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Figure Notes: Crude Palm Oil (CPO) prices are from the KO1 Comdty series in Bloomberg. We converted CPO prices, which

are given in Malaysian Ringgits (MYR), to USD by applying the MYR Curncy series in Bloomberg. Refineries process CPO

into 80% Refined, Bleached, Deodorized (RBD) palm olein and 20% RBD palm stearin. Prices for these outputs were retrieved

from the OLEPRRCM index series and TTNSPSMY index series, respectively, on Bloomberg. We combined 0.8× OLEPRRCM

and 0.2× TTNSPSMY to arrive at the RBD Composite Price Index in panel 1a.

Figure 1: Crude Palm Oil (CPO) and Refined, Bleached, Deodorized (RBD) Prices per metric ton 2012-2017.

Figure 2: Field vehicle stuck on unpaved road after rain.
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(a) (b)

Figure 3: Farmer receipts from a transport provider, under normal road conditions (a) and poor road conditions (b)

(‘jalan’ is short-hand for ‘kondisi jalan’ in Indonesian, referring to ‘road conditions’).

2 Proofs

Proof of Theorem 1. Recall that under a fixed payment delay τ , the problem horizon is divided into N+1

periods of length τ . The first N such periods are payment periods, indexed by n ∈ {1, . . . , N}, with the

n-th period corresponding to the interval [(n−1)τ, nτ). In the terminal period N +1, each farmer consumes

all his remaining cash net of any interest payments at a constant rate, and the mill shuts down. Since all

parties (farmers and the mill) take their decisions at discrete points of time nτ corresponding to the start

of each payment period, we can discretize their decision problems accordingly.

Our proof starts by allowing the mill to offer a different price pfn to each farmer, possibly depending

on the farmer-specific parameters. The sequential game between the mill and the farmers can be analyzed

through a dynamic programming (DP) formulation. In principle, in the DP model, the state for the mill and

for every farmer at the beginning of each period n ∈ {1, . . . , N+1} would consist of all available information,

including the cash positions xfn, discount rates βf , land areas `f , realized cost parameters Wf
n , etc. We seek

to show that despite the apparent complexity, several dramatic simplifications take place:

1. the game decouples into F separate games, one for each mill-farmer interaction;

2. in the game between the mill and farmer f , a sufficient state in period n ∈ {1, . . . , N} for the mill is

the outstanding oil price P(n−1)τ , and a sufficient state for the farmer is his cash position xfn and the

mill’s fruit price pfn;

3. in equilibrium, the mill’s value function at the beginning of period n ∈ {1, . . . , N} is given by the sum

of the F individual value functions, from each of the F separate games.
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Our goal will be to prove this, together with several additional structural results, by backwards induction.

To streamline the notation and exposition, we start by first assuming the results above, which will allow

us to analyze every game between the mill and each farmer separately. We will then return to discuss how

these results are preserved by the induction hypothesis.

Consider the game between the mill and a generic farmer f . For n ∈ {1, . . . , N}, let V f
n (P(n−1)τ ) and

Jfn (xfn, p
f
n) denote the mill’s and the farmer’s equilibrium value functions. We show the following.

Proposition 1. In the unique subgame-perfect Nash equilibrium for this game, for any n ∈ {1, . . . , N},

pfn(P(n−1)τ ) =
yP(n−1)τ + k

2
(A.1a)

V f
n (P(n−1)τ ) = ZfnP2

(n−1)τ + Y f
n P(n−1)τ +W f

n (A.1b)

rfn(pfn) = Cf (pfn − k), where Cf =
1

2q + (1− e−βf τ )ατ2`fσ2
, (A.1c)

cfn(xfn, p
f
n) =

(
xfn − (e−ατx

f
n − 1)−

(
q(rfn(pfn))2 + k rfn(pfn)

)
τ`f − gfn(pfn)

)
/τ (A.1d)

Jfn (xfn, p
f
n) =

1− e−βf τ

βfτ

[
xfn − (e−ατx

f
n − 1) + Āfn(pfn)2 + B̄f

np
f
n + C̄fn

]
, (A.1e)

where gfn(p) = Γf1,n + Γf2,np + Γf3,np
2, and the constants Zfn , Y

f
n ,W

f
n , Cf , Ā

f
n, B̄

f
n, C̄

f
n , Γf1,n,Γ

f
2,n,Γ

f
3,n only

depend on parameters specific to farmer f and the oil price process (Ps)s≥0.

Proof. For ease of exposition, we suppress the superscript f when no confusion can arise. We first check

that (A.1e) adequately captures the farmer’s value function in the terminal period n = N + 1. In this

period, the mill stops operating, which can be seen as setting a price pN+1 = 0 and deriving value VN+1 ≡ 0,

consistent with (A.1b) with ZN+1 = YN+1 = WN+1 = 0. The farmer starts with a cash position xN+1, stops

producing fruit, and consumes at a constant rate cfN+1 = (xN+1− (e−ατxN+1 − 1))/τ , to deplete all cash net

of interest payments over a period of length τ . Thus, his value function can be written:

JN+1(xN+1, pN+1) =

∫ τ

0

(
xN+1 − (e−ατxN+1 − 1)

τ

)
e−βsds =

1− e−βτ

βτ

(
xN+1 − (e−ατxN+1 − 1)

)
,

which is consistent with (A.1e) with ĀN+1 = B̄N+1 = C̄N+1 = 0.

We can now prove all the results by induction. Assume the induction hypothesis holds in period n+ 1,

and consider the farmer’s decision problem in period n. The farmer starts with cash position xn, is offered

a price pn by the mill, and anticipates the mill’s future pricing strategy in period n + 1, and his resulting

value function. Thus, his value-to-go function in period n becomes:

Jn(xn, pn) = max
rn≥0,cn

{
cn

∫ τ

0
e−βsds+ e−βτ En

[
Jn+1

(
xn+1, pn+1(Pn+1)

)]}
,

where we use the shorthand En[·] to denote expectation conditional on all information available at the

beginning of period n (at time (n− 1)τ), and xn+1 is given by (1), replicated below for convenience:

xn+1 = xn + rn`τpn − cnτ −
(
q (rn)2 +Wn rn

)
`τ − (e−ατxn − 1).
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Recall thatWn ∼ N (k, σ) is independent of P(n−1)τ . We now introduce a change of variables, where instead

of choosing the consumption rate cn, the farmer chooses his expected cash savings gn, defined as follows:

gn := xn − cnτ − (q (rn)2 + k rn)`τ − (e−ατxn − 1).

