0.571 + s +s7

w1, 8T,y
S.t. STZO, s;1 >0,
st >x1—di, Vdi€[0,2],
sy > —x1+dy, Vdi€]0,2],
0<z, <2

One can easily verify that the optimal solution here suggests 7 =0, 51"* =0, and 51_* =2
with an optimal value of 2. The si > @1 — dy, Vd; € [0,2] constraint protects against a
worst-case demand of d; =0, and the s] > —x1 +d1, Vd;y € [0,2] constraint protects against
a worst-case demand of d; = 2. Indeed, it is the case that if z; =0, then the worst-case
scenario would be that a demand of two units occurs and leads to a backlog cost of 2.
However, is this truly the best that one can do to reduce worst-case inventory costs?

Consider, for instance, the solution x7* = 1, which would lead to two equivalent worst-case
scenarios: (a) a demand of zero units and (b) a demand of two units. Both scenarios lead to
a total cost of 1.5, which is smaller than the worst-case cost of 27 =0, which is 2.

So why did the robust counterpart model obtained from problem (3) not provide the best
solution in terms of worst-case cost? The reason lies in the fact that in problem (2), s;” and s,
are not authentic decision variables but rather auxiliary decision variables that are employed
by the linearization scheme that serves to evaluate the objective function. Put another way,
the linearization of the piecewise linear terms, which introduces the sf and s; variables,
leads to different worst-case demand values for each constraint of problem (3), although
these values cannot be achieved simultaneously. Indeed, the true robust counterpart takes
the following form:

minimize sup 0.5z + (yl +x — d1)+ + (—yl —x + d1)+
z1 d, €10, 2]

st. 0<mz <1.
This model can in some sense be linearized but only as a two-stage problem:

minimize  sup 0.5z1 + h(z1,dq)
Z1 d1€[0,2]

st. 0<x <2,
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FI1GURE 1. Chronology of executions x;, observations v;, and z.

T OO @O

where ) L
h(z1,di) = min {s] +s7}
sf,sf
st. s7>0,s7 >0,
s > @1 —di,
sy > —x1+dy

Note that in this linearized formulation, s and s; are allowed to depend on the instance of
dy that is studied. Namely, with 27* = 1, they will take the values s} (d;) := (1 —d;)* and
s7 (d1) :=(dy —1)*. This is different from optimization problem (3), which yielded x} =0
because the choice of s{ and s] was forced to be made before the realization of d; was
known.

Remark 1. This discrepancy arises primarily because the original objective function
in the inventory example is nonlinear (actually nonconcave) in d, i.e., given by a sum of
maxima of (linear) functions, as per (1). The conservativeness in the reformulation of such
objectives has been a topic of active research. For an overview, we direct the interested
reader to Bertsimas et al. [33, 34], Gorissen and den Hertog [53], Iancu et al. [56], and
Ardestani-Jaafari and Delage [2].

Takeaway message: When robustifying a linear program that involves either (1) decisions
that are implemented at different points in time (such as ;) or (2) auxiliary decision vari-
ables whose sole purpose is to aid in the reformulation/computation of the objective value
or the validation of a constraint (such as s and s; ), one must carefully identify the timing
of the sequence of decisions and observations and allow any decisions that can be adjustable
to depend on (some of) the uncertain quantities in order to take high-quality decisions. This
can be done through the adjustable robust counterpart framework introduced in Ben-Tal
et al. [16], which we discuss next. Note that in what follows, a decision that can incorporate
information revealed so far is referred as an adjustable decision, whereas the actual func-
tion that maps the revealed information to the action that is implemented is referred as a
decision rule.

3. The Adjustable Robust Counterpart Model

As seen in the above inventory problem, before developing a robust optimization model, it
is important to clearly lay out the chronology of decisions and observations, as portrayed in
Figure 1.

Note that in Figure 1, we represent decisions implemented at time ¢ as x;, and observations
made between times ¢ — 1 and ¢ are denoted by v; (for visual evidence). The observation v; is
a function of z, the underlying uncertainty that affects the entire decision problem. Finally,
after the terminal decision z7 is implemented, one can observe the realized uncertain vector z
in its entirety to evaluate the objective function and assess whether all the constraints
were met.

To be precise, consider a deterministic sequential decision problem that can be written as

T
e T
minimize c re+d
{1\‘/}?:1 ;
T
s.t. Za;xtgbj, Vi=1,...,J,

t=1
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where for each t, the vector ; € R"™ describes the different decisions (continuous variables)
that will be implemented at time ¢, ¢; € R™ describes the per-unit cost generated from each
decision, and aj; € R™ describes the (per-unit) amount of resources of type j used among a
total set of b; units. In practice, a number of reasons might motivate considering any of the
parameters c;, aj¢, or b; as uncertain. In this case, one must consider the following robust
formulation:

T
(ARC) minimize sup {cl (2) T2y +th(z)Txt(vt(z)) +d(2) }

zy {@e( )}, z€2
T
s.t. ajl(z)Txl—l—Zajt(z)Txt(vt(z))§bj(z), VzeZ Vji=1,...,J, (4)
t=2

where for each t and each j, the functions c¢(2), d(2), a;+(z), and b;(2) are affine functions of
z € R™, which is considered the fundamental source of uncertainty, where v;: R™ — R” is a
mapping® from the uncertainty space to the (partial) observation space R” made at time t,
and where x; is a mapping from the space of observations R” to the space of actions R™
implemented at time t. The fact that each x; is no longer a vector but rather a mapping
is important because it enables the decision maker to react differently depending on the
realized observation. Of course, this flexibility comes at the price of significant computational
challenges.

Remark 2. The most famous example of observation mapping is one that simply reveals
at each stage an additional subset of the terms in z. This is often referred to as the property
that z is progressively revealed. Mathematically speaking, let z be composed of T'— 1 vectors

{z )} with z, e R such that z:=[z] 2z, --- z;._,]T. One considers z to be progressively
revealed if vy(z) = z_1 = [2{ 23 -+ z_,]". In this context, one can consider that v, is

a linear mapping v¢(z) := V,z, where the observation matrix V; € R¥*™ with v:=m, is
described as follows:

Vi=

L tymx—1ym O@—1ym' x(T—tym
01— t)ym'x(t—1)ym’  O(T—tym' x(T—t)ym’

In de Ruiter et al. [43], the authors also discuss extensively the notion of inexactly revealed
data, referring to the idea that at each stage of time it is not z;;_y; that is revealed but
rather a noisy measurement Zj;_1j & z[;_1]. This framework can also be represented using
a linear observation mapping after augmenting the uncertainty space z € Z to (2,2) € U,
where U captures the relation between z and 2 (e.g., ||z — 2||2 <) and for which {z € R™ |32,
(2,2) eU} = Z. Tt is then possible to model the progressively revealed measurements using

Vi=

L tymx—1m O@—1ym' x(T—tym O(t—l)m’xnza]

01— tym'x(t—-1)m'  O@—tym' x(T—t)ym’  O(T—t)ym’xm

such that v, ([27 27]7):=V,[27 2T]"T =Z,_q;.

