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Figure Notes: Crude Palm Oil (CPO) prices are from the KOI Comdty series in Bloomberg. We converted CPO prices, which
are given in Malaysian Ringgits (MYR), to USD by applying the MYR Curncy series in Bloomberg. Refineries process CPO
into 80% Refined, Bleached, Deodorized (RBD) palm olein and 20% RBD palm stearin. Prices for these outputs were retrieved
from the OLEPRRCM index series and TTNSPSMY index series, respectively, on Bloomberg. We combined 0.8 x OLEPRRCM
and 0.2x TTNSPSMY to arrive at the RBD Composite Price Index in panel 1a.
Figure 1: Crude Palm Oil (CPO) and Refined, Bleached, Deodorized (RBD) Prices per metric ton 2012-2017.

Figure 2: Field vehicle stuck on unpaved road after rain.



(b)

Figure 3: Farmer receipts from a transport provider, under normal road conditions (a) and poor road conditions (b)

(‘jalan’ is short-hand for ‘kondisi jalan’ in Indonesian, referring to ‘road conditions’).

2 Proofs

Proof of Theorem 1. Recall that under a fixed payment delay 7, the problem horizon is divided into N +1
periods of length 7. The first NV such periods are payment periods, indexed by n € {1,..., N}, with the
n-th period corresponding to the interval [(n —1)7,n7). In the terminal period N + 1, each farmer consumes
all his remaining cash net of any interest payments at a constant rate, and the mill shuts down. Since all
parties (farmers and the mill) take their decisions at discrete points of time n7 corresponding to the start
of each payment period, we can discretize their decision problems accordingly.

Our proof starts by allowing the mill to offer a different price p{; to each farmer, possibly depending
on the farmer-specific parameters. The sequential game between the mill and the farmers can be analyzed
through a dynamic programming (DP) formulation. In principle, in the DP model, the state for the mill and
for every farmer at the beginning of each period n € {1,..., N+1} would consist of all available information,

including the cash positions :cfz, discount rates 8/, land areas ¢/, realized cost parameters W,J: , etc. We seek

to show that despite the apparent complexity, several dramatic simplifications take place:
1. the game decouples into I’ separate games, one for each mill-farmer interaction;

2. in the game between the mill and farmer f, a sufficient state in period n € {1,..., N} for the mill is
the outstanding oil price P(,_1);, and a sufficient state for the farmer is his cash position 2}, and the

mill’s fruit price pfl;

3. in equilibrium, the mill’s value function at the beginning of period n € {1,..., N} is given by the sum

of the F' individual value functions, from each of the F' separate games.



Our goal will be to prove this, together with several additional structural results, by backwards induction.
To streamline the notation and exposition, we start by first assuming the results above, which will allow
us to analyze every game between the mill and each farmer separately. We will then return to discuss how
these results are preserved by the induction hypothesis.

Consider the game between the mill and a generic farmer f. For n € {1,..., N}, let v, (Pn—1)r) and

Ji (:Uf;, pr) denote the mill’s and the farmer’s equilibrium value functions. We show the following.

Proposition 1. In the unique subgame-perfect Nash equilibrium for this game, for any n € {1,..., N},
YPm-1)r tk

p?é(lp(n—l)’r) = ) (Ala)
Vil (Pa—iyr) = ZEPG )7 + Vil Planye + W (A.1b)
1
T(pl) = CT(pl — k), where C7 = Al
T , ere , dc
n(pn) (pn ) w 2q + (1 _ e_ﬁf,r)on_ggfoa ( )
el pl) = (2 — (e — 1) — (q(rl (p)2 + kvl w]))7eF — gl (0])) /7 Ald
o (T, Dy n q(ra(py, n(Pn 9n(Pn
1—eBr f - _ =
H(alopl) = g |af = 7 = 1)+ Al + Blp] + Ol (Ale)
where gfi(p) = I‘{n + I’;np + I’g}an, and the constants ZYJ:,YJ,WT{,C’JC,A,{,BT{,C%, F{’H,an,I’g’n only

depend on parameters specific to farmer f and the oil price process (Ps)s>0-

Proof. For ease of exposition, we suppress the superscript f when no confusion can arise. We first check
that (A.le) adequately captures the farmer’s value function in the terminal period n = N + 1. In this
period, the mill stops operating, which can be seen as setting a price py41 = 0 and deriving value V41 =0,
consistent with (A.1b) with Zy11 = Yny1 = Winy1 = 0. The farmer starts with a cash position zy1, stops
producing fruit, and consumes at a constant rate C{V 41 = (@ng1— (e7@7#N+1 — 1)) /7, to deplete all cash net

of interest payments over a period of length 7. Thus, his value function can be written:

T TNyl — (e7OTTN+L _ B 1— e—BT o
INt1(ZNG1, PN11) = / < 41~ ( )>€ Pods = 7($N+1 — (e7TENFL — 1))7
0

T l6a
which is consistent with (A.le) with Ay, = Byy1 = Cny1 = 0.
We can now prove all the results by induction. Assume the induction hypothesis holds in period n + 1,
and consider the farmer’s decision problem in period n. The farmer starts with cash position z,, is offered
a price p, by the mill, and anticipates the mill’s future pricing strategy in period n + 1, and his resulting

value function. Thus, his value-to-go function in period n becomes:

Jn(xrwpn) = max {Cn / ef,Bst + 67'87— En |:Jn+1 (-Tn-i-l’pn—&-l(Pn—‘rl))] }7

TnZO,Cn 0
where we use the shorthand E,[] to denote expectation conditional on all information available at the

beginning of period n (at time (n — 1)7), and 41 is given by (1), replicated below for convenience:

—QTTn 1) .