With this definition, we have that given any xn, pn, a production rate rn and a choice gn, we can rewrite:

cn =
1

τ

(
xn − (e−ατxn − 1)− (qr2

n + krn)τ`− gn
)
, (A.2a)

xn+1 = gn + rn`τ(pn − σ εn), (A.2b)

where εn := Wn−k
σ ∼ N (0, 1) is independent of pn. Substituting these and replacing Jn+1 from (A.1e) yields:

Jn(xn, pn) = max
rn≥0,gn

{
xn − (e−ατxn − 1)− (qr2

n + krn)τ`− gn

+ e−βτEn
[
xn+1 − (e−ατxn+1 − 1) + Ān+1p

2
n+1 + B̄n+1pn+1 + C̄n+1

]}
1− e−βτ

βτ

=
1− e−βτ

βτ

{
xn − (e−ατxn − 1) + e−βτEn

[
1 + Ān+1p

2
n+1 + B̄n+1pn+1 + C̄n+1

]
+ max
rn≥0,gn

[
−(qr2

n + krn)τ`− gn + e−βτEn
[
xn+1 − e−ατxn+1

]]︸ ︷︷ ︸
,hn(rn,gn)

}
, (A.3)

where the second step follows since pn+1 is independent of rn, gn, by (A.1a). The expression for the maximand

hn(rn, gn) can be simplified by noting that conditional on information at time (n− 1)τ , the distribution of

xn+1 is Gaussian, by (A.2b). Using the Gaussian Moment Generating Function yields:

En
[
xn+1 − e−ατxn+1

]
= gn + rn`τpn − exp

(
−ατ(gn + rn`τpn) + (αrn`τ

2σ)2/2
)
,

so that the maximand becomes:

hn(rn, gn) = −(qr2
n + krn)τ`− gn + e−βτ

[
gn + rn`τpn − exp

(
−ατ(gn + rn`τpn) + (αrn`τ

2σ)2/2
)]
. (A.4)

It can be checked through standard composition rules that hn is jointly concave (Boyd and Vandenberghe,

2009). The first-order-conditions (FOCs) become:

∂hn
∂rn

= 0 ⇔ eβτ (k + 2qrn)− pn+

exp
(
−ατ(gn + rn`τpn) + (αrn`τ

2σ)2/2
)
τα(−pn + `rασ2τ2) = 0 (A.5a)

∂hn
∂gn

= 0 ⇔ exp
(
−ατ(gn + rn`τpn) + (αrn`τ

2σ)2/2
)

=
eβτ − 1

τα
. (A.5b)
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Using (A.5b) in (A.5a), we can solve for r∗n, and then use the solution in (A.5b) to find g∗n. We obtain:

r∗n = C(pn − k), where C :=
1

2q + (1− e−βτ )ατ2`σ2
(A.6)

g∗n = Γ1,n + Γ2,npn + Γ3,np
2
n, where


Γ1,n := − 1

ατ log
(
eβτ−1
ατ

)
+ (kσ`Cτ)2ατ

2

Γ2,n :=
(
1− ατ2`σ2C

)
k`τC

Γ3,n :=
(
ατ2`σ2C

2 − 1
)
`τC.

(A.7)

If r∗n ≥ 0, this would be the optimal solution in (A.3), and the proof for (A.1c) and (A.1d) would be complete.

To confirm this, let us now consider the mill’s problem in the separate game between the mill and a single

farmer, which can be written using (A.1b) as:

Vn(P(n−1)τ ) = max
pn

{
e−κτEn

[(
yPnτ − pn

)
rn`τ + Zn+1P2

nτ + Yn+1Pnτ +Wn+1

]}
= e−κτ max

pn

{(
yP(n−1)τ − pn

)
rn`τ

}
+ e−κτEn

[
Zn+1P2

nτ + Yn+1Pnτ +Wn+1

]
, (A.8)

where rn is the fruit delivery from farmer f . Thus, when rn is given by (A.6), the maximand above becomes

a concave quadratic in pn, which is maximized by a choice:

p∗n =
yP(n−1)τ + k

2
. (A.9)

In turn, this implies that r∗n =
C(yP(n−1)τ−k)

2 ≥ 0, due to our standing assumption, so that the proof

for (A.1a), (A.1c), (A.1d) is complete.

To complete our inductive proof, it only remains to confirm the expressions for Vn and for Jn. For the

former, using p∗n, r∗n and that Ps is a Brownian motion with zero mean and volatility σ, we can simplify the

expression for Vn in (A.8) as:

(
τC`y2/2 + e−κτZn+1

)︸ ︷︷ ︸
,Zn

P2
(n−1)τ +

(
e−κτYn+1 − τC`yk/2

)︸ ︷︷ ︸
,Yn

P(n−1)τ +
k2

4
+ e−κτZn+1ν

2τ + e−κτWn+1︸ ︷︷ ︸
,Wn

,

which proves (A.1b).

Lastly, consider the expression in (A.3) for Jn. Using pn+1 from (A.1a), we rewrite the third term as:

En
[
Ān+1p

2
n+1 + B̄n+1pn+1 + C̄n+1

]
(by (A.1a) at n+ 1) = En

[
Ān+1

(
yPnτ + k

2

)2

+ B̄n+1

(
yPnτ + k

2

)
+ C̄n+1

]
(∗) = En

[
Ān+1

(
y(P(n−1)τ +

√
τνε̃n) + k

2

)2

+ B̄n+1

(
yPnτ (P(n−1)τ +

√
τνε̃n + k

2

)
+ C̄n+1

]
(by (A.1a) at n) = En

[
Ān+1

(
pn +

y
√
τνε̃n
2

)2

+ B̄n+1

(
pn +

y
√
τνε̃n
2

)
+ C̄n+1

]
(∗∗) = Ān+1p

2
n + B̄n+1pn +

(
Ān+1

y2τν2

4
+ C̄n+1

)
, (A.10)
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where (*) and (**) follow since ε̃n :=
Pnτ−P(n−1)τ√

τν
∼ N (0, 1) is independent of P(n−1)τ .

Finally, using (A.10) and replacing p∗n, r∗n and g∗n in (A.3), we can confirm (after some tedious algebra)

that the expression for Jn in (A.1e) holds, where Ān, B̄n, C̄n are given by the recursions:

Ān := −(1− e−βτ )Γ3,n − q`τC2
n + e−βτ `τCn + e−βτ Ān+1, (A.11a)

B̄n := −(1− e−βτ )Γ2,n −
(
1 + e−βτ − 2qCn

)
k`τC + e−βτ B̄n+1 (A.11b)

C̄n := −(1− e−βτ )Γ1,n + (1− qC)`τk2C − 1− e−βτ

ατ
+ e−βτ

(
1 + Ān+1

y2τν2

4
+ C̄n+1

)
. (A.11c)

This completes the proof of Proposition 1.

To complete the proof of Theorem 1, note that the mill’s equilibrium pricing strategy was the same

in all the separate games, according to (A.1a). By considering a DP formulation for the overall problem

and following similar arguments to Proposition 1, it can be readily checked that in equilibrium, the same

pricing strategy would remain optimal for the mill, the mill’s value function would be additive (given by∑F
f=1 V

f
n in period n, with V f

n from (A.1b)), and farmers would respond with the equilibrium production

and consumption decisions in (A.1c)-(A.1d), respectively, achieving the value functions in (A.1e). We omit

the details for brevity. �

Remark: It can be shown that these results also hold for general length of the terminal period T ≥ τ .