Example 1. Considering the inventory problem presented in §2, one might consider that
at each point of time, the inventory manager is able to observe all of the prior demand
before placing an order for the next stage. This could apply, for instance, to the case when
the entire unmet demand from customers is backlogged, so censoring of observations never
arises. One might then define the sequence of decision variables and observations according
to Figure 2.

4 Note that although we will assume that this mapping is linear, the methods presented in §5.3 could be
used to handle nonlinear mappings.
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FIGURE 2. Timing of decisions and observations in an inventory problem.

F OO~

Note that in Figure 2, we made explicit that s;” and s, are auxiliary variables that are
adjustable with respect to the full uncertainty vector dir) = d. In fact, once djy is revealed,
the uncertainty can be considered reduced to zero; hence the role of z in this chronology
is somewhat artificial. We are thus left with the following multistage adjustable robust
counterpart model:

minimize sup{clxl +Y (crxe(dy—17) + hesf (d) + besy (d))}
1w (g {57 ()osi (DY, deU Et: i ' '

st. s7(d)>0,s;7(d) >0, VYdeU,Vt,
t
si(d) >y + Y wp(dp_y) —dv, VdeU, VL,

t'=1

t
sy (d)>—y1+ > dy —ap(dp_yy), YdeU,VL,
t'=1

ngt(d[t’—l])th VdELI, Vt7 (5)

where U CR”T captures the set of potential demand vectors.

As explained in Ben-Tal et al. [16], in most cases the adjustable robust counterpart is
computationally intractable (NP-hard). Below, we provide the proof of the NP-hardness
result to illustrate proof techniques that arise in robust optimization.

Proposition 1. Solving problem (4) is NP-hard even when vi(z) = z and Z is polyhedral.

Proof. This result is obtained by showing that the NP-complete 3-SAT problem can be
reduced to verifying whether the optimal value of the following problem is greater than or
equal to zero:

N
minimize  sup Z(xl(z)—l)
2() seo,m
s.t. xi(z)ZaZkz—i—bi,k, Vz€Z,Vi=1,...,N,Vk=1,..., K, (6)

where z € R™ is the uncertain vector, x;: R™ — R is a second-stage decision vector, and
a;r € R™ and b; ;, € R are known parameters of the model. Note that the above problem is
the adjustable robust counterpart of

s.t. xiZbi)k, Vi:1,...,N,Vk:1,...,K,

in a case where each b; j, is uncertain and each z; is fully adjustable.

3-SAT problem. Let W be a collection of disjunctive clauses W = {wy,ws,...,wy} on a
finite set of variables V' = {wvy,vs,...,v,,} such that |w;| =3 Vi€ {1,...,N}. Let each clause
be of the form w =v; V v; V ¥}, where v is the negation of v. Is there a truth assignment
for V that satisfies all the clauses in W7
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Given an instance of the 3-SAT problem, we can attempt to verify whether the optimal
value of the following problem is greater than or equal to zero:

N
max Y (hi(z)—1)
=1
st. 0<z; <1, Vj=1,....m, (7)

where z € R™ and where h;(z) :==max{z;,, z;,, 1 — z;, } if the ith clause is w; = v;, Vv;, VUj,.
It is straightforward to confirm that {z € R™ |0 < z; <1,Vj} is a polyhedron and that each
hi(z) can be expressed as h;(z) := maxy, (azkz +b; ). Hence, problem (7) can be expressed
in the form of problem (6). Finally, the answer to the 3-SAT problem is positive if and only
if the optimal value of an instance of problem (6) achieves an optimal value greater than or
equal to zero. [

The fact that the problem of computing the robust adjustable counterpart is NP-hard
motivates the use of other techniques to address robust multistage decision making. Section 4
discusses the connection with robust dynamic programming, and §5 provides an overview
of simple policies that can be employed.

4. Connections with Robust Dynamic Programming

Similarly to stochastic multistage decision models, one can attempt to circumvent some of
the computational difficulties affecting the robust adjustable problem by using the paradigm
of dynamic programming (DP) (see Bertsekas [19] for a general overview; Iyengar [57] and
Nilim and El Ghaoui [65] for a treatment of Markov decision problems with finite state spaces
and uncertain transition probabilities; and Ben-Tal et al. [15], Bertsimas et al. [33], and
Tancu et al. [56] for models closer to the ones considered here). To this end, it is instructive
to first rewrite the problem as a sequential min-max game between the decision maker and
nature. To provide a concrete example and ground our discussion, recall the inventory model
of Example 1, and note that the problem of deciding the optimal robust ordering quantities
x¢ S0 as to minimize the worst-case ordering and holding/backlogging costs can be rewritten
as the following sequential decision problem:

i +a[h++b—++‘[+a[h+
Ogglgan[ﬁm dlrelbl)((g) 1(3/2) 1( y2) ogglgnMQ C2X2 ngzlh?dl) 2(93)

+bo(—y3) " o min {CT$T+dT€uIJ{121}[<T7H) [hr(yr1)™ +bT(_yT+1)+H } } H 7

where Y11 =y + x4 — dy and where
Up(dy—yy) := {d € R: 3¢ € R ™" such that [d} , d ¢']T €U}, Vdy_y eR™

denotes the set of demand values in stage t that are consistent with the realized sequence
of observations dj;_1) and the original uncertainty set U, while, similarly, U, () := {d € R:
¢ eRT-1 [d ¢T]T €U}, and we still have y; = a. Note that this DP formulation explicitly
states the rule that the decision maker should use when updating the uncertainty set based
on past observations—namely, that future feasible values of the uncertainties should be
“conditioned” on past ones through the set U;(dj;—y)) at time ¢ (similar to the conditioning
operation for random variables, in stochastic optimization). We return to discuss this further
in §6, where we highlight some time consistency issues that might arise when this rule is
not followed.
In this context, it can be readily seen that the state of the system at time ¢ is given by

St = [y d[I_l]]T:[yt dy dy - dt—l]TeRta
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with the recursive dynamical equation y;11 = y; + 2+ — di. Moreover, letting J;(S;) denote
the optimal value function at time t, the typical DP Bellman recursion can be rewritten as

)= i ot p el bCun)” 4 RSl

where Sii1 = [y + x4 —dy dy dy -+ di—y d¢]", and Jryq(S) =0,VS. Several remarks
concerning this DP formulation are in order.