Tng1 = Tn + 10 lTPy — CpT — (q (Tn)Q + Wy, Tn)g'r - (6



Recall that W,, ~ N (k, o) is independent of P(n-1)r- We now introduce a change of variables, where instead

of choosing the consumption rate c,, the farmer chooses his expected cash savings g,,, defined as follows:
Gn = Tn — cuT — (q (rp)? + Erp)lr — (e797% —1).

With this definition, we have that given any x,, p,, a production rate r, and a choice g,, we can rewrite:

1
Cp = — (;pn — (e — 1) — (quQL + krp)Tl — gn>, (A.2a)
T
Tn+l = gn + TngT(pn - O'€n), (A2b)

where ¢, := W"T_k ~ N(0,1) is independent of p,,. Substituting these and replacing J,,+1 from (A.le) yields:

Jn(Tn, pp) = max {xn — (e 1) — (qr2 + krp) Tl — gn

'rnzovgn
=BT —QTTp41 1 2 = = 1—eh7
+ e TRy |Tp1 — (€77 = 1) + Apqapyg + Borapatr + Cnya T
1—e 7 —aTtw —BT 1 2 >, ~
=5 T (77" — 1)+ e "TEn[1 + Aps1p; o1 + Bui1Pns1 + Cni]
+ max [f(qri + krp)Tl — gn + e PR, [@n41 — e_am"“H }, (A.3)
Tn=>0,9n

= hn (Tn ’gn)

where the second step follows since p,,+1 is independent of 7, gn, by (A.1a). The expression for the maximand
hn(Tn, gn) can be simplified by noting that conditional on information at time (n — 1)7, the distribution of

Zn41 is Gaussian, by (A.2b). Using the Gaussian Moment Generating Function yields:
B [tns1 — €901 = g+ rbrpn — exp(—aT(gn + ralrpa) + (aralra)?/2),
so that the maximand becomes:
P (T gn) = —(qr2 4 k)78 — gy + €77 {gn + rolTpyp — exp(—aT(gn + ralTpy) + (ozrn€7'2a)2/2)]. (A.4)

It can be checked through standard composition rules that h,, is jointly concave (Boyd and Vandenberghe,

2009). The first-order-conditions (FOCs) become:

oh
“'n BT 9 _
ar, 0 & ¢kt 2qmn) = pat
exp(—at(gn + Tnlrpy) + (arnlr?c)?/2) ra(—p, + trac®t?) = 0 (A.5a)
hn AT —1
g =0 & exp(—ar(gn + rolTpy) + (ar,l7%0)?/2) = c . (A.5Db)
9n TO



Using (A.5b) in (A.5a), we can solve for 7, and then use the solution in (A.5b) to find g;;. We obtain:

" 1
r, = C(pn — k), where C := 20t (1= P yario? (A.6)
Ty = =k log (221 4 otCrfer
Gn =T +Topnpn + F3,np7217 where Py = (1 — a7’2€020) kérC (A7)

Ty = (2222 — 1) erc.

If v > 0, this would be the optimal solution in (A.3), and the proof for (A.1c) and (A.1d) would be complete.
To confirm this, let us now consider the mill’s problem in the separate game between the mill and a single

farmer, which can be written using (A.1b) as:
Vn(,P(nfl)T) = II;)aX{eKTEn {(?ﬂ’m - pn)rnET + Zn—i-l’PzLT + Yn—l—lpnr + Wn—f—l} }

=e 7 n;,aX{ (YPn—1yr — Pn)rnET} + € "B [Zni1Prr 4+ Yoi1Por + Waya], (A8)

where 7, is the fruit delivery from farmer f. Thus, when r, is given by (A.6), the maximand above becomes
a concave quadratic in p,, which is maximized by a choice:

YPm-1)r K

; (A.9)

bn =

.. . C _nr—k . .
In turn, this implies that r} = % > 0, due to our standing assumption, so that the proof

for (A.1a), (A.lc), (A.1d) is complete.

To complete our inductive proof, it only remains to confirm the expressions for V;, and for J,,. For the
former, using p;, ) and that P is a Brownian motion with zero mean and volatility o, we can simplify the
expression for V,, in (A.8) as:

2

k
(TC£y2/2 + €_HT n+1) P(2n_1)7. + (e_HTYnJrl — TC’Eyk/2) P(n—l)T + Z

—KRT

- 2
+e M2 viT +e 1,

éZn éYn éVVn

which proves (A.1b).

Lastly, consider the expression in (A.3) for J,. Using p,4+1 from (A.la), we rewrite the third term as:

En[An+19p 1 + Bnipns1 + Coyl]

(by (A.la) at n+1) =E, -Anﬂ <yp7”2+k>2 + By (W) + Cnﬂ}
— : . (y(Pm_l)T +2ﬁu€n> + k)? ¢ By (ym(%_m; N fc) N CHH}
(by (A1a) at n) = E,| Ay <pn ¥ y@”gn)z t Bups <pn ¥ W;) s czm]
(%) = Ant1p} + Bniipn + </_1n+1 yzzyz + C_'n+1>, (A.10)



where (*) and (**) follow since &, := % ~ N(0,1) is independent of P, _1).
Finally, using (A.10) and replacing p}, v and g in (A.3), we can confirm (after some tedious algebra)

that the expression for J,, in (A.le) holds, where A, B,,C, are given by the recursions:

Ay i=—(1— e_BT)Fg’n — qéTCg +e BTrC, + e_ﬂTAnH, (A.11a)
By = —(1— e_ﬁT)Fg,n — (1 +e P — 2qC’n)k€TC' + e_BTBn_H (A.11b)
B 1— —BT B 2.2 B
Cri=—(1— e Py + (1 — qO)erk2C — —=— 6*57(1 + Ay ? Z” + cn+1). (A.11c)
arT
This completes the proof of Proposition 1. O

To complete the proof of Theorem 1, note that the mill’s equilibrium pricing strategy was the same
in all the separate games, according to (A.la). By considering a DP formulation for the overall problem
and following similar arguments to Proposition 1, it can be readily checked that in equilibrium, the same
pricing strategy would remain optimal for the mill, the mill’s value function would be additive (given by
Z?Zl an in period n, with V,f from (A.1b)), and farmers would respond with the equilibrium production
and consumption decisions in (A.1c)-(A.1d), respectively, achieving the value functions in (A.le). We omit
the details for brevity. B

Remark: It can be shown that these results also hold for general length of the terminal period T > 7.