Proof of Theorem 2.

The result follows from Proposition 2 and Proposition 3. �

Proposition 2. Farmer f’s equilibrium productivity E
[∫D

0 rfbs/τcds

D

]
decreases with τ , σ, α, q, k, βf , and `f .

Proof of Proposition 2. From Theorem 1 (results (A.1a) and (A.1c)), the equilibrium production rate in the

n-th period is given by r∗n = C
yP(n−1)τ−k

2 , where:

C =
1

2q + (1− e−βτ )ατ2`σ2
.

The expression for productivity is:

E
[

1

D

∫ D

0
r∗ds/τeds

]
=

τ

D
E

[
N∑
n=1

C
yP(n−1)τ − k

2

]
=
τ(yP0 − k)

2D
NC =

yP0 − k
2

C (A.12)

where the penultimate step follows since the process Ps is a Brownian motion with zero drift, and the last

step follows by recognizing that the production horizon D = Nτ is fixed.

To show that productivity decreases with α, σ, q, k, `, β and τ , note that we have (by inspection):

∂C

∂τ
≤ 0,

∂C

∂α
≤ 0,

∂C

∂σ
≤ 0,

∂C

∂q
≤ 0,

∂C

∂k
= 0,

∂C

∂`
≤ 0,

∂C

∂β
≤ 0. (A.13)

Since yP0 ≥ k by our standing assumption, the desired results readily follow from (A.12).
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Remark: It can be shown that these results also hold for general length of the terminal period T ≥ τ .

Proposition 3. Farmer f’s equilibrium welfare decreases with τ , σ, α, q, k, and increases with `f .

Proof of Proposition 3. The farmer’s welfare is given by (A.1e) for n = 1 and x1 = 0:

1− e−βτ

βτ

{
Ā1p

2
1 + B̄1p1 + C̄1

}
, (A.14)

where Ā1, B̄1, C̄1 are given by recursions (A.11a)-(A.11c), and p1 = yP0+k
2 from (A.1a). In particular, with

ĀN+1 = B̄N+1 = C̄N+1 = 0, the recursions can be solved to obtain:

Ā1 =
(1− e−βD)e−βτ

2(eβτ − 1)
C`τ (A.15a)

B̄1 = −(1− e−βD)e−βτ

2(eβτ − 1)
kC`τ (A.15b)

C̄1 =
e−β(D−τ)

[
4(eβD − 1)(eβτ − 1)k2 +

(
τeβD − τ −Deβτ +D

)
y2ν2

]
C`τ

8(eβτ − 1)2

+
(1− e−βD)

(
1− eβτ + ατ + (eβτ − 1) log

[
eβτ−1
ατ

])
(eβτ − 1)ατ

, (A.15c)

where C = 1
2q+α(1−e−βτ )τ2`σ2 is given by (A.6). Substituting yields an expression for welfare:

e−βD
(eβD − 1)(eβτ − 1)(P0y − k)2 +

(
τeβD − τ −Deβτ +D

)
y2ν2

8β(eβτ − 1)
C`︸ ︷︷ ︸

f1

+

e−βτ (1− e−βD)
(

1− eβτ + ατ + (eβτ − 1) log
[
eβτ−1
ατ

])
αβτ2︸ ︷︷ ︸
f2

. (A.16)

To show that welfare decreases with τ , we treat each term separately. We have:

∂f1

∂τ
= −

Ce−βD(eβD − 1)
(
1 + eβτ (−1 + βτ)

)
`y2ν2

8(eβτ − 1)2β
≤ 0 (A.17a)

∂f1

∂C
= e−βD

(eβD − 1)(eβτ − 1)(P0y − k)2 +
(
τeβD − τ −Deβτ +D

)
y2ν2

8β(eβτ − 1)
` ≥ 0. (A.17b)

Above, (A.17a) follows since

1 + ex(−1 + x) ≥ 0, ∀x ∈ [0,∞), (A.18)

which holds by Lemma 6(ii). Similarly, (A.17b) holds since:

τeβD − τ −Deβτ +D ≥ 0, (A.19)
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which follows since its derivative with respect to D is 1− eβτ +βτeβD, which is greater than 1− eβτ +βτeβτ

(since D ≥ τ), and the latter function is non-negative by (A.18). Therefore, recalling from (A.13) that

∂C
∂τ ≤ 0, we can use (A.17a) and (A.17b) to conclude that:

df1

dC
=
∂f1

∂τ
+
∂f1

∂C

∂C

∂τ
≤ 0. (A.20)

For the second term in (A.16), we have:

df2

dτ
=
e−βτ (1− e−βD)h(α, β, τ)

αβτ3

where h(α, β, τ) := (−1 + eβτ − ατ)(1 + βτ) + (2− 2eβτ + βτ) log
(eβτ − 1

ατ

)
.

The sign of this expression is the same as the sign of h. Note that:

∂2h

∂α2
=

2− 2eβτ + βτ

α2
≤ 0

∂h

∂α

∣∣∣∣
α=β

=
−2 + 2eβτ − βτ(2 + βτ)

β
≥ 0,

where the latter inequality follows from Lemma 6(ii). Therefore, since h is concave in α, we have that:

h(α, β, τ) ≤ max
α∈[0, 4β

5
]
h(α, β, τ)

= h
(4β

5
, β, τ

)
=
(
−1 + eβτ − 4βτ

5

)
(1 + βτ) + (2− 2eβτ + βτ) log

(5eβτ − 5

4βτ

)
≤
(
−1 + eβτ − 4βτ

5

)
(1 + βτ) + (2− 2eβτ + βτ) log

5

4

≤ 0,

where the last two inequalities follow by applying results (ii) and (iv) of Lemma 6, respectively. In turn,

this implies that df2
dτ ≤ 0, which together with (A.20) and (A.16) implies that welfare is decreasing in τ .

To show that welfare decreases with σ and q, note from (A.16) that only f1 depends on these

parameters, through C. By (A.17b) and (A.13), we immediately obtain the desired results.

To show that welfare decreases with k, note that welfare only depends on k through f1 in (A.16),

both directly and through C. Since ∂C
∂k = 0 by (A.13), and

∂f1

∂k
= −e

−βD(eβD − 1)(yP0 − k)C`

4β
≤ 0

since yP0 ≥ k, we obtain the desired result.

To show that welfare decreases with α, note that f1 only depends on α through K, and f2 depends

on α explicitly. Since ∂f1
∂C ≥ 0 from (A.17b), ∂C

∂α ≤ 0 by (A.13), and

∂f2

∂α
= −

e−βτ (eβD − 1)(eβτ − 1) log
(
eβτ−1
ατ

)
α2βτ2

≤ 0,
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we obtain the desired result.