First, note that for a general uncertainty set & C R”, the state S; is a t-dimensional vector,
as full knowledge of the history of observations up to stage ¢ is required in order to describe
the uncertainty set for the subproblem over stages ¢t,¢t+1,...,T. Since the complexity of the
underlying Bellman recursions explodes with the number of state variables (Bertsekas [19]),
this severely limits the practical applicability of the DP framework for finding exact poli-
cies and value functions. This manifestation of the well-known “curse of dimensionality” is
consistent with the hardness result concerning general adjustable policies in Proposition 1.
Thus, in practice, one would have to either solve the recursions numerically, e.g., by mul-
tiparametric programming (Bemporad et al. [6]), or resort to approximate DP techniques
(Bertsekas [19], Powell [68]), sampling (Calafiore and Campi [38]), or other methods.

It is important to note that, when the uncertainty sets possess additional structure, a
reduction in the DP state space may be possible. For instance, if the uncertainty set in our
inventory model is given by a hypercube (e.g., U = szl[cjt,c{t] for some d; < d, Vt), the
on-hand inventory is a sufficient state; i.e., S; =y, (Ben-Tal et al. [15], Bertsimas et al. [33]).
Similarly, for the budgeted uncertainty set of Bertsimas and Sim [27] and Bertsimas and
Thiele [28],

U={deR": 3z €[0,1]" such that ||z]o <1,[|2]1 <T,d; =d; +dyz, Ve {l,... T},

where J,a? € R” are given data, and I' > 0 is the budget of uncertainty, it can be readily
checked that a sufficient state is given by the two-dimensional vector Sy = [y: Zt;:ll |2-]T.5
This reduction in the state space—enabled by imposing additional structure on the uncer-
tainty set—may carry several benefits, by (i) enabling computational tractability when the
overall dimension of the state remains small, as well as (ii) affording a characterization of
certain structural properties of the optimal policy or value function, which can be insightful
in practice. To provide a concrete example of the latter, note that when U is a hypercube,
the model resembles a classical model in inventory management, for which it is known that
the optimal ordering policy follows a modified base-stock rule (Kasugai and Kasegai [58]),

Ty = min(Mt, max (0, 0; — yt)) (8)

Here, 6; is the optimal base-stock value; thus, in the absence of any order capacities (i.e.,
M; = o0), the optimal policy is to raise the inventory position to 6; whenever the initial
level y; is below this threshold and to not order otherwise. The presence of bounds simply
truncates these orders at the capacity M;. Furthermore, such a DP formulation could also be
used to prove useful comparative statics, such as the fact that the optimal order quantity x;
decreases in the initial inventory y; while the inventory position after ordering, i.e., zs + v,
increases in y;—results that may hold more generally (see Tancu et al. [56] for a discussion
and more references).

Our final remark concerns a more subtle point, which often goes unnoticed in the context
of robust multistage decision problems: although a DP solution approach is always sufficient
to solve our problem, it is generally not necessary, and it may impose unnecessarily stringent

5 Similar arguments can be used to reduce the ellipsoidal uncertainty sets of Ben-Tal et al. [15] or the bud-
geted uncertainty sets of Bandi and Bertsimas [4] to a two-dimensional state for our inventory problem. We
omit the details for brevity.
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requirements on the solution process. To better understand and appreciate this point, it
is illustrative to consider a very simple, two-stage instance of our inventory model, where
no ordering and no costs are incurred in the first stage, and demand is zero in the second
stage (the ideas presented readily generalize to arbitrary multistage decision problems and
uncertainty sets). More precisely, assume that T'=2, y; =1 =0, hy = by =0, My = o0,
dy € [dhcfl], and do = 0. Then, omitting the time indices, the decision problem can be
rewritten as

in f(d,z), 9
dg};‘f(ﬂ%gﬁf( z) (9)

where f(d,z) :=cx+h(—d+x)"+b(d—z)". Let J* denote the optimal value in the max-min
problem above. In this context, according to (8), a DP approach would yield the Bellman-
optimal policy z*(d) = max(0,0* — d), where 8* depends only on problem parameters. By
definition, we readily have that

J* = max_ f(d,z*(d)).

de(d, d]
Thus, the policy x*(d) is clearly sufficient for the purposes of finding the min-max optimal
value J*. Furthermore, and consistent with the Bellman optimality criterion, the costs in
the subproblem of stage ¢t =2 (which are identical with f(d,z) here) are minimized for any
realization of d when the policy x*(d) is followed.

However, is the policy z*(d) necessary for optimality, i.e., to achieve the overall cost J*
in the multistage decision problem, from the perspective of stage t =07 As it turns out, the
answer is emphatically negative; moreover, there exists an arbitrary number of policies that
achieve the same worst-case optimal value J*. To see this, let us define the following set of
policies:

xve.={x: [d,d] = R": f(d,z(d)) <J*,VdeU}.

By construction, any policy « € X% is feasible in (9) and achieves the same optimal
worst-case value as the Bellman-optimal policy z*(d), i.e., J* =max (4, q f(d,z(d)), since

max_f(d,z(d)) <J*= max_f(d,z"(d)) < max_ f(d,z(d)).

deld, d] de(d, d] deld, d]

We thus refer to X™¢ as the set of worst-case optimal policies in the robust dynamic prob-
lem (9).

It is worth noting that X is clearly nonempty, since z* € XV°. Furthermore, since f(d, z)
is convex in x for any fixed d, XV° is a convex set. We claim that X™¢ generally contains an
infinite number of policies. For instance, consider the following affine policy:

a*(d) —a*(d)

e d) = ot (d) +

(d - d)a

obtained by linearly interpolating z*(d) at the extreme points of U. Since both f(d,z*(d))
and f(d,z*(d)) are convex in d, and since z*¥(d) = 2*(d), Vd € {d,d}, we immediately
have that

d, ™ (d)) = d, % (d)) = d,z*(d)) = d,z*(d)) = J*.
dgl[g%]f( , 2 (d)) d?}gfiz}f( ;2™ (d)) dé?gff;}f( ,x*(d)) dgl[gf;,]f( , 27 (d))

Thus, the affine policy 22! is worst-case optimal and generally different from the Bellman-
optimal (piecewise-affine) policy x*(d). Furthermore, any policy of the form Az*(d) +
(1 —\)a*(d) is also worst-case optimal for any A € [0, 1].

The degeneracy that we have uncovered here is by no means an exception but rather
a general fact, intrinsic in any robust multistage decision model. In fact, the concept of
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worst-case optimality introduced above can be readily extended to more general settings,
with multiple decision stages, more complex uncertainty sets, and/or more complicated
dynamics; we omit those formulations for conciseness and focus on the key insights and
implications here (see Bertsimas et al. [33], Iancu et al. [56] for more details). Intuitively,
in any sequential min-max game against an adversary (“nature”), when the adversary does
not play the optimal (i.e., worst-case) response at a particular stage, the decision maker also
has the freedom to play a slightly suboptimal response, provided that the overall objective
is not deteriorated beyond the optimal worst-case value. This is exactly the requirement
defining any policy z € XY, and it is a necessary condition for worst-case optimality. By
contrast, the Bellman optimality criterion is much more stringent, as it requires the decision
maker to follow an optimal policy for the ensuing subproblems even when the adversary
plays suboptimally.