Proof of Theorem 2.

The result follows from Proposition 2 and Proposition 3. B

D _f d
Proposition 2. Farmer f’s equilibrium productivity E{W} decreases with T, o, o, q, k, Bf, and ¢7.

Proof of Proposition 2. From Theorem 1 (results (A.la) and (A.lc)), the equilibrium production rate in the

S Pin_1yr—k
n-th period is given by 7} = C’%, where:

c— 1
- 2q+ (1 — e P)ar2lo?’

The expression for productivity is:

1 [P N T
E|:D/; T[S/T-|d8:| :BE

where the penultimate step follows since the process Ps is a Brownian motion with zero drift, and the last

2 2D 2

N
'Pnf T_k - -

pyerasia ]:T(ypo Mo =P kg (A.12)

n=1

step follows by recognizing that the production horizon D = N is fixed.

To show that productivity decreases with «,0,q,k, ¢, 3 and 7, note that we have (by inspection):

0 00 L 00 00 20 20 0C

@< <0. Al
ar da = 9o = dq = ol = 0 (A-13)

9 % =
Since yPy > k by our standing assumption, the desired results readily follow from (A.12). O



Remark: It can be shown that these results also hold for general length of the terminal period T" > 7.

Proposition 3. Farmer f’s equilibrium welfare decreases with T, o, «, q, k, and increases with ¢7.

Proof of Proposition 3. The farmer’s welfare is given by (A.le) for n = 1 and z; = 0:

1—e P (_ 9 = -

—— S Aip] + Bip1 + Cy ¢, (A.14)
BT

where Ay, By, C; are given by recursions (A.11a)-(A.11c), and p; = w from (A.la). In particular, with

AN—H = BN+1 = C’N+1 = 0, the recursions can be solved to obtain:

(1 — e PP)e=h"

Ay = 2P 1) Clr (A.15a)
=-C ;(2: li);_ e (A.15b)
B e PO [4(ePP —1)(ePT — 1)k? + (re"P — 7 — DT + D)y2?|Ctr
b 8(efm —1)2
(1-— e‘fBD)(l — T tar+ (7 -1) 1og[eﬁ;7;1])
+ & Tar , (A.15¢)

1
2q+a(l1—e=B7)

where C = —37,7 18 given by (A.6). Substituting yields an expression for welfare:

6D (P —1)(ePT — 1)(Poy — k)? + (7e®P — 7 — DeP™ + D)y?v/?
e

(o]
887 — 1) -
1
e PT(1 - e*f’)D)<1 — BTt ar 4 (P - 1) log[eﬁz;l})
Al
affT? (A-16)
f2
To show that welfare decreases with 7, we treat each term separately. We have:
Ce PP (PP —1)(1 + P (-1 ly??
ofp . Ceme YL+ (1 +pr)ly” (A.17a)
or 8(efT —1)2p
BD_l BT_l —]{32 BD _DBT D 2.2
Oh _ -pn(® )€~ V)(Poy — k) + (re"7 — 7 = D" + D)y™v”, (A.17D)
oC 83(efT — 1)
Above, (A.17a) follows since
14+e*(—1+2)>0,Vz €[0,00), (A.18)
which holds by Lemma 6(ii). Similarly, (A.17b) holds since:
PP — 7 — D"+ D >0, (A.19)



which follows since its derivative with respect to D is 1 — €™ + S7eP, which is greater than 1 — ef7 + fref™

(since D > 1), and the latter function is non-negative by (A.18). Therefore, recalling from (A.13) that

% < 0, we can use (A.17a) and (A.17b) to conclude that:
dfi _ 0f n af1 0C

=+ ——=—<0. A2
ac  or oC or — 0 (4.20)
For the second term in (A.16), we have:
dfy e P7(1 — e PP)h(a, B, 7)
dr afT3
BT _1

where h(a, 8,7) = (=14 €7 —ar)(1 + A7) + (2 — 2¢"" + 1) log(e ).

aT

The sign of this expression is the same as the sign of h. Note that:

2 o BT
0°h _ 2 —2ePT 4+ BT <0
oo o? -
_ —2 4 26°7 —ﬂﬂT(Q—i—,BT) >0,

where the latter inequality follows from Lemma 6(ii). Therefore, since h is concave in «, we have that:

@
Oa a=p

h(a, B, 1) < max, h(a, B, T)

aE[O ]

(20
(—1+65T— M%)(1+ﬂ7)+(2_2667+ﬂ7_ (5667—5)

< <—1+6BT—4’%
0,

)(1 +07)+ (2 — 2e°7 +B7’)logg

IN

where the last two inequalities follow by applying results (ii) and (iv) of Lemma 6, respectively. In turn,
this implies that ‘g—f < 0, which together with (A.20) and (A.16) implies that welfare is decreasing in 7.
To show that welfare decreases with o and ¢, note from (A.16) that only f; depends on these
parameters, through C. By (A.17b) and (A.13), we immediately obtain the desired results.
To show that welfare decreases with k, note that welfare only depends on k through f; in (A.16),
both directly and through C. Since 2 8k =0 by (A.13), and
ofi _ _e_fBD(eﬂD —1)(yPo — k)CL
ok 45

since yPy > k, we obtain the desired result.