Finally, to show that welfare increases with `, note that welfare only depends on ` through f1 in (A.16),

both directly and through C. Recall that ∂f1
∂C ≥ 0 from (A.17b), and ∂C

∂` ≥ 0 by (A.13); since

∂f1

∂`
= e−βD

(eβD − 1)(eβτ − 1)(P0y − k)2 +
(
τeβD − τ −Deβτ +D

)
y2ν2

8β(eβτ − 1)
C ≥ 0,

which follows from (A.19), we obtain the desired result.

Proof of Theorem 3. We first show the part of the theorem related to the refinery’s expected discounted

profit. We use n to index the delivery cycles; that is, the refinery receives batches of oil from the mill at each

time nτsq, for n ∈ {1, 2, . . . , D/τsq}. We use m to denote the payment periods; that is, the refinery makes

payments at each time (m + 1)τ . For simplicity, we examine a regime where τ → 1 so that τsq remains an

integer multiple of τ .

The refinery’s expected discounted profit is then given by:

E
[D/τsq∑
n=1

(nτsq/τ)−1∑
m=

(n−1)τsq
τ

(
e−δnτsqPrnτsqrmτyτ − e

−δ(m+1)τP(m+1)τrmτyτ

)]
.

We can then show that the refinery’s expected discounted profit is decreasing in τ when δ < δ. Let Ht
denote all historical information available to the refinery about prices at time t. Furthermore, note that at

time mτ the refinery knows the delivery rate rmτ ; since this remains constant during the next τ units of

time, it can thus perfectly predict the batch of oil delivered during this time. However, the refinery does

not know its costs and revenues during this time, because the RBD prices Prs and CPO prices Ps evolve

stochastically, as Brownian motions. The conditional expected discounted profit for the m-th payment

(with (n− 1)τsq ≤ mτ ≤ nτsq) is then:

E[πmτ |Hmτ ] = E
[
e−δ(nτsq−mτ)Prnτsqrmτyτ − e

−δτPmτrmτyτ
∣∣ Hmτ]

= e−δ(nτsq−mτ)E
[
Prnτsq

∣∣ Hmτ ]rmτyτ − e−δτPmτrmτyτ
= e−δ(nτsq−mτ)Prmτrmττ − e−δτPmτrmτyτ

=

(
e−δ(nτsq−mτ)Prmτ − e−δτPmτ

)
rmτyτ.

At time (n − 1)τsq, by the law of iterated expectation, the expected discounted expected profit for the

9



n-th batch is then given by:

E[πnτsq |H(n−1)τsq ] = E
[ (nτsq/τ)−1∑
m=

(n−1)τsq
τ

e−δmτE
[
πmτ |Hmτ

] ∣∣ H(n−1)τsq

]

= E
[ (nτsq/τ)−1∑
m=

(n−1)τsq
τ

e−δmτ
(
e−δ(nτsq−mτ)Prmτ − e−δτPmτ

)
rmτyτ

∣∣ H(n−1)τsq

]

= E
[ (nτsq/τ)−1∑
m=

(n−1)τsq
τ

(
e−δnτsqPrmτ − e−δ(m+1)τPmτ

)
rmτyτ

∣∣ H(n−1)τsq

]
. (A.21)

Recall that the mill receives fruit at a rate rmτ =
∑F

f=1C
f (Pmτ − k), wherein Cf is given by (A.6).

Furthermore, recall that Prt := KPt with K ≥ 1. We can then re-write (A.21) as

E
[ (nτsq/τ)−1∑
m=

(n−1)τsq
τ

(
e−δnτsqK − e−δ(m+1)τ

)
f(τ) (P2

mτ − kPmτ ) τ
∣∣ H(n−1)τsq

]

=

(nτsq/τ)−1∑
m=

(n−1)τsq
τ

(
e−δnτsqK − e−δ(m+1)τ

)
f(τ)τ E

[
(P2

mτ − kPmτ )
∣∣ H(n−1)τsq

]

=

(nτsq/τ)−1∑
m=

(n−1)τsq
τ

(
e−δnτsqK − e−δ(m+1)τ

)
f(τ)

(
τP(n−1)τsq(P(n−1)τsq − k) + τ

(
mτ − (n− 1)τsq

)
ν2

)
(A.22)

To show that
∂

∂τ

(
E[πnτsq |H(n−1)τsq ]

)
< 0, (A.23)

we look at the Taylor expansion of (A.22) with respect to δ. Specifically, the Taylor expansion of (A.22)

with respect to δ is given by:

−
((

eβτ (K − 1)`τsq(2e
βτqν2 + (eβτ − 1)`αν2σ2(2τsq − τ)τ + `αν2σ2τ2β(τsq − τ) + b(4(eβτ − 1)`ασ2τ + 2`ασ2τ2β))

2(`ασ2τ2 − eβτ (2q + `ασ2τ2))2

)
+O(δ),

wherein b := P(n−1)τsq(P(n−1)τsq − k).

Since the dominating term is always negative, it follows from basic continuity arguments that there exists

a δ > 0 such that (A.23) holds for δ ≤ δ. Specifically, it can be shown that δ := min(δ1, δ2, δ3), wherein:

δ1 := max

{
δ :

e−δτ (eδτsq − 1)

(1− e−δτ )2

δτ2

τsq
< K

}
, (A.24)

δ2 := max

{
δ : K >

e−δτ (eδτsq − 1)

1− e−δτ
τ

τsq

}
, (A.25)

δ3 := max

{
δ : K > eδ(τsq−τ)

}
(A.26)
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Thus, conditional on being at the beginning of a batch period, the refinery’s expected discounted profit

is decreasing in τ for that period/batch when δ ≤ δ. What is left to prove is that the refinery’s expected

discounted profit at time zero is decreasing in τ when δ ≤ δ. To prove this, note that by iteratively applying

the law of iterated expectation we can re-write the refinery’s expected discounted profit at time zero as:

D/τsq∑
n=1

E
[
e−δnτsqπnτsq

∣∣ H0

]
=

D/τsq∑
n=1

E
[
e−δnτsqE

[
πnτsq

∣∣ H(n−1)τsq

] ∣∣ H0

]
. (A.27)

We already know that the second term in (A.27) is decreasing in τ and the first term is independent of τ .

It follows that

∂

∂τ

(D/τsq∑
n=1

E
[
e−δnτsqπnτsq

∣∣ H0

])
< 0 if δ ≤ δ.

Finally, we show the second part of the theorem, related to the mill’s expected discounted profit. For

this, we remind the reader that the mill pays the farmers when it gets paid by the refinery. The mill’s

value-to-go function therefore remains as derived in Theorem 1:

Vn(P(n−1)τ ) =
(
τ

F∑
f=1

C`y2/2 + e−κτZn+1

)
P2

(n−1)τ +
(
e−κτYn+1 − τ

F∑
f=1

C`yk/2
)
P(n−1)τ

+
k2

4
+ e−κτZn+1ν

2τ + e−κτWn+1.