It is worth noting that this concept (and degeneracy) is unique to robust multistage
decision making. In particular, for a general stochastic multistage decision problem with
an objective involving expected outcomes, any optimal policy must satisfy the Bellman
optimality criterion in any state and at any time, since doing otherwise would immediately
translate into a worse performance in expectation.

At this point, the reader might pause and question the relevance of the degeneracy: we thus
conclude our discussion by highlighting a key positive outcome, as well as a potential pitfall
and a fix thereof. First, note that the presence of degeneracy can be helpful for a decision
maker, since it may give rise to worst-case optimal policies with “simple structure” —for
instance, a static or an affine policy (such as z*). Such policies are attractive in terms of
practical implementation as well as computationally, as one may exploit the simple structure
to devise tractable algorithms for finding them. We return to this issue in more detail in §5.2,
where we explore several nontrivial implications of this concept in robust multistage decision
problems.

From a different standpoint, the degeneracy inherent in ¢ may come across as unattrac-
tive, since it may generate inefficiencies in the decision process. In particular, note that any
policy x € X™¢ with x # z* has the property that f(d,x(d)) > f(d,z*(d)); i.e.,  generates
costs at least as large as x*(d). In particular, barring exceptional circumstances where the
Bellman-optimal policy is itself degenerate, this implies that the worst-case optimal policy
x € XV is Pareto-dominated by z*, leading to justified objections concerning the actual
enforcement of policy z. The key to resolving this issue is to recognize that the presence
of degeneracy in the (worst-case) dynamic policies should be useful only as an existential
result, and any computational procedure based on it should be implemented in a shrinking
horizon fashion (Tancu et al. [56]). More precisely, suppose we have information that a par-
ticular class of tractable dynamic policies is worst-case optimal, and we have a black-box
algorithm for generating one such policy. Then, in stage ¢t =1, one could use this algorithm
to generate a set of worst-case policies {1, x2,23,...,27r} but only implement the first-stage
action z, which is a constant and equal to the Bellman optimal action corresponding to
the first stage. Once the first-stage uncertainties are materialized, the black-box algorithm
can be again used to generate a new set of worst-case optimal actions, of which only the
first (constant) action is implemented. By repeating this process in a shrinking horizon fash-
ion, one can effectively reconstruct the decisions taken by a Bellman-optimal policy on the
particular sample path of uncertain values, which is the best possible course of action.

5. Simple Policies and Their Optimality

5.1. Static Policies

The simplest type of policy to consider is a static one, whereby all future decisions are
constant and independent of the intermediate observations. Such policies do not increase
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the underlying complexity of the decision problem, and often they result in tractable robust
counterparts (Ben-Tal et al. [13]).

Despite their simplicity, static policies often have surprisingly good performance in prac-
tice and are known to be in fact optimal in several cases. Such an example is described in
Ben-Tal and Nemirovski [8], in the context of a generic linear optimization problem with
row-wise (i.e., constraintwise) uncertainty:

minimize sup[c(zo) " z(2) 4 d(20)]
T zEZ

st aj(z)Tw(2) <bj(z;), VzeZ,Vji=1,...,J (10)

In such a model, the uncertainty vector can be partitioned into J + 1 blocks, i.e., z =
[zg 21 -+ 2;])" and 2= 25 x 21 x --- x Z, such that the data in the objective depend
solely on zg € Zy (in an affine fashion), whereas the data in the jth constraint depend solely
on z; € Z; (also in an affine fashion). Under these conditions, a static policy x(z) =z is
optimal for problem (10) (see Ben-Tal and Nemirovski [8] as well as Ben-Tal et al. [13,
Chapter 14] for more details). This result has been recently extended in Bertsimas et al. [30]
for uncertain packing problems, where the authors linked the optimality of static policies to
the convexity of a particular transformation of the uncertainty set.

In typical multistage decision problems, it is likely that the conditions discussed above do
not hold. For instance, that is the case even in our motivating example in inventory man-
agement, as problem (5) does not have a row-wise structure (the demand from a particular
stage affects multiple constraints). In such circumstances, a natural question concerns the
performance guarantees associated with static policies—for an overview of the latest results,
we direct interested readers to Bertsimas and Goyal [24], Goyal and Lu [54], and references
therein.

5.2. Affine Decision Rules

The paper by Ben-Tal et al. [16] was the first to suggest using affine decision rules to approx-
imate the adjustable robust counterpart (ARC) problem presented in (4). The multistage
version of this approximation scheme is better known under the name of affinely adjustable
robust counterpart (AARC) and seeks the optimal solution to the following model:

T
(AARC) minimize sup{q (2) T2y + Z cr(2) T (z + Xpv(2)) + d(z)}
{edii X}, zez t—2

st. aji(2) @+ Z aje(2) " (@ + Xove(2)) < bi(2),
t=2

vzeZ, (11)
Vi=1,...,J,

where each adjustable policy z;(-) was replaced with an affine decision rule representation
x¢(0) := x4 + X;v and where the optimization is now made over the finite-dimensional space
spanned by the set of decision vectors z; € R™ and decision matrices X; € R"*”. To obtain
a tractable reformulation of this model, one needs the following assumption.

Assumption 1. The ARC model has fixed recourse and all observations are linear func-
tions of z. Mathematically speaking, we make the following two assumptions:

(1) Forallt=2,...,T and all j=1,...,J, the affine mappings c¢,(z) and aj(z) are con-
stant; i.e., ci(2) = ¢t and a;(2) = aji.

(2) For allt=2,...,T, the observations v(+) can be described as vi(z) := Viz for some
V, e Ry xm
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Proposition 2. Let the ARC model (4) satisfy Assumption 1 and the uncertainty set Z
be a bounded polyhedron. Then the AARC model (11) can be described as the robust linear
program:

T
minimize sup{cl(z)Txl + Z e (z+ X Viz) + d(z)}

{oe} i X}, zez =2

T
st aji(z) @+ Za;';(xt + X Viz) <bj(z), VzeZ, Vj=1,...,J, (12)
t=2

and it can therefore be reformulated as a linear program with a finite number of decisions and
a finite number of constraints. Furthermore, the optimal affine decision rules and optimal
objective value obtained from the AARC model provide a conservative approzimation of the
ARC model; i.e., the optimal affine decision rules are implementable in ARC and achieve
the optimal objective value obtained by problem (12), thus providing an upper bound on the
true optimal value of ARC.S