<0

To show that welfare decreases with «, note that f; only depends on « through K, and fo depends
on « explicitly. Since 8f1 >0 from (A.17b), 82 <0 by (A.13), and

0f2 _e*BT(eﬁD —1)(ef — 1)log(eﬁ;7;1) <0
da a?pBr? -




we obtain the desired result.
Finally, to show that welfare increases with ¢, note that welfare only depends on ¢ through f; in (A.16),
both directly and through C. Recall that % >0 from (A.17b), and C >0 by (A.13); since

Oh _ s (€ =D = 1)(Poy — k) + (re®P — 7 — DT 4 D)yy? > 0,
ot 83(efT — 1)

which follows from (A.19), we obtain the desired result. O

Proof of Theorem 3. We first show the part of the theorem related to the refinery’s expected discounted
profit. We use n to index the delivery cycles; that is, the refinery receives batches of oil from the mill at each
time nryq, for n € {1,2,...,D/7s}. We use m to denote the payment periods; that is, the refinery makes
payments at each time (m + 1)7. For simplicity, we examine a regime where 7 — 1 so that 74, remains an
integer multiple of 7.

The refinery’s expected discounted profit is then given by:

D/1sq (nTsq/T)—
|: Z Z ( —5n7’sq7;£75 For YT — e—é(m—i—l)‘l’fp(erl)TrmTyT)] )

(n—=1)1sq
T

We can then show that the refinery’s expected discounted profit is decreasing in 7 when § < 0. Let H;
denote all historical information available to the refinery about prices at time ¢. Furthermore, note that at
time m7 the refinery knows the delivery rate r,,.; since this remains constant during the next 7 units of
time, it can thus perfectly predict the batch of oil delivered during this time. However, the refinery does
not know its costs and revenues during this time, because the RBD prices P; and CPO prices P, evolve
stochastically, as Brownian motions. The conditional expected discounted profit for the m-th payment

(with (n — 1)75g < m7 < n7yy) is then:

E[mme|Hm:] = E [e 3(nTsq— mT)PT L TmrYT — € 5777,,”7“,,”3/7' ‘ Honr

—§(nreg— —5
€ (n7sq mT) [7)77;7-8 ‘ Hm’r] TmryYT — € 7-,PmTTmTyT
= 6_6("73‘1_’””73:”77"7”77' — e_‘sTPmTrmTyT

= <e_6("75q_m7)77;w - e_‘STPmT> TmrYT.

At time (n — 1)74, by the law of iterated expectation, the expected discounted expected profit for the



n-th batch is then given by:

- (nTsq/T)—1

E[Trnﬁq’%(nfl)‘rsq] =E Z ei(smT]E [FmT|HmT] ‘ H(nl)rsq:|

- m ("*1)7'34

- (nTsq/T)—1

=k Z eiémT (eé(nTSqu)P:nT - e6TPmT) TmryT | H(nl)ﬂ'sq:|

- m= ("*1>7'sq

- (n7sq/T)—1

- Z <e—5n7'sq7)77;w_ _ 6_6(m+1)7—7)m7) TmrYT } H(n—l)qu:| . (A21)

- m= ("—1)7'311
T

Recall that the mill receives fruit at a rate 7, = 25:1 C!(Ppr — k), wherein C/ is given by (A.6).
Furthermore, recall that P/ := K'P; with K > 1. We can then re-write (A.21) as

(nTsq/T)—1

E[ Z <e—6n7—qu _ 6—5(m+1)7> f(T) ('pTZm_ _ k’PmT) T ’ 'H(n_l)»rsq:|

m= (n— l)qu
T

(n7aq/T)~1

_ Z <e—6nquK _ e—6(m+1)7‘) fr)r E[(sz — kPpmr) ‘ ”H(n_1)fsq]

m= ("*1)7'5q
T

(n7sq/T)—1

= Z <e§mqu — 66(m+1)7—> f(7) (TP(nl)qu (Pin-1yrsy — k) +7(m7 — (n — 1)74) V2> (A.22)

m= (nfl)qu
T

To show that

0
87_<E[7T”quH(n—1)qu]> <0, (A.23)

we look at the Taylor expansion of (A.22) with respect to 0. Specifically, the Taylor expansion of (A.22)
with respect to ¢ is given by:

(ePT(K — 1)l74q(2e°Tqu? + (77 — 1)lar?0? (215 — )T + La?0? 72 B(1sg — 7) + b(4(eP™ — 1)lao?T + 20ac?T%B3))
2(lao?12 — ePT(2q + bao?72))?

+0(9),
wherein b := P, _1)r,, (P(n—l)qu — k).

Since the dominating term is always negative, it follows from basic continuity arguments that there exists

a & > 0 such that (A.23) holds for § < §. Specifically, it can be shown that § := min(d1, 62, 83), wherein:

- 6_67—(6575‘1 -1) o732

- e_‘ST(e‘Squ -1) 7

09 := max{5 K> }, (A.25)
1—e 907 Tsq

03 := max {5 K> e‘;(TS‘?_T)} (A.26)

10



Thus, conditional on being at the beginning of a batch period, the refinery’s expected discounted profit
is decreasing in 7 for that period/batch when § < §. What is left to prove is that the refinery’s expected
discounted profit at time zero is decreasing in 7 when & < §. To prove this, note that by iteratively applying

the law of iterated expectation we can re-write the refinery’s expected discounted profit at time zero as:

D/7sq

—SnTs
Z E[e i qﬂ-"'rsq

n=1

D/qu
H0:| Z E|: §nquE TFm—Sq }H(n 1)qu] |7‘[0 (A.27)

We already know that the second term in (A.27) is decreasing in 7 and the first term is independent of 7.