Building on the iterated expectation argument above, it then follows from ∂Cf

∂τ < 0 (see (A.13)) and ∂e−κτ

∂τ ≤ 0

that the mill’s expected discounted profit strictly decreases in the payment delay τ .

Proof of Theorem 4. Recall from the proof of Proposition 3 that the farmer’s welfare when producing on

a total land area ` is given by (A.16); therein, ` impacts welfare through f1, both directly and through C

(given by (A.6)). Thus, a farmer already endowed with productive land `e solves the following problem in

choosing how much additional land `d to deforest at t = 0:

max
`d≥0

{[
(1− e−βD)(eβτ − 1)(P0y − k)2 +

(
τeβD − τ −Deβτ +D

)
y2ν2

]
(`d + `e)

8β(eβτ − 1)
[
2q + α(1− e−βτ )τ2σ2(`d + `e)

] − cd(`d)

}
. (A.28)

The set of maximizers in (A.28) is non-empty and compact, due to our assumptions that cd is lower-

semicontinuous and coercive (see, e.g., Proposition A.8 in Bertsekas, 1999). Let g(τ, β, `e, `d) denote the

maximand in (A.28).

To show that the set of optimal solutions decreases with τ , it suffices to show that g is supermodular

11



in (τ,−`d) (see, e.g., Topkis, 1998), which is equivalent to showing that g is submodular in (τ, `d). We have:

sign
( ∂2g

∂τ∂`d

)
= sign

(
h0(τ,D) + h1(τ,D)(`e + `d)

)
h0(τ,D) := −2e−β(D−3τ)(eβD − 1)

(
1 + eβτ (βτ − 1)

)
q2y2ν2

h1(τ,D) := +e−β(D−2τ)(eβτ − 1)qασ2τ
[
−2(eβD − 1)(eβτ − 1)(−2 + 2eβτ + βτ)(P0y − k)2+(

2D(eβτ − 1)(−2 + 2eβτ + βτ)− (eβD − 1)
(
−3 + 2βτ + eβτ (3 + βτ)

)
τ
)
y2ν2

]
.

We analyze terms separately. To see that h0 is non-positive, recall that the last parenthesis is non-negative

from (A.18). The sign of h1 equals that of the inner brace. The first term therein is non-negative by

Lemma 6(ii) (or simply a Taylor expansion of the exponentials). The second term has the same sign as

h3(τ,D) := 2D(eβτ − 1)(−2 + 2eβτ + βτ)− (eβD − 1)
(
−3 + 2βτ + eβτ (3 + βτ)

)
τ.

We have:

∂2h3

∂D2
= −eDββ2τ

[
−3 + 2βτ + eβτ (3 + βτ)

]
≤ 0

h3(τ, τ) = −(eβτ − 1)τ
(
1 + eβτ (βτ − 1)

)
≤ 0

∂h3

∂D

∣∣∣∣
D=τ

= −
(
1 + eβτ (βτ − 1)

)(
−4 + 2βτ + eβτ (4 + βτ)

)
≤ 0,

where all the requisite inequalities follow by (A.18) or Lemma 6(ii) applied to the functions in variable

x = βτ . By applying the gradient inequality to the concave function h3 in variable D, we can conclude that:

h3(τ,D) ≤ h3(τ, τ) +
∂h3

∂D

∣∣∣∣
D=τ

(D − τ) ≤ 0,

which implies that h1 is also non-positive, and thus g is submodular in (τ, `d).

To show that the set of optimal solutions decreases with `e, it suffices to show that g is submodular

in (`e, `d), which can be seen by inspection since:

sign
( ∂2g

∂`e∂`d

)
= sign

(
− 4e2βτ (eβτ − 1)qασ2τ2[

eβτ
(
2q + α(1− e−βτ )(`e + `d)τ2σ2

)
]3

)
≤ 0.

To show that the set of optimal solutions decreases with β, it suffices to show that g is submodular

in (β, `d). We have:

sign
( ∂2g

∂β∂`d

)
= sign

(
(yP0 − k)2

[
h4(τ,D) + (`e + `d)h5(τ,D)

]
+ y2ν2

[
h6(τ,D) + (`e + `d)h7(τ,D)

])
h4(τ,D) := −2e−β(D−3τ)(eβτ − 1)2q2(−1 + eDβ −Dβ)

h5(τ,D) := −e−β(D−2τ)(−1 + eβτ )2qασ2τ2
(
1 + eβ(D+τ) +Dβ − eβτ (1 +Dβ)− 2βτ + eDβ(−1 + 2βτ)

)
h6(τ,D) := 2e−β(D−3τ)q2

[
D2(−1 + eβτ )2β +D(−1 + eβτ )(−1 + eβτ + βτ)− (eDβ − 1)τ

(
−1 + eβτ (1 + βτ)

)]
h7(τ,D) := e−β(D−2τ)(−1 + eβτ )qασ2τ2

[
D2(−1 + eβτ )2β +D(−1 + eβτ )(−1 + eβτ + 3βτ)

− (eDβ − 1)τ
(
−1 + 2βτ + eβτ (1 + βτ)

)]
.
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The function h4 is readily non-positive due to (A.18). The sign of h5 is opposite to the sign of the function:

h̃5(τ,D) := 1 + eβ(D+τ) +Dβ − eβτ (1 +Dβ)− 2βτ + eDβ(−1 + 2βτ).

For h̃5, it can be checked that:

∂2h̃5

∂D2
= eDββ2(−1 + eβτ + 2βτ) ≥ 0

h̃5(τ, τ) = (−1 + eβτ )(−1 + eβτ + βτ) ≥ 0

∂h̃5

∂D

∣∣∣∣∣
D=τ

= 2eβτβ
(
−1 + βτ +

eβτ + e−βτ

2

)
≥ 0,

where all the inequalities follow by applications of Lemma 6(ii). Thus, h̃5 is non-negative on D ∈ [τ,∞),

and therefore h5 is non-positive.

The sign of h6 equals the sign of:

h̃6(τ,D) := D2(−1 + eβτ )2β +D(−1 + eβτ )(−1 + eβτ + βτ)− (eDβ − 1)τ
(
−1 + eβτ (1 + βτ)

)
.

For this function, it can be checked that:

∂2h̃6

∂D2
= β

[
2(−1 + eβτ )2 − eDββτ

(
−1 + eβτ (1 + βτ)

)]
≤ 0

h̃6(τ, τ) = 0

∂h̃6

∂D

∣∣∣∣∣
D=τ

= 1 + βτ − 2eβτ (1 + βτ) + e2βτ [1 + βτ(1− βτ)] ≤ 0.