Proof.  The proof for this proposition is fairly straightforward. Problem (12) is obtained
simply after replacing the observation mapping v;(-) with its linear definition. One can then
establish that the objective function and each constraint involve affine functions of the deci-
sion variables and of the perturbation z, hence making it an instance of a robust linear
program for which we can obtain a tractable reformulation (see Ben-Tal and Nemirovski [8]
for a description of the fundamental theory involved in obtaining this reformulation). Per-
haps as important is the fact that once the optimal solution is obtained in terms of {x}}7_,
and {X;}L,, it is possible to construct a decision rule z;(?) := =} + X;0; that will satisfy
all constraints of the ARC model and for which the objective value is reduced to

T
sup{q (2) Tt + ZCZ(QJI + X Viz) + d(z)},
z€EZ =2

which is exactly the optimal value of the AARC model. [

Example 2. Looking back at the inventory problem presented in Example 1 where we
were trying to identify ordering strategies robust to demand uncertainty, as portrayed by
deU CRT, we observe that the multistage ARC model (5) satisfies Assumption 1. Namely,
the recourse is fixed since all x; are only multiplied by coefficients that are certain and the
observations are linear functions of the uncertain vector d. The affinely adjustable robust
counterpart of this inventory model can be presented as (with the initial inventory y; given)

T
minimize sup4 c1z1 + ct(e + X Vid) + he (s +S;Hd
mu e XV (550 Yy (s STV deB{ o tzzl[t(t Ved) +h(si + 55 d)
+bt(5t_+st_d)]}

st. s +87d>0,s; +5,d>0, VdeU,Vt,

t
si+Sdzy+ ) for + XoVed —dy],
—
=l Vdeu,Vvt,
6 Note that this upper bound could potentially be infinite when there are no affine decision rules that are

feasible, even in cases where a finite worst-case value is achievable in the actual robust multistage decision
problem.
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t
sy +Syd> -y + Y [dy — (zp + XpVid)],
=1 Vdeu,vt,
OSZEt +Xt‘/td§Mt, VdEZx[,Vt, (13)

where X; € RM*T, S:r e R>*T S e R™T and where V; is such that Vid = [dy -+ dy_y
0--- 0.7

For cases without fixed recourse, Ben-Tal et al. [16] suggested several approximation tech-
niques, using tools derived from linear systems and control theory. In Ben-Tal et al. [11, 12],
the same approach was extended to multistage linear dynamical systems affected by uncer-
tainty, and tractable exact or approximate reformulations were presented, which allow for
the computation of affine decision rules.

Affine decision rules, which are strictly more flexible than static policies, have been found
to deliver excellent performance in a variety of applications (see, e.g., Adida and Perakis [1],
Babonneau et al. [3], Ben-Tal et al. [15], Mani et al. [62]). Ben-Tal et al. [15] performed sim-
ulations in the context of a supply chain contracting problem, and the authors found that in
only 2 of 300 instances were the affine decision rules suboptimal (in fact, Ben-Tal et al. [13,
Chapter 14] contains a slight modification of the model in Ben-Tal et al. [15], for which the
authors find that in all tested instances, the affine class is optimal). By implementing affine
decision rules both in the primal and dual formulations, Kuhn et al. [59] also investigated
the optimality gap of such decision rules in a related application.

However, despite ample evidence of empirical success, we are only aware of a small set of
results that characterizes the optimality of such decision rules. One such example is a linear
optimization problem with fully adjustable decisions and a simplex uncertainty set (see
Ben-Tal et al. [13, Lemma 14.3.6]). More formally, consider a two-stage adjustable decision
problem:

minimize sup[c' z(2) +d(2)]
z 2€EZ

s.t. a;r:c(z) <bj(z), VzeZ Vj=1,...,J,

where d(z) and b;(z) depend affinely on the uncertainty. It is known that if Z CR™ is a
simplex, then an affine decision rule x + Xz is optimal. The intuition behind this result is
straightforward since affine decision rules allow sufficient degrees of freedom to match an
arbitrary policy at the extreme points of the uncertainty set. More precisely, for any arbitrary
policy x*(z), one can always find a vector z and a matrix X such that z*(z) =z + Xz,
Vz € ext(Z). Since the adversary always seeks to maximize linear functions of z (under affine
decision rules), it is optimal to choose z € ext(Z), which then preserves optimality.

A second instance where affine decision rules are known to be optimal is an inventory
model closely related to our motivating example 1. In particular, Bertsimas et al. [33] show
that, if the demands in successive stages are independent and only known to belong to certain
intervals, i.e., if U = Xthl[dt,Jt], then the AARC formulation in (13) recovers the optimal
worst-case value (these results have been extended to more general uncertainty sets and cost
structures; see Iancu et al. [56] for details). We note that this result is surprising on two
fronts, since the AARC model generally introduces two layers of potential suboptimality: (1)
by restricting the replenishment policies x; to be affine decision rules and (2) by restricting
the reformulation variables s;” and s; to be affine, instead of piecewise affine.® In the context

7 Note that the size of this AARC model could be reduced by accounting for the fact that the observation
vector v; is smaller for smaller t. For simplicity of presentation, we choose to leave it this way, as we
understand that some terms of X; will always be multiplied to zero and can therefore be set arbitrarily.

81t can be readily checked that, under affine decision rules z¢, the auxiliary variables depend in a piecewise
affine fashion on the observations, e.g., s; (d) = max(0,y1 + 3L _, [zy + Xy Vird — dyr]).
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of the dynamic programing formulation in §4, these results confirm that affine decision rules
can be worst-case optimal for an inventory model with a hyperrectangle uncertainty set,
despite not being Bellman optimal; this is possible only for the robust multistage model
and not for the stochastic multistage counterpart, where piecewise affine decision rules are
required (see Bertsimas et al. [33] for a discussion).

5.3. Piecewise Affine Decision Rules

It is to be expected that in the general case, applying affine decision rules will generate
suboptimal policies compared to fully adjustable ones (see, e.g., Bertsimas and Goyal [23],
Kuhn et al. [59] for discussions about the degree of suboptimality of affine decision rules in
two-stage linear problems). Thus, one might be tempted to investigate whether tighter con-
servative approximations can be obtained by employing more sophisticated (yet tractable)
decision rules, in particular nonlinear ones. Below, we show how this can be achieved for
piecewise affine decision rules by employing affine decision rules on a lifted version of the
uncertainty set.
We will employ a class of piecewise affine decision rules described as

ze(ve(2);) 1= Ty + Xpve(2) + Z th max(0; v (2)) + 0, max(0; —Utk(z))] )

where vy, (z) captures the kth observation in z at time ¢. When the observation mapping
is linear, we can assume, without loss of generality, that z is progressively revealed so that
each vy (2) = 2 k) for some mapping i: N x N — N. Under this assumption, a piecewise
affine decision rule can be expressed as
zy (v (2); 2, X;H X ) =3+ X, Vit + X[ V2™,

where 2;" := max(0; z;) and 2; :=max(0; —z;) and where we omit to include the adjustment
X;V;z since it can be replicated as X;V;z1T — X;V,2~. In this formulation, the decision rule
is actually affine with respect to the vector [z z+Tz_T]T. Hence, optimizing such piecewise
affine decision rules is equivalent to applying affine decision rules to the lifted uncertainty set