It follows that
D/ Tsq

(9 _
Z ]E ons 1 Tnrs q
n=1

Finally, we show the second part of the theorem, related to the mill’s expected discounted profit. For

7‘[0}) if 6 < 6.

this, we remind the reader that the mill pays the farmers when it gets paid by the refinery. The mill’s

value-to-go function therefore remains as derived in Theorem 1:

F F
VaPin-1yr) = (1Y ClP /24 € Zoya) Pl _1ye + (€ Yoga = 7> Clyk/2)Py_1)r
=1 f=1
2

+ Z _’_efm' n+1l/27'+67m- 1

Building on the iterated expectation argument above, it then follows from L <o (see (A.13)) and Bea;” <0

that the mill’s expected discounted profit strictly decreases in the payment delay .

Proof of Theorem 4. Recall from the proof of Proposition 3 that the farmer’s welfare when producing on
a total land area /¢ is given by (A.16); therein, ¢ impacts welfare through fi, both directly and through C
(given by (A.6)). Thus, a farmer already endowed with productive land ¢, solves the following problem in

choosing how much additional land ¢4 to deforest at ¢ = 0:

max
£3>0

(1= e PP)(eP™ —1)(Poy — k)? + (1€PP — 7 — DeP™ + D)y?u?] (64 + Le)
8B(eP™ — 1)[2q + (1 — e A7) 7262 (L + Le)]

Cd(fd)}. (A.28)

The set of maximizers in (A.28) is non-empty and compact, due to our assumptions that cg is lower-
semicontinuous and coercive (see, e.g., Proposition A.8 in Bertsekas, 1999). Let g(7, 3, /e, {q) denote the
maximand in (A.28).

To show that the set of optimal solutions decreases with 7, it suffices to show that ¢ is supermodular

11



in (1, —£4) (see, e.g., Topkis, 1998), which is equivalent to showing that ¢ is submodular in (7, ¢;). We have:
si n( g ) — i n(h (r, D) + hi (1, D)(£e + £ ))
g 37‘85(1 = sig (VAN 1\7, e d

ho(7,D) := —Qe_ﬁ(D_?’T)(eﬁD — 1)(1 + eBT(BT — 1))q2y21/2

hi(7, D) := +e PP (P — 1>qaazr[—2<e” — 1)(e’" = 1) (=2 + 26" + Br)(Poy — k)*+

(ZD(eﬁT —1)(—2+2¢7 + B7) — (PP — 1) (=3 + 287 + "7 (3 + BT))T) y21/2}.

We analyze terms separately. To see that hg is non-positive, recall that the last parenthesis is non-negative
from (A.18). The sign of h; equals that of the inner brace. The first term therein is non-negative by

Lemma 6(ii) (or simply a Taylor expansion of the exponentials). The second term has the same sign as

h3(7, D) := 2D("T — 1)(—=2 + 2¢°7 4 Br) — (PP — 1)(=3+ 287+ e7(3 + BT))T.

We have:
82h3 o D p2 r -
9Dz —e7Pp T[—3+2ﬁ7+e (3-}-[37)] <0
ha(r,7) = —(T = V)7 (1 +7T(Br — 1)) <0
% per —(1+e7(Br—1)) (44287 + €7 (4 + B7)) <0,

where all the requisite inequalities follow by (A.18) or Lemma 6(ii) applied to the functions in variable
x = B7. By applying the gradient inequality to the concave function hg in variable D, we can conclude that:

oh
hs(r, D) < hs(7,7) + =

— <

D=1

which implies that h; is also non-positive, and thus g is submodular in (7, 44).
To show that the set of optimal solutions decreases with /., it suffices to show that g is submodular
in (€, £q), which can be seen by inspection since:
, d%g . 4e207 (ePT — 1)qac?7?
51gn(a£eagd) = 51gn<— [ (2q + a(1 — e PT) (L, +5d)7202)]3> <0.
To show that the set of optimal solutions decreases with j, it suffices to show that g is submodular

in (B, 44). We have:

sign( ag;ge ) _ sign((yPO k)2 [h4(7, D) + (e + £a)hs (7, D)} 22 [hﬁ(T, D) + (£, + L) (r, D)D

ha(7, D) i= =2 PP (T - 1)2¢* (—1 + PP — Dp)

hs(7, D) i= —e P72 (1 4 7Y 20?12 (1 + P+ 4 DB — eP7(1+ DB) — 287 + PP (~1 4 287))

he(r, D) == 2 PP 2 [D2(—1 + )28 + D(~1 + °7) (=1 + "™ + B7) — (PP — 1)7(=1+ 7 (1 + B7))]
hi(r, D) := e~ PDP=27)(_1 4 A7) gao?r? [02(—1 +ePT)28 + D(—1+ €Y (=1 + €7 + 367)

— (PP —1)r(—1+2B8r + P (1 + 57))} .
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The function hy is readily non-positive due to (A.18). The sign of hs is opposite to the sign of the function:
hs(t,D) :=1+ PP+ 4 DB — P7(1 4+ DB) — 2687 + PP (=1 4 287).

For hs, it can be checked that:

82}3]5 DB 2 6
= — T >
502 = © B(—1+e’"+267)>0
55(7', 7)=(-1+ eﬂT)(—l + P74 Bt) >0
3%5 B eﬂT+€_BT
_ = T — —_— >
9| % 5( L4 Br+ — )_0,

where all the inequalities follow by applications of Lemma 6(ii). Thus, hs is non-negative on D € [T, 00),
and therefore hj is non-positive.

The sign of hg equals the sign of:

he(1, D) 1= D*(=1+€"")?B+ D(=1+ €°7) (=1 + €’ + Br) — (P — 1)r(—1+ "7 (1 + B7)).

For this function, it can be checked that:

h
TD?G = B[2(—1 + P2 - eDBB7'<—1 +ePT(1+ ﬁT))} <0
iLG(Tv T) =0
8%‘6 _ BT 26T
3D =14081—2""(14871)+ "1+ B7(1 — p7)] <0.
D=t
The first inequality follows since the left-hand-size decreases in D, and is non-positive at D = 7 by

Lemma 6(iv). The last inequality follows by applying the gradient inequality to the function on the left-
hand-side in variable = f7 (which is concave and has a value of 0 and a non-positive derivative at 0). In
view of these, we conclude by an application of the gradient inequality that hg is non-positive, and therefore
hg is non-positive as well.