The first inequality follows since the left-hand-size decreases in D, and is non-positive at D = τ by

Lemma 6(iv). The last inequality follows by applying the gradient inequality to the function on the left-

hand-side in variable x = βτ (which is concave and has a value of 0 and a non-positive derivative at 0). In

view of these, we conclude by an application of the gradient inequality that h̃6 is non-positive, and therefore

h6 is non-positive as well.

Finally, the sign of h7 equals the sign of:

h̃7(τ,D) := D2(−1 + eβτ )2β +D(−1 + eβτ )(−1 + eβτ + 3βτ)− (eDβ − 1)τ
(
−1 + 2βτ + eβτ (1 + βτ)

)
.

To prove that h̃7 is non-positive, it suffices to show that it is smaller than h̃6. To that end,

h̃7(τ,D)− h̃6(τ,D) = 2βτ [D(−1 + eβτ ) + τ − eDβτ ].

The latter function has a second derivative with respect to D of −2eDββ3τ2 ≤ 0, and at D = τ takes a value

of 0 and has a derivative of 2βτ [−1 + eβτ (1 − βτ)], which is negative by Lemma 6. Thus the difference is

non-positive, which completes our proof.
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The following special case will be of interest in a different result, so we discuss it here for convenience.

Note that if the cost of deforesting and developing the land is linear cd(`d) = d `d, the objective in (A.28)

becomes strictly concave in `d, and the optimal amount of land can be found by solving the first-order-

condition. We obtain the following solution, which corresponds to a global maximum:

`∗d = max

{
0,

e−Dβ

2d(eβτ − 1)3α2βσ4τ4

(
−4deβ(D+τ)(eβτ − 1)2qαβσ2τ2+√

deβ(D+2τ)(eβτ − 1)3qα2βσ4τ4
[
(eDβ − 1)(eβτ − 1)(yP0 − k)2 − y2ν2

(
D(eβτ − 1) + τ − eDβτ

)])
− `e

}
.

(A.29)

�

Proof of Theorem 5. Under the farmer-level requirement F, farmer f ∈ V engages in deforestation

if and only if this generates a higher welfare than receiving same-day payment but producing only with his

endowed land, i.e., if and only if:1

Jf (`fe + `f∗d , τsq)− cd(`
f∗
d ) ≥ Jf (`fe , 1).

Therefore, the set of problem parameters PF under which no deforestation occurs with the F requirement

is given by the parameters so that:

Jf (`fe , 1) > Jf (`fe + `f∗d , τsq)− cd(`
f∗
d ), ∀ f ∈ V. (A.30)

By Proposition 4, the set of problem parameters PV under which no deforestation occurs under V is

given by all parameters so that:∑
f∈V

Jf (`fe , 1) >
∑
f∈F

[
Jf (`fe + `f∗d , τsq)− cd(`

f∗
d )
]
. (A.31)

By Proposition 5, the set of problem parameters PR under which no deforestation occurs under R is

given by all parameters so that:

(A.31) holds or
∑
f∈G

(
Jf (`fe , 1)− Jf (`fe + `f∗d , τsq)

)
> η

∣∣{f /∈ G}
∣∣, (A.32)

where G =
{
f : Jf (`fe , 1) > Jf (`fe + `f∗d , τsq)− cd(`

f∗
d )
}

.

To prove that set of model parameters satisfying (A.30) is a subset of the model parameters satisfy-

ing (A.31), which is a subset of the model parameters satisfying (A.32), note that if (A.30) holds, then (A.31)

must hold; and if (A.31) holds, then (A.32) must hold. Furthermore, it is easy to construct a problem in-

stance in which (A.31) holds but (A.30) does not, and (A.32) holds but (A.31) does not, so that the inclusion

is strict.
1We conservatively assume that a farmer that is indifferent prefers deforestation, but our proof for the nestedness result

works under any tie-breaking rule that is consistently applied.
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Proposition 4. The village-level no-deforestation requirement is met in equilibrium if and only if∑
f∈V

Jf
(
lfe , 1

)
>
∑
f∈V

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
. (A.33)

Proof of Proposition 4. The proof is structured as follows. We first show that when (A.33) holds, (i) an

equilibrium always exists, and (ii) the village-level no-deforestation requirement is met in every equilibrium

that exists. Finally, we prove that if (A.33) does not hold, then no equilibrium exists in which the village-level

no-deforestation requirement is met.

We use πV := {V, ∅} to denote the partition containing only the grand coalition. π0 is the finest partition

of singletons. Let E =
{

(d∗1, . . . , d
∗
|π|), π ∈ Π

}
be the set of all possible Nash equilibria, for any partition

π ∈ Π. Consider a partition π 6= πV . If∑
f∈Si

Jf
(
lfe , 1

)
>
∑
f∈Si

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
for all Si ∈ π, (A.34)

then coalitions in π play a coordination game and two pure-strategy Nash equilibria exist. In the pay-

off dominant Nash equilibrium, no coalition deforests. In the non-pay-off dominant Nash equilibrium, all

coalitions deforest. Note that (A.34) implies (A.33), but (A.33) does not imply (A.34). If (A.34) does not

hold, then the unique Nash equilibrium is that all coalitions Si ∈ π deforest.

The set E therefore consists of a Nash equilibrium for partition πV , Nash equilibria for a (potentially

empty) set of partitions Z1 where (A.34) holds and Nash equilibria for a (potentially empty) set of partitions

Z2 where (A.34) does not hold.

We first show that when (A.33) holds, an equilibrium exists wherein the village-level no-deforestation

requirement is met. Consider the case where Z1 = ∅, i.e. all coalitions in all partitions π 6= πV deforest.

Then there exists a unique partition function and

w(Si, π) =


∑

f∈Si

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
for all Si, for all π 6= πV ,∑

f∈V J
f
(
lfe , 1

)
for Si = V, π = πV .

If condition (A.33) holds, we then have:∑
f∈V

Jf
(
lfe , 1

)
>
∑
f∈V

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
=
∑
Si∈π

∑
f∈Si

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
for any π ∈ Π,

(A.35)

such that πV with allocation

af (πV , w) :=

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
+

1

|V|

(∑
f∈V

Jf
(
lfe , 1

)
−
∑
f∈V

[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

])
with the decision d∗1 = 0 is an equilibrium. Hence, when (A.33) holds, there exists an equilibrium wherein

the village-level no-deforestation requirement is met.
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We next show that the village-level no-deforestation requirement is met in every equilibrium that exists

when (A.33) holds. The proof proceeds by contradiction. Assume that (A.33) holds. In addition, suppose

that there exists an equilibrium wherein all coalitions deforest; more precisely, suppose there exists a par-

tition π, a partition function w, an allocation af (π,w) and decisions (d∗1, . . . , d
∗
|π|) := (1, . . . , 1) that are

an equilibrium. Then the village-level no-deforestation requirement is not met in every equilibrium. Then

af (π,w) = Jf (lfe + lf∗d , τsq) − cd(l
f∗
d ) for all f ∈ Si, for all Si ∈ π. But then V has an objection to π

and af (π,w) because w(V, πV) =
∑

f∈V J
f (lfe , 1) >

∑
f∈V
[
Jf
(
lfe + lf∗d , τsq

)
− cd(lf∗d )

]
, by condition (A.33).