2" ={(2,27,27) ER¥" | 2 € Z, 2z =max(0;2;),2; =max(0;—z),Vi=1,...,m}.
Specifically, we are interested in solving the lifted AARC model:

(LAARC) minimize sup { c1(z) T x
{ed T XS XY, (ZvZJer*)eZl

—|—th xt+X+X/'tz + X, VizT)+ (z)}

st. aji(z xl—&—Zaﬁ 1't+X+‘/tZ + X, Viz7),

V(z,z ISPAR
<b;(2), {v§:1 )J

The difficulty is that Z’ is not a convex polyhedron so that even with fixed recourse, an
infinite number of constraints such as
T
aj(z) oy + Za;rt(xt + X Vet + X7 Viz7) <bi(2), V(z,2T,27)€eZ’
t=2
cannot be reformulated in a tractable manner as a single constraint through a direct appli-
cation of duality theory for linear programs.
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One promising direction to design a tractable solution comes from the following
proposition.

Proposition 3. Given that Assumption 1 is satisfied, the lifted AARC model is equiva-
lent to

T
minimize sup {cl (2) T2 + Z ef (x + X, Vet + X, Viz ™) + d(z)}
(e}l X XY, (2,2F,27)ez” t=2
T
st. aj(2) a1+ ZajTt(xt + X, Vizt + X, Viz7) <bi(2),
t=2

V(z,2t,27)€e 2",
Vi=1,...,J,
(14)
where Z' := ConvexHull(Z'). Therefore, if the convex hull of Z' can be described with a
finite number of linear constraints, then the lifted AARC model can be solved efficiently.

Proof. This proof simply relies on the fact that since Z” D Z’, any feasible solution of
problem (14) is necessarily feasible for the LAARC model. Alternatively, since the functions
involved in each constraint are linear in (z, 27, 27), if we take a feasible solution to LAARC
and verify feasibility in problem (14), a worst-case realization for each constraint necessarily
occurs at one of the vertices of Z”, which, by construction, were members of Z’. This
indicates that any feasible solution of LAARC is also feasible in problem (14). Hence, the
feasible sets of both problems are equivalent. Furthermore, a similar argument, based on the
linearity of functions involved, can be used to establish that both objective functions are
equivalent. We can thus conclude that the set of optimal solutions and the optimal value of
both problems are equivalent. [

This result indicates that the decision maker might be able to obtain a tractable refor-
mulation of the LAARC model if he can identify a good representation for the convex hull
of Z'. In this regard, the following proposition might prove useful.

Proposition 4. Let Z C[—B, B]™ for some B > 0. Then, the uncertainty set Z' can be
represented as

z€Z
2=z —z"
Z'={(z,27,27)eR¥* | JuT €{0,1}™, v~ €{0,1}™, 0<z'<Bu*
0<z= <Bu~
ut +u- =1
Proof. Given any z € Z, since for any i =1,...,m, u;“ +wu; =1, and the u’s are binary,
we necessarily have that either zf >0 or z; > 0. Hence, if z; > 0, then it is necessary that
zj =z; and z; =0, whereas if z; <0, it is necessary that zj =0 and z; = —z;. Finally,

if z; =0, then the only option is for z;" = z; = 0. This is exactly the behavior described
by 2. O

This proposition is interesting for two reasons. First, by relaxing the binary constraints
on ut and u~, we instantly obtain a tractable outer approximation of ConvexHull(Z’).
In particular, this idea will be especially effective with the budgeted uncertainty set, i.e.,
the uncertainty set parameterized by a budget of uncertainty, first introduced in Bertsimas
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and Sim [27]. Second, this representation of Z’ provides us with a way of performing the
worst-case analysis of a fixed piecewise affine decision rule.

Corollary 1. Given a set of piecewise affine decision rules {z,}1_, and {X;", X; }I,,
let Z be a bounded polyhedron such that Z C [—B, B]™. Then, one can verify the feasibility
with respect to any jth constraint of the LAARC model,

T
aj(z) oy + Za;'; (e + X[ Viz T+ X, Viz7) <bi(2), V(z,27,27)eZ”,

t=2
where Z'" := ConvexHull(Z’), by solving the following mized integer linear program:

T
maximize  aji(2) x1 + Z ajTt(xt + X V2t + X7 VizT) = bi(2)

z, 2tz ut,u— P

s.t. z€Z,

Z:Z+

—2
0< 2t < Bu+,

0<z” <Bu~,

ut+u= =1,

ut €{0,1}™, v €{0,1}™,

to obtain (z*7z+*,z_*) and by verifying that the optimal value is lower than or equal to
zero. In the situation that the piecewise affine decision rule is infeasible, then the constraint

T
a1 (%) Ty + Z%‘Tt (z¢+ X Vit 4 X[Vtzf*) <b;(z")
t=2

separates the current piecewise affine decision rule from the set of such decision rules that
are feasible with respect to the jth constraint of the LAARC model.

We now present the tractable representation of ConvexHull(Z’) presented in Ben-Tal
et al. [13] for the case where Z is the budgeted uncertainty set.

Proposition 5. Let Z be the budgeted uncertainty set. Then the uncertainty set Convex-
Hull(Z’) can be represented using the following tractable form:

2t427<1

m

S zf 4 <0
ConvexHull(2') ={ (z,2F,27) e R3™ | i=1 L

z=z"—2z

0< 2t

0< 2

Although we refer the reader to Ben-Tal et al. [13, Chapter 14.3.2] for a complete proof
of a more general result that involves absolutely symmetric conver functions, it is worth
noting that the above set is obtained by applying fractional relaxation of a slightly modified
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version of the set proposed in Proposition 4. Specifically, the representation proposed in
Proposition 5 can be seen as equivalent to the set

[2lloe <1
ol <T
2=zt —2~
427 <1
i 2 4z <T (7
0<zt<ut
0<zm <u~
ut+u =1

(z,27,27) e R¥ | Jut €[0,1]™,u~ €[0,1]™,

which is obtained by adding two types of valid inequalities, z* +2~ <1 and > ;- (2] +2;)
<T, to the representation described in Proposition 4 before relaxing the binary constraints
on vt and u~. This process is well known to produce a tighter polyhedral outer approxima-
tion of feasible sets that involve integer variables. Whereas, in general, there is no guarantee
that adding valid inequalities to a representation involving binary variables will lead to
an exact representation of ConvexHull(Z'), it can be used to identify tighter conservative
approximations of any instance of the LAARC problem (see Ardestani-Jaafari and Delage [2]
for a related discussion).