Finally, the sign of hy equals the sign of:
h(7, D) i= D* (=14 €75 + D(=1+ ") (=1 + "7 +367) — ("7 = 1)7(=1 + 267 + "7 (1 + p7)).
To prove that /7 is non-positive, it suffices to show that it is smaller than hg. To that end,
h(t,D) — he(1, D) = 2B87[D(—1 + €°7) + 17 — PP7].

The latter function has a second derivative with respect to D of —2ePP3372 < 0, and at D = 7 takes a value
of 0 and has a derivative of 267[—1 + €7 (1 — 7)], which is negative by Lemma 6. Thus the difference is

non-positive, which completes our proof.
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The following special case will be of interest in a different result, so we discuss it here for convenience.
Note that if the cost of deforesting and developing the land is linear c4(¢;) = d {4, the objective in (A.28)
becomes strictly concave in £z, and the optimal amount of land can be found by solving the first-order-

condition. We obtain the following solution, which corresponds to a global maximum:

e_DB

fa= maX{O, 2d(eP — 1)3a2B0474
\/deﬁ(D“T)(eﬁT —1)3ga?Botrt [(eDﬁ —1)(ef7 = 1)(yPo — k)2 — y2v2(D(efm — 1) + 7 — €D5T)}> — Ke}.

(A.29)

<—4d€B(D+T) (e’T —1)%qaBo?r+

Proof of Theorem 5. Under the farmer-level requirement I, farmer f € V engages in deforestation
if and only if this generates a higher welfare than receiving same-day payment but producing only with his

endowed land, i.e., if and only if:!
T 00 1) — ca(€]) > T (01, 1).

Therefore, the set of problem parameters Prp under which no deforestation occurs with the IF requirement

is given by the parameters so that:
I ) > T+ 0 ) — call?), Y f e V. (A.30)

By Proposition 4, the set of problem parameters Py under which no deforestation occurs under V is
given by all parameters so that:
S Ay >y [Jf(zg O ) — cd@g*)]. (A.31)
fev fer
By Proposition 5, the set of problem parameters Pr under which no deforestation occurs under R is

given by all parameters so that:

(A.31) holds or Z <Jf el 1)y — g/l +€f*,7'sq)) (A.32)

feG
where G = {f : JI(1,1) > JI (6] + 657 7,) — ca(t])}.

To prove that set of model parameters satisfying (A.30) is a subset of the model parameters satisfy-
ing (A.31), which is a subset of the model parameters satisfying (A.32), note that if (A.30) holds, then (A.31)
must hold; and if (A.31) holds, then (A.32) must hold. Furthermore, it is easy to construct a problem in-
stance in which (A.31) holds but (A.30) does not, and (A.32) holds but (A.31) does not, so that the inclusion

is strict.

"We conservatively assume that a farmer that is indifferent prefers deforestation, but our proof for the nestedness result

works under any tie-breaking rule that is consistently applied.
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Proposition 4. The village-level no-deforestation requirement is met in equilibrium if and only if

ACEIESY [Jf(lerld , Tsq) — calli)]. (A.33)

fev fev

Proof of Proposition 4. The proof is structured as follows. We first show that when (A.33) holds, (i) an
equilibrium always exists, and (ii) the village-level no-deforestation requirement is met in every equilibrium
that exists. Finally, we prove that if (A.33) does not hold, then no equilibrium exists in which the village-level
no-deforestation requirement is met.

We use 7y := {V, 0} to denote the partition containing only the grand coalition. g is the finest partition
of singletons. Let & = {(d’{, . ,drﬂ‘), mE H} be the set of all possible Nash equilibria, for any partition
m € II. Consider a partition m # my. If

a1y > > [Jf(lf+ld , Toq) — ca(ly)| for all S; € m, (A.34)
FeSs; fEeS;

then coalitions in 7 play a coordination game and two pure-strategy Nash equilibria exist. In the pay-
off dominant Nash equilibrium, no coalition deforests. In the non-pay-off dominant Nash equilibrium, all
coalitions deforest. Note that (A.34) implies (A.33), but (A.33) does not imply (A.34). If (A.34) does not
hold, then the unique Nash equilibrium is that all coalitions S; € w deforest.

The set £ therefore consists of a Nash equilibrium for partition 7y, Nash equilibria for a (potentially
empty) set of partitions Z; where (A.34) holds and Nash equilibria for a (potentially empty) set of partitions
Z5 where (A.34) does not hold.

We first show that when (A.33) holds, an equilibrium exists wherein the village-level no-deforestation
requirement is met. Consider the case where Z; = (), i.e. all coalitions in all partitions m # my deforest.
Then there exists a unique partition function and

Efesi [ (lf + ld , qu) - cd(lg*)] for all S;, for all 7 # Ty,
w(S;, ) =
Zfeva(lg, 1) for S; =V, 7 = my.