Therefore, the partition π and corresponding allocation af (π,w) cannot be an equilibrium. Hence, if (A.33)

holds, there exists no equilibrium wherein the village-level no-deforestation requirement is not met.

Finally, we prove that if (A.33) does not hold, then there exists no equilibrium wherein the village-

level no-deforestation requirement is met. The proof is again by contradiction. Assume that (A.33) does

not hold. In addition, suppose that there exists an equilibrium wherein the village-level no-deforestation

requirement is met in equilibrium; more precisely, suppose there exists a partition π, a partition function

w, an allocation af (π,w) and decisions (d∗1, . . . , d
∗
|π|) := (0, . . . , 0) that are an equilibrium. Such a Nash

equilibrium exists only if (A.34) holds. But if (A.34) holds then (A.33) also holds by implication. Hence,

we have a contradiction. Therefore, if (A.33) does not hold, then there exists no equilibrium wherein the

village-level no-deforestation requirement is met.

Proposition 5. The village-level regeneration requirement R is met in equilibrium if and only if (A.33)

holds or ∑
f∈G

(
Jf (`fe , 1)− Jf (`fe + `f∗d , τsq)

)
> η

∣∣V \G∣∣, (A.36)

where G =
{
f : Jf (`fe , 1) > Jf (`fe + `f∗d , τsq)− cd(`

f∗
d )
}
.

Proof of Proposition 5. The proof proceeds as follows. We first show that when condition (A.36) holds, an

equilibrium exists wherein the village-level regeneration requirement is met. We next show that the village-

level regeneration requirement is met in every equilibrium that exists when condition (A.36) holds. Finally,

we show that if (A.36) does not hold, but (A.33) holds then the village-level regeneration requirement is

met in every equilibrium that exists.

We use πV to denote the partition containing the grand coalition alone. π0 is the finest partition of

singletons. Consider a partition π 6= πV . Under a village-level regeneration requirement, coalitions in π play

the following sequential game. All coalitions first simultaneously decide whether to protect forests. Given

the information/observation about decisions by coalitions in the first stage, all coalitions then simultane-

ously decide whether to prevent fruit production on land that was deforested. Note that coalitions S with∑
f∈S J

f (`fe , 1) >
(∑

f∈S J
f (`fe + `f∗d , τsq) − cd(`

f∗
d )
)

either deforest or prevent fruit production, but never

deforest and prevent fruit production. Coalitions S with
∑

f∈S J
f (`fe , 1) ≤

(∑
f∈S J

f (`fe +`f∗d , τsq)−cd(`
f∗
d )
)
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never prevent fruit production and they deforest only if they anticipate that fruit production will not be

prevented on land they deforest. Hence, in the sequential Nash equilibrium, either all coalitions deforest or

all coalitions do not deforest. Hence, for each π 6= πV , either w(S, π) =
∑

f∈S J
f (`fe , 1) for all S in π or

w(S, π) =
∑

f∈S J
f (`fe + `f∗d , τsq)− cd(`

f∗
d ) for all S in π.

We first show that when (A.36) holds, an equilibrium exists wherein the village-level regeneration require-

ment is met. Assume (A.36) holds. Then the partition πg = {G,V\G} has a unique sequential Nash equilib-

rium wherein no coalition deforests. Specifically, the unique Nash equilibrium in the second stage of the game

is for all farmers f ∈ G to prevent fruit production on land deforested by farmers f ∈ V \G. In anticipation

of such prevention of fruit production, the unique pure strategy Nash equilibrium for all farmers in the first

stage of the game is to not deforest. Then the partition πg, partition function w(Si, πg) =
∑

f∈Si J
f (`fe , 1)

with corresponding allocation af (G,w) =
∑

f∈G J
f (`fe , 1)

af ({V\G}, w) =
∑

f∈V\G J
f (`fe , 1),

forest-protection decisions (d1, d2) = (0, 0) and blocking decisions (b1,b2) = (0,0) is an equilibrium. There-

fore, when (A.36) holds, then there exists an equilibrium wherein the village-level regeneration requirement

is met.

We next show that the village-level regeneration requirement is met in every equilibrium that exists

when (A.36) holds. The proof is by contradiction. Assume that (A.36) holds. Suppose that a partition

function w, a partition π, associated decisions (d1, . . . , d|π|) = (1, . . . , 1) and (b1, . . . ,b|π|) = (0, . . . ,0), and

a corresponding allocation af are in the core, such that the village-level regeneration requirement is not met

in every equilibrium. Then af (π,w) = Jf (`fe + `f∗d , τsq)− cd(`
f∗
d ) for all f ∈ π. But then G has an objection

to π and af (π,w) because w(G, πg) >
∑

f∈G

(
Jf (`fe + `f∗d , τsq) − cd(`

f∗
d )

)
when (A.36) holds. Therefore,

by contradiction, no such partition function w, partition π, associated decisions (d1, . . . , d|π|) = (1, . . . , 1)

and (b1, . . . ,b|π|) = (0, . . . ,0), and a corresponding allocation af can be an equilibrium. Thus, when (A.36)

holds, no equilibrium exists wherein the village-level regeneration is not met.

If (A.36) does not hold, but (A.33) holds then it follows from Theorem 4 that the village-level no-

deforestation requirement is met in equilibrium. Hence, no deforestation occurs in the village in equilibrium.

Therefore, the village-level regeneration requirement is also met in equilibrium.

Lemma 6. Consider the functions f : [0,∞)→ R and g : [0,∞)→ R given by:

f(x) = α0 + α1x+ α2e
x + α3 x e

x

g(x) = α0 + α1x+ α2e
x + α3 x e

x + α4 e
2x + α5 x e

2x,

where αi ∈ R, ∀i ∈ {0, . . . , 5}. Then,
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(i) f(x) is convex if {α3 ≥ 0, α2 + 2α3 ≥ 0};

(ii) f(x) is non-negative if it is convex and {α0 + α2 ≥ 0, α1 + α2 + α3 ≥ 0};

(iii) g(x) is convex if {α5 ≥ 0, α4 + 3α5 ≥ 0, α3 + 4α4 + 8α5 ≥ 0, α2 + 2α3 + 4α4 + 4α5 ≥ 0};

(iv) g(x) is non-negative if it is convex and {α0 + α2 + α4 ≥ 0, α1 + α2 + α3 + 2α4 + α5 ≥ 0}.