Example 3. Consider our inventory management problem in which we wish to optimize
a decision rule that is piecewise affine with respect to the positive and negative deviations
of each demand parameter. In particular, at time ¢t = 2, we would like to design a decision
rule that is parameterized as

.732(d1) = 1To +i‘; max((); (dl — Jl)/cil) + Ty Inax(O; (&1 — dl)/dl)

such that we increase the order by Zj units per normalized unit of demand above the
nominal amount and increase it by Z; units per normalized unit below the nominal amount.
This can be done by designing decision rules on the lifted space (2*,27) € RT x RT such
that d; :=d; + dz(zj —z;") for all i. Namely, at time ¢ =2, the decision rule becomes

w2, 2y) =T+ TS 2 Ty 2y

An efficient representation for the convex hull of the lifted uncertainty space in terms of
(27,27) was described in Proposition 5 in the case of the budgeted uncertainty set. This
leads to the following lifted AARC:

T

minimize sup ci1xy + clop+ X 20+ X720
re, Ry, Ry Yo, I _
{{St,s},sgfﬂ +ht(7”t+Rj_Z++Rt z )—|—bt(st+St+z+St z )}

st. m+RIzT R 72T >0, s+ S 2TS 2 >0, V(2T 27)e 2", Vi,

t
re+ RV R 2T >y + Z Ty —|—Xt+z[‘:_1] —I—Xt_z[;_l] —dy(zt,27),
t'=1

V(zt,27)e Z2", v,
t
St —I—S;rz'*‘S;z_ > -y + Z dyr (z+’z_) — (mt +Xt+z[jt:1] +X;Z[;,1])a
=1
V(zt,27)e 2", Vi,

0<azy +Xt+z[J{_1] + Xz S M, V(zt,27)e 2", v,
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where d;(27,27) := Jj +Cij(2f - Zj_) and

Z" = {(z+,z_) cR>™

z+20, z= >0, z++z_§1722j+z; <F}.

Remark 3. One can trace back the use of lifted affine decision rules to the work of Chen
and Zhang [41], Chen et al. [42], and Goh and Sim [51], which suggests using so-called
segregated linear decision rules. Several other types of nonlinear decision rules have also
been proposed in the literature. For instance, Bertsimas and Caramanis [21] and Bertsimas
et al. [31] suggest using piecewise constant decision rules, which can be found by simula-
tion and convex optimization. Similarly, Chatterjee et al. [40] consider arbitrary functional
forms of the disturbances, and they show how the coefficients parameterizing the decision
rule can be found by solving convex optimization problems for specific types of p-norm
constraints on the controls. A similar approach is taken in Skaf and Boyd [70], where the
authors also consider arbitrary functional forms for the policies and show how, for a problem
with convex state-control constraints and convex costs, such policies can be found by con-
vex optimization, combined with Monte Carlo sampling to enforce constraint satisfaction.
Finally, Bertsimas et al. [34] propose using polynomial decision rules, which can be found
by solving tractable semidefinite programming problems. The book by Ben-Tal et al. [13,
Chapter 14] also contains a thorough review of several other classes of decision rules and a
discussion of cases when sophisticated decision rules can actually improve performance over
the affine ones.

6. Should One Worry About Time Consistency?

In the context of multistage decision making under uncertainty, time (or dynamic) con-
sistency is an axiomatic property that requires a decision maker’s stated preferences over
future courses of action to remain consistent with the actual preferred actions when planned-
for contingencies arise. To understand this concept, consider a hypothetical investor who
decides—according to his or her own risk preferences—that it would be optimal to invest
$100 in company A’s stock tomorrow if its share price were to rise above $3. If tomorrow
the share price does rise above $3, and the investor decides—upon reconsidering his or her
preferred actions—that $100 is no longer an optimal investment amount, the investor’s pref-
erences would be inconsistent. For more background information on time consistency, the
reader can refer to Shapiro et al. [69, Chapter 6].

Time consistency is intrinsically related to the formulation of the multistage decision
problem, particularly to the way in which the decision maker’s current-day preferences relate
to future preferences. In broad terms, a decision maker who always formulates and solves
a multistage problem via dynamic programming, thus ensuring that the actions satisfy the
Bellman principle of optimality, will always behave in a consistent fashion. However, in the
context of robust optimization, a subtler issue that may affect the consistency in preferences
has to do with the way in which uncertainty sets are updated dynamically and as the time
comes for future actions to be implemented. In particular, one needs to understand how
a robust multistage decision model implicitly assumes a specific updating rule that must
be followed in order to avoid giving rise to dynamic inconsistencies in the decision maker’s
preferences (and actions). This issue is illustrated below.

Consider a two-stage inventory problem with an initial ordering cost of $1 per unit and a
larger second-stage ordering cost of $4 per unit. We also assume that there are no holding
costs and that backlog costs are only charged in the final stage at a cost of $10 per unit.
In each stage, demand is expected to be 1 unit with a possible deviation of up to 1 unit.
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To control the conservativeness of the solution, it is decided that total upward deviation
should be bounded by 1. This gives rise to the following multistage ARC:

minimize  sup{x; +4z2(d;) + 10s(d) }
w17$2(')7s(') deu

st s(

d , Vdel,
(d

s(d) >0
s(d) >dy +dy — x4 —l‘g(dl), Vdelu,
x1 Z 07
za(d) >0, Vdeu, (15)
where U :={d € R? | (d; — 1)* + (da — 1)" < 1}. One can easily confirm that an optimal
robust policy consists of ordering three units at time ¢ =1 and nothing at time ¢ =2. Under
this policy, the worst-case total cost of $3 occurs for any realization of the pair (dy,ds) in Y.
Intuitively, the policy is optimal since we wish to protect against the pair (2, 1), which would
require us to produce three units so as to avoid the large backlog cost, yet there is no reason
to delay the purchase since the cost is lower at time ¢ =1 and there is no holding cost.
The idea that we wish to highlight here is that the optimality of the policy we just identi-
fied relies entirely on the assumption that the decision maker acts in a time-consistent fashion
and solves the decision problem following the dynamic programming paradigm highlighted
in §4. In particular, once the first-stage decision x; is implemented and the demand d; is

observed, the decision maker updates the uncertainty set for the second stage depending
on dy, so that the optimization problem solved in the second stage is

minimize  sup {4xy+ 10s(d2)}
z2,s(+) da€Uz(dr)

s.t. S(dg) > O, Vdg EUQ(dl),
s(do) >dy +dy —x1 — 22, Vda €Us(dy),
xTo 20

Here, Us(dy) := {d2 € R | (d1,d2) € U} captures the slice of Y when the first-stage demand
dy was observed. In particular,

Although this rule for updating the uncertainty set is implicitly assumed in a robust
multistage model, it may be more or less applicable from a modeling standpoint, depending
on the particular application. We provide two examples in which this updating rule comes
across as more or less realistic, and we comment on the potential pitfalls when this rule is
violated.