If condition (A.33) holds, we then have:

PACEIESY [Jf(lerld , Tsq) — (lg;*)] => > {Jf(lerld  Tsq) — (13;*)] for any 7 € II,

fey fey S;em fES;
(A.35)

such that m, with allocation
af(my,w) := [Jf(lg +lf*7 qu) lf* } \V| (Z Jf lf 1 Z [Jf(lg ‘Hf*v qu) - Cd(lg*)})
fev fey

with the decision dj = 0 is an equilibrium. Hence, when (A.33) holds, there exists an equilibrium wherein

the village-level no-deforestation requirement is met.
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We next show that the village-level no-deforestation requirement is met in every equilibrium that exists
when (A.33) holds. The proof proceeds by contradiction. Assume that (A.33) holds. In addition, suppose
that there exists an equilibrium wherein all coalitions deforest; more precisely, suppose there exists a par-
tition 7, a partition function w, an allocation ay(m,w) and decisions (dj,... 7cl"‘7r|) = (1,...,1) that are
an equilibrium. Then the village-level no-deforestation requirement is not met in every equilibrium. Then
ap(m,w) = Jf(léc + lg*, Teq) — cd(lg*) for all f € S;, for all S; € m. But then V has an objection to 7
and af(m, w) because w(V,my) =3 rcy Jf(lg, 1) > Zfev[Jf (lg + l(J;*, Toq) — cd(lf;*)], by condition (A.33).
Therefore, the partition m and corresponding allocation af(m,w) cannot be an equilibrium. Hence, if (A.33)
holds, there exists no equilibrium wherein the village-level no-deforestation requirement is not met.

Finally, we prove that if (A.33) does not hold, then there exists no equilibrium wherein the village-
level no-deforestation requirement is met. The proof is again by contradiction. Assume that (A.33) does
not hold. In addition, suppose that there exists an equilibrium wherein the village-level no-deforestation
requirement is met in equilibrium; more precisely, suppose there exists a partition 7, a partition function
w, an allocation af(m,w) and decisions (dj,..., r‘ﬂ) := (0,...,0) that are an equilibrium. Such a Nash
equilibrium exists only if (A.34) holds. But if (A.34) holds then (A.33) also holds by implication. Hence,
we have a contradiction. Therefore, if (A.33) does not hold, then there exists no equilibrium wherein the

village-level no-deforestation requirement is met. O

Proposition 5. The village-level regeneration requirement R is met in equilibrium if and only if (A.33)

holds or

> (Jf(eg, 1) — Jf ! +£§*,rsq)> >n[V\ G, (A.36)
fedq

where G = {f : Jf(ﬁg, 1) > Jf(féc +€§*,7‘sq) — cd(Ei;*)}.

Proof of Proposition 5. The proof proceeds as follows. We first show that when condition (A.36) holds, an
equilibrium exists wherein the village-level regeneration requirement is met. We next show that the village-
level regeneration requirement is met in every equilibrium that exists when condition (A.36) holds. Finally,
we show that if (A.36) does not hold, but (A.33) holds then the village-level regeneration requirement is
met in every equilibrium that exists.

We use 7y to denote the partition containing the grand coalition alone. mg is the finest partition of
singletons. Consider a partition m # my. Under a village-level regeneration requirement, coalitions in 7 play
the following sequential game. All coalitions first simultaneously decide whether to protect forests. Given
the information/observation about decisions by coalitions in the first stage, all coalitions then simultane-
ously decide whether to prevent fruit production on land that was deforested. Note that coalitions S with
dfes JEL 1) > (Zfes JI (e + Ef*,qu) - cd(ﬁg*)) either deforest or prevent fruit production, but never
deforest and prevent fruit production. Coalitions S with ;¢ Jf(ﬁg, 1) < (Zfes Jf(££+€£*, Tsq) —cd(fg*))
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never prevent fruit production and they deforest only if they anticipate that fruit production will not be
prevented on land they deforest. Hence, in the sequential Nash equilibrium, either all coalitions deforest or
all coalitions do not deforest. Hence, for each 7 # my, either w(S,m) = > ;¢ Jf(Eéc, 1) for all S in 7 or
w(S,m) =3 s Jf (el —I—Ef*,qu) - cd(fg*) for all S in 7.

We first show that when (A.36) holds, an equilibrium exists wherein the village-level regeneration require-
ment is met. Assume (A.36) holds. Then the partition 7, = {G, V\G} has a unique sequential Nash equilib-
rium wherein no coalition deforests. Specifically, the unique Nash equilibrium in the second stage of the game
is for all farmers f € G to prevent fruit production on land deforested by farmers f € V\ G. In anticipation
of such prevention of fruit production, the unique pure strategy Nash equilibrium for all farmers in the first
stage of the game is to not deforest. Then the partition 7, partition function w(S;, 74) = Zfesi Jf (€£, 1)

with corresponding allocation

af(G,w) = Ypec T (A1)
af({V\G}, w) = ZfeV\G Jf(d, 1),

forest-protection decisions (d1,dz) = (0,0) and blocking decisions (by, b2) = (0,0) is an equilibrium. There-
fore, when (A.36) holds, then there exists an equilibrium wherein the village-level regeneration requirement
is met.

We next show that the village-level regeneration requirement is met in every equilibrium that exists
when (A.36) holds. The proof is by contradiction. Assume that (A.36) holds. Suppose that a partition
function w, a partition 7, associated decisions (di,...,dz) = (1,...,1) and (by,...,bj;) = (0,...,0), and
a corresponding allocation ay are in the core, such that the village-level regeneration requirement is not met
in every equilibrium. Then af(m, w) = Jf(ég + 007 Teq) — cd(fg*) for all f € m. But then G has an objection
to 7 and ay(m, w) because w(G,mg) > 3 cq <Jf(€£ + Kf*,v'sq) - cd(ﬁg*) when (A.36) holds. Therefore,
by contradiction, no such partition function w, partition m, associated decisions (di, ... 7d|7r\) =(1,...,1)
and (by,...,bj;) = (0,...,0), and a corresponding allocation ay can be an equilibrium. Thus, when (A.36)
holds, no equilibrium exists wherein the village-level regeneration is not met.

If (A.36) does not hold, but (A.33) holds then it follows from Theorem 4 that the village-level no-
deforestation requirement is met in equilibrium. Hence, no deforestation occurs in the village in equilibrium.