Proof of Lemma 6. For f , we have:

f ′′(x) = ex[α2 + (2 + x)α3] (A.37)

f(0) = α0 + α2 (A.38)

f ′(0) = α1 + α2 + α3. (A.39)

Result (i) follows by (A.37), since the linear function α2 + 2α3 + xα3 is non-negative on [0,∞) under the

given conditions. To prove (ii), note that the gradient inequality applied to the convex function f implies:

f(x) ≥ f(0) + f ′(0)x
(A.38, A.39)

≥ α0 + α2 + (α1 + α2 + α3)x ≥ 0, ∀x ∈ [0,∞).

Similarly, for g we have:

g′′(x) = ex[α2 + (2 + x)α3 + 4ex(α4 + α5 + xα5)] (A.40)

g(0) = α0 + α2 + α4 (A.41)

g′(0) = α1 + α2 + α3 + 2α4 + α5. (A.42)

By (A.40), g is convex if α2 +(2+x)α3 +4ex(α4 +α5 +xα5) is non-negative on [0,∞); applying result (ii) to

this function, we obtain the desired conditions. Finally, result (iv) follows by an analogous argument to our

earlier one, by applying the gradient inequality to the convex function g and using (A.41) and (A.42).

Proof of Proposition 1. From Proposition 2, the expression for productivity is given by (A.12):

yP0 − k
2

C, where C =
1

2q + α(1− e−βτ )τ2`σ2
.

It can be readily checked that:

∂

∂σ

([
yP0 − k

2
C

]∣∣∣∣
τ=1

−
[
yP0 − k

2
C

]∣∣∣∣
τ

)
=

∂

∂σ

(
1

2q + α(1− e−β)`σ2
− 1

2q + α(1− e−βτ )`τ2σ2

)
yP0 − k

2

=

α`2σ
(
τ2 − 1 + e−β − τ2e−βτ

)(
4q2 + 2qα`σ2(1− e−β + τ2 − τ2e−βτ ) + (α`σ2)2τ2(1− e−β)(1− e−βτ )

)
(

4q2 + 2qα`σ2(1− e−β + τ2 − τ2e−βτ ) + (α`σ2)2τ2(1− e−β)(1− e−βτ )

)2

−
α`σ2

(
τ2 − 1 + e−β − τ2e−βτ

)(
2qα`(2σ)(1− e−β + τ2 − τ2e−βτ ) + 4σ3(α`)2τ2(1− e−β)(1− e−βτ )

)
(

4q2 + 2qα`σ2(1− e−β + τ2 − τ2e−βτ ) + (α`σ2)2τ2(1− e−β)(1− e−βτ )

)2 ,
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which is non-negative if and only if

8q2 ≥ 2(α`σ2)2τ2(1− e−β)(1− e−βτ )

⇔ q ≥
√

1

4
(α`σ2)2τ2(1− e−β)(1− e−βτ )︸ ︷︷ ︸

:=qf1

(A.43)

Thus, the productivity benefits from eliminating payment delay increase as σ increases if and only if q ≥ qf1 .

From Proposition 3, the farmer’s welfare (here, abbreviated by W (τ)) is:

W (τ) :=
1− e−βτ

βτ

{
e−βD

(eβD − 1)(eβτ − 1)(P0y − k)2 +
(
τeβD − τ −Deβτ +D

)
y2ν2

8β(eβτ − 1)
C`︸ ︷︷ ︸

f1

+

e−βτ (1− e−βD)
(

1− eβτ + ατ + (eβτ − 1) log
[
eβτ−1
ατ

])
αβτ2︸ ︷︷ ︸
f2

}
. (A.44)

It can readily be checked that:

∂

∂σ

(
W (1)−W (τ)

)
=

1− e−β

β

(
e−βD(eβD − 1)(eβ − 1)(P0y − k)2 + (eβD − 1−Deβ +D)y2ν2

8β(eβ − 1)

)
`

(
− 2σα(1− e−β)`

(2q + α(1− e−β)`σ2)2

)
− 1− e−βτ

βτ

(
e−βD(eβD − 1)(eβτ − 1)(P0y − k)2 + (τeβD − τ −Deβτ +D)y2ν2

8β(eβτ − 1)

)
`

(
− 2σα(1− e−βτ )τ2`

(2q + α(1− e−βτ )τ2`σ2)2

)
,

which is non-negative if and only if

(1− e−β)2(eβτ − 1)

(1− e−βτ )2(eβ − 1)τ

(
e−βD(eβD − 1)(eβ − 1)(P0y − k)2 + (eβD − 1−Deβ +D)y2ν2

e−βD(eβD − 1)(eβτ − 1)(P0y − k)2 + (τeβD − τ −Deβτ +D)y2ν2

)
︸ ︷︷ ︸

:=x

≤ (2q + α(1− e−β)`σ2)2

(2q + α(1− e−βτ )τ2`σ2)2
, (A.45)

which after some algebra yields:

q ≥ α`σ2

2

(1− e−βτ )τ2√x− (1− e−β)

1−
√
x︸ ︷︷ ︸

:=qf2

(A.46)

Thus, the welfare benefits from eliminating payment delay increase as σ increases if and only if q ≥ qf2 .

Finally, we let qf := max{qf1 , q
f
2},
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3 Supporting Figures for Empirical Analysis

3.1 Robustness checks
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Figure 4: Percentage increase in farmer welfare if the buyer eliminates payment delay, as a function of status quo length

of the payment period. The left figure shows box-plots for all 728 farms in our sample. The right figure is obtained by

splitting the sample into small and large farms (depending on whether the size is smaller or larger than the median size,

respectively), and shows separate box-plots for each category.

3.2 Condition on q

Histogram of qf at τ = 2 ( 100 %<q)
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Histogram of qf at τ = 3 ( 100 %<q)
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Figure 5: Histograms of qf relative to q (blue line), for τ = 2 to τ = 3.
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Histogram of qf at τ = 4 ( 100 %<q)
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Histogram of qf at τ = 5 ( 97 %<q)
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Histogram of qf at τ = 6 ( 97 %<q)
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Histogram of qf at τ = 7 ( 96 %<q)

0.00 0.05 0.10 0.15
0

50

100

150

200

qf

F
re

qu
en

cy

(d)

Histogram of qf at τ = 8 ( 94 %<q)
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Histogram of qf at τ = 9 ( 91 %<q)
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Figure 6: Histograms of qf relative to q (blue line), for τ = 4 to τ = 9.
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Histogram of qf at τ = 10 ( 86 %<q)
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Histogram of qf at τ = 11 ( 85 %<q)
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Histogram of qf at τ = 12 ( 84 %<q)
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Histogram of qf at τ = 13 ( 65 %<q)
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Histogram of qf at τ = 14 ( 65 %<q)
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Histogram of qf at τ = 15 ( 56 %<q)
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Figure 7: Histograms of qf relative to q (blue line), for τ = 10 to τ = 15.
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