o Time-consistent situation: Consider the owner of a coffee stand that is allowed to operate
for one morning in the lobby of a hotel. The owner plans on selling coffee during the 7 A.M—
11 A.M period and possibly replenishing with fresh coffee at 9 A.M. Based on the hotel’s
occupancy level and his prior experience, he estimates that about 100 cups of coffee (one unit)
might be purchased during the 7 A.M—9 A.M interval, and about 100 cups (one unit) might
be purchased during the 9 A.M-11 A.M interval. He also considers it extremely unlikely that
more than 300 cups of coffee (three units) would be needed in a single morning (e.g., since
that happens to be the maximum number of guests at the hotel, and very few individuals
buy two cups of coffee in the morning). This circumstance motivates an uncertainty set of
the form in (15), and it suggests that it may be reasonable to not order more coffee even
after having sold 200 cups (two units) during the 7 A.M—9 A.M interval.
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e Time-inconsistent situation: Consider the same coffee stand owner that instead plans
to move his stand at 9 A.M to a different nearby hotel that has similar occupancy. In this
context, it might still be reasonable to initially assume when opening the stand at 7 A.M that
no more than 300 cups of coffee (three units) would be needed the whole morning (possibly
with the argument that if demands at the two hotels are independent, it would be unlikely
that they are both significantly above their expected amounts), it seems unreasonable to
assume that having sold more than 200 cups (two units) in the first hotel by 9 A.M implies
without any doubt that no more than 100 cups (one unit) are needed for customers at the
second hotel. Instead, the owner may be tempted to believe that there might still be enough
customers to sell up to 200 cups (two units) in the second hotel and thus might make an
order that departs from what his original optimal policy suggested.

This second scenario would give rise to time inconsistency in preferences, in the sense
that at time t = 2, the decision would actually be taken with respect to a robust optimiza-
tion model using an uncertainty set that is inconsistent with Us(dy). In our example, this
would be Us(dy) :=[0,2]. Looking back at the robust first-stage decision 1 = 3, this would
mean that if d; =2, then the second ordering quantity would be decided so as to mini-
mize maxgq,eo,2][3 + 42 + 10(3 + 2 — 2 — d)], which would imply ordering one additional
unit to avoid the excessive backlog cost. Under this scenario, the total cost ends up being
3+4-1=7. Yet, it is clear that if the extra unit had been purchased in the initial stage,
then the total cost would have been 4 for this scenario, and always lower than this amount
as long as the policy implemented at the second stage was wo(dy) := (d; +2—4)*.

One can actually show that the decisions 1 =4 and x2(d;) := (d1 +2 — 4)™ are optimal
according to the bilevel problem:

minimize  sup{x1 + 4a2(d1) + 10s(d) }
z1,22(-),s(+)  deu
st s(

(

s(d)>0, vdel,

s(d) >dy +dy—x1 —22(dr), VdeU,

z1 >0,

zo(dy) €argmin max  {cowy+b(dy +dy—z —ah) T}, Vdi €Uy,
x>0 dy€Ua(dy)

where U; is the projection of the set U over the first component, Uy := {d € R|3da,
(d,d3) € U}. This model resolves time inconsistency by explicitly acknowledging that the
second-stage decision must be consistent with respect to the uncertainty set that will be
employed in the second stage, once d; is observed. Such bilevel optimization problems reduce
to our multistage ARC when Uy (d1) =Us(dy) := {ds € R | (dy,ds) €U}.

This discussion highlights the importance of fully specifying the way in which uncertainty
sets are updated depending on intermediate observations; such specification critically gov-
erns the objectives of the robust decision problem at future time stages. When the updating
is done by “slicing” the uncertainty set, as in §4—which is analogous to the typical condi-
tioning in stochastic optimization—the decision maker will always act in a time-consistent
fashion and will never desire changing the dynamic policies once contingencies that have
been planned for actually arise.

7. Conclusions and Future Directions

Despite the advances in robust multistage optimization, several important directions remain
underexplored. One such example concerns the development of exact algorithms for identify-
ing the optimal first-stage decision in a multistage ARC. Although the inherent NP-hardness
of the problem might be a little discouraging, some valuable procedures based on Benders’
decomposition and column-constraint generation methods have been proposed for two-stage
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problems and applied quite successfully to a number of applications (e.g., in Bertsimas
et al. [36], Thiele et al. [73], Zhao and Zeng [79]). However, it is still unclear how such
methods can be extended to problems with a longer horizon.

Another important issue concerns the development of results concerning the optimality
(or degree of suboptimality) guarantees for particular simple functional forms of policies,
such as affine or piecewise affine with few (i.e., polynomially many) pieces.” As discussed in
864 and 5.2, such results would have to leverage the degeneracy inherent in robust multistage
decision making, which allows policies that are worst-case optimal without necessarily being
Bellman optimal. New theoretical tools would have to be developed that can exploit this
degeneracy without making use of dynamic programming to solve the underlying model (as
the latter paradigm would always enforce the strict requirement of Bellman optimality).

A third direction of study concerns problems where the assumption of fixed recourse is
not satisfied or, alternatively, where some of the adjustable decisions are constrained to
be integral. Indeed, in the former case, the AARC problem (12) no longer involves robust
biaffine constraints. One might be able to obtain semidefinite programming reformulations
by using methods for polynomial optimization problems (as demonstrated in Bertsimas
et al. [34]), yet it is still unclear how effective these methods actually are for problems
of reasonable size. Note that a similar issue also arises when the decision model involves
nonlinear constraints such as

g(xlamQa"'er)S(L VZEZ7

where g(-) is jointly convex, which gives rise to hard separation problems when employing
affine decision rules.

The case of integer adjustable decisions has attracted more attention recently. In par-
ticular, such models have been initially discussed by Bertsimas and Caramanis [21], who
prove intractability and propose approximations based on sampling. Their work has been
extended by Hanasusanto et al. [55], who consider binary adaptable policies with K contin-
gency plans, as well as by Bertsimas and Gheorghiou [22], who adopt the following specific
parameterization of an adjustable binary decision y:

(2) 1 if max{y] 2,9 2,...,ypz} —max{y{ z, ys 2,..., yp2} <0,
2)= < 2 <
Y 0 otherwise,

where {7, y;}Z., are chosen by the decision maker. Despite this progress, the theory of
adjustable decisions with integrality constraints lacks the same solid foundations as its coun-
terpart for continuous decisions, and results are lacking concerning the optimality of simple
parameterizations for important applications.

A final example of future research directions might also involve the design of uncertainty
sets for multistage problems. Several techniques have been proposed for constructing uncer-
tainty sets in single-stage models, using statistical hypothesis testing (see, e.g., Ben-Tal
et al. [17], Bertsimas et al. [32]). Although some results exist in the literature for charac-
terizing temporal correlations between different uncertain parameters (see, e.g., Lorca and
Sun [61], Miao et al. [63]), still relatively little is known on how to effectively control the level
of conservativeness of such dynamic uncertainty sets in a wide variety of practical settings.
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