Therefore, the village-level regeneration requirement is also met in equilibrium. O
Lemma 6. Consider the functions f : [0,00) = R and g : [0,00) — R given by:

f(z) =ap+ a1z + aze” + agze”
g9(x) = ap + a1z + age” + agre” + T +Oé5(L‘€2x,
where a; € R, Vi € {0,...,5}. Then,
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(i) () is conves if {as > 0,00 + 205 > O};
(ii) f(x) is non-negative if it is conver and {ao + ag > 0, ay + a2 + a3z > 0};
(iii) g(x) is convez if {as > 0, g + 3as > 0, az + day + 8as > 0, ag + 2a3 + day + 4das > 0}

(iv) g(x) is non-negative if it is convex and {ag + a2 + a4 > 0, a1 + a2 + a3 + 2a4 + a5 > 0}.

Proof of Lemma 6. For f, we have:

f(x) = e*[ag + (2 + 7)as) (A.37)
f(0) = ap + a2 (A.38)
F(0) = a1+ az + as. (A.39)

Result (i) follows by (A.37), since the linear function as + 2a3 + xag is non-negative on [0, 00) under the

given conditions. To prove (ii), note that the gradient inequality applied to the convex function f implies:

(A.38, A.39)
f@) > f0)+ f(0)x > apg+az+(+az+az)z >0, Ve € [0,00).

Similarly, for g we have:

" (x) = €"[ag + (2 + x)ag + 4€™ (g + a5 + zas)) (A.40)
9(0) = ap+as + ay (A.41)
g (0) = a1 + as + as + 2a4 + as. (A.42)

By (A.40), g is convex if as + (24 x)ag + 4e” (a4 + a5 + wars) is non-negative on [0, 00); applying result (ii) to
this function, we obtain the desired conditions. Finally, result (iv) follows by an analogous argument to our

earlier one, by applying the gradient inequality to the convex function g and using (A.41) and (A.42). O

Proof of Proposition 1. From Proposition 2, the expression for productivity is given by (A.12):

yPo — k 1
C, where C = .
 WHETE 2q + a(1 — e B7)7240?

It can be readily checked that:

0 yPo — k yPo— k

do <|: 2 C:| T=1 |: 2 ¢ T
B E 1 B 1 yPo — k
00 \2¢+a(l —e P2 2q+ a(l — e P02 2

al20 (12 =1+ e P — 72e7F7) <4q2 +2qalo?(1 — e P + 72 — 72e7P7) + (alo?)?72(1 — e P)(1 — 6_67—)>

2
<4q2 +2qalo?(1 — e B + 72 — 72eP7) + (alo?)272(1 — e B) (1 — BfBT))

alo? (7'2 —1+eP— T26_BT) <2q0‘£(2‘7)(1 —e B 472 - 7277 4 403 ()12 (1 — e P) (1 — e—B7)>

Y

2
<4q2 +2qalo?(1 — e P + 72 — 72eB7) 4 (alo?)272(1 — e F) (1 — e‘rBT))
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which is non-negative if and only if

8¢2 > 2(alo?®)?r2(1 — e P)(1 — e7P7)

Sq> \/i(anQ)QTQ(l — e P)(1—eB) (A.43)

=]

Thus, the productivity benefits from eliminating payment delay increase as o increases if and only if ¢ > q{ .

From Proposition 3, the farmer’s welfare (here, abbreviated by W (7)) is:

—pr BD _ BT _ _ )2 BD _ . _ pDBT 2.2
W(r) = 1—eP 6D (e 1)(e 1)(Poy — k)* + (re T — De™ + D)y cot
BT 86(ef™ —1)
N
e PT(1 — e BD) (1 —efT +ar+ (P - 1) log[eﬁ;;l])
. (A44)
afBr?
fo
It can readily be checked that:

0
- 1) —
o (W - W)
_1—e P e PP(ePP —1)(ef — 1)(Poy — k)% + (P — 1 — DeP + D)y*? of - 20a(1 — e P)
-8 8p(ef — 1) (2¢+ a(1 — e7F)lo?)?

1= e BT (e BP(eBD —1)(ePT — 1)(Poy — k)% + (1€8P — 7 — DeP™ + D)y?v? of — 2001 — e BT 720
BT 83(ePT —1) (2 + (1 — e Pm)12402)2 )’

which is non-negative if and only if

(1—e P2 —1) e PP(eBP —1)(ef — 1)(Poy — k)% + (e8P — 1 — DeP + D)y?v/?
(1 —ePm)2(ef — 1)1 \ e BP(ePP — 1)(eP™ — 1)(Poy — k)2 + (1€BP — 7 — DePT + D)y212

=T

(2 + a(1 — e F)la?)?

A.45
= (2¢+ a(l — e P)T2U02)?’ ( )
which after some algebra yields:
2 _ =BT\ 2 _ _ B
qzafa (I—e Pz —(1—eP) (A.46)
2 11—z
::qg

Thus, the welfare benefits from eliminating payment delay increase as o increases if and only if ¢ > qg .

Finally, we let ¢f := max{q{ , q§ },
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3 Supporting Figures for Empirical Analysis

3.1 Robustness checks
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Figure 4: Percentage increase in farmer welfare if the buyer eliminates payment delay, as a function of status quo length

of the payment period. The left figure shows box-plots for all 728 farms in our sample. The right figure is obtained by

splitting the sample into small and large farms (depending on whether the size is smaller or larger than the median size,

respectively), and shows separate box-plots for each category.

3.2 Condition on ¢
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Figure 5: Histograms of ¢/ relative to g (blue line), for 7 = 2 to 7 = 3.
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Histogram of qf att=4 (100 %<q)
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Histogram of qf att=5 (97 %<q)
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Figure 6: Histograms of ¢/ relative to g (blue line), for 7 =4 to 7 = 9.
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Histogram of qf att=10 ( 86 %<q)
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Histogram of qf att=11 (85 %<q)
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Figure 7: Histograms of ¢/ relative to ¢ (blue line), for 7 = 10 to 7 = 15.
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