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Abstract

Centralized planning systems routinely allocate tasks to workers or service providers in order to

generate the maximum possible value. These allocations can also critically influence the service

providers’ well-being, and thus the planning systems are often concerned with ensuring that their

allocations satisfy particular desirable attributes. In some cases, such guarantees may induce

a loss in the total value created or in the system’s share of that value. We provide a broad

framework that allows quantifying the magnitude of such value losses due to provider guarantees.

We consider a general class of guarantees that includes many considerations of practical interest

arising in the design of sustainable two-sided markets, workforce welfare and compensation,

sourcing and payments in supply chains, among other application domains. We derive tight

bounds on the relative value loss, and show that this loss is limited for any restriction included

in our general class. Our analysis shows that when many providers are present, the largest losses

are driven by fairness considerations; but when few providers are present, the main loss driver is

the heterogeneity in the providers’ ability to generate value. We study additional loss drivers

such as the variation in the value of jobs and the supply-demand balance, and find that these can

influence the loss in a non-intuitive fashion, with less variability in value and a more balanced

supply-demand ratio leading to larger losses. Lastly, we demonstrate numerically using both

real-world and synthetic data that the relative loss can be very small in several cases of practical

interest.

Keywords: Allocation systems, worker guarantees, fairness, efficiency loss, worst-case analysis.

1 Introduction

In many operational settings, a centralized planning system (system henceforth) decides how to

allocate a pool of resources or tasks to an existing set of workers or service providers. Such allocations

routinely determine the total value created; but oftentimes, they also influence how this value is
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shared between the system and the providers. And when only some allocations meet particular

attributes that the providers find appealing, this could significantly impact both the providers’

welfare as well as the system in the long-run, e.g., due to provider retention.

This gives rise to a potentially difficult question: How should the system trade off the appealing

features of such allocations against the potential value loss associated with them? Critically, how

much of the total value created or of the system’s share of that value might be lost by ensuring that

allocations to providers meet such desirable attributes?

To understand this fundamental issue in a more concrete setting, consider online service platforms

such as Uber, Lyft, Grubhub or Upwork. These platforms match customer service requests for

rides, food, or labor with dedicated service providers (drivers or freelance workers), and typically

rely on revenue-sharing agreements to split the revenue collected between the providers and the

platform. The allocation of service requests thus critically influences the value generated upon each

service completion as well as the portions of the total value that are retained by different providers.

This value may consist of both monetary components (e.g., the revenue collected, or the profits

when accounting for costs) as well as non-monetary ones (e.g., the satisfaction of providers and the

service quality experienced by customers). Ceteris paribus, providers who are assigned fewer or

“worse” requests could end up with lower welfare, and as a consequence could potentially leave the

platforms for better prospects. Such retention issues have been well documented (e.g., CNBC 2017),

and platforms have begun to set up a variety of mitigating measures that range from guaranteed

income levels for providers (see, e.g., Uber Technologies Inc. 2018b and Lyft Inc. 2018) to designing

loyalty and bonus payments tied to completing multiple service requests (see, e.g., Financial Times

2014, and Uber Technologies Inc. 2018a). How much are platforms sacrificing in terms of revenues,

profits, or rider experience when their allocations are designed to carry such guarantees for the

service providers?

To demonstrate the tradeoff in a different setting, consider a traditional brick-and-mortar business

that designs work schedules for its sales associates. Here too the allocation can critically drive the

value generated: assigning a top-performing sales associate to work on busier days may increase

sales and revenue for the store, and potentially also customer satisfaction. But such allocations

also have a direct impact on the employees, in both monetary terms, e.g., due to commissions

and bonuses tied to completed sales (Berger 1972), as well as non-monetary ones, e.g., due to job
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satisfaction, work-life balance, and worker health (Bacharach et al. 1991, Sparks et al. 2011). Work

schedules and job assignments thus routinely follow certain patterns intended to maintain a fair and

balanced workload for the employees. But do these entail a significant revenue or profit loss for the

employer or goodwill loss for the customers?

These examples highlight several settings in which only some of the system’s allocations meet

certain desirable attributes for the service providers. We henceforth refer to these as provider

guarantees. Considering only allocations that ensure provider guarantees could generate a loss in

the total value or in the system’s share of the value that could be achieved without such restrictions.

Although such losses could in theory be mitigated in some cases by designing suitable monetary

transfers,1 the resulting mechanisms are rarely implementable in practice due to numerous legal,

ethical and computational challenges.2 We thus focus on understanding the value loss associated

with provider guarantees in settings where monetary transfers are not possible; we seek to quantify

the magnitude of this value loss, its key drivers, and the structure of the guarantees that are most

likely to cause large losses.

1.1 Main Contribution

On the modeling front, we develop a broad framework that allows quantifying the magnitude of

value that may be lost due to imposing provider guarantees in various settings. We consider a

centralized planning system that allocates a discrete set of jobs/resources to a set of heterogeneous

providers who convert these into value. We capture an allocation design that institutes desirable

provider guarantees by imposing constraints (also referred to as restrictions) on the system’s

feasible allocations, and we only require the set of constrained allocations to satisfy a very broad

monotonicity condition. This allows us to capture a variety of practical considerations pertaining to

sustainable design of two-sided markets, workforce welfare and compensation mechanisms, as well

as the sourcing and payments in supply chains, among other application domains.

We define the relative value loss associated with instituting certain provider guarantees as the

fraction out of the maximal value (captured by the unrestricted value-maximizing allocation) that

1In particular, the system could choose any allocation that maximizes the total value, and then redistribute this
value through monetary transfers to ensure the provider guarantees are satisfied.

2For example, monetary transfers might lead to inequitable payment for identical jobs, which is linked to perceptions
of unfairness; see, e.g., Greenberg (1982) and Brockner and Wiesenfeld (1996). In addition, it is unclear that monetary
transfers can entirely mitigate non-monetary aspects of the allocation and provider welfare.
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would be lost when imposing the constraints associated with satisfying these guarantees. We

derive tight bounds on the relative value loss for any restrictions in a general class of provider

guarantees. We establish these tight bounds by solving a fractional linear relaxation of the problem

of maximizing the relative value loss, and by producing instances that match the maximal value

under this relaxation. These bounds determine that the value loss cannot be arbitrarily large for

any guarantees that we consider. Moreover, the relative value loss never exceeds 1
2 when providers

are homogeneous in their ability to generate value from jobs (which is the case, for example, in

standardized work processes). This analysis enables us to characterize prominent drivers of the

relative value loss. We show that when the number of providers is large, the largest value losses

occur due to fairness considerations – and more precisely, Max-Min fairness. In contrast, when only

few providers exist, loss is driven primarily by the heterogeneity in the providers’ ability to generate

value from the jobs that are allocated to them.

We study the potential impact of several candidate drivers of value loss. First, we observe that the

structure of the set of feasible allocations may have a critical impact on the relative value loss, and

we characterize several structures where this loss can be guaranteed to be zero. In addition, we also

show that the integrality of allocations is critical: allowing for fractional allocations would eliminate

the loss for a broad class of provider guarantees. We further show that the symmetry of the set

of feasible allocations plays a prominent role in limiting the maximal value loss: when providers

are heterogenous with respect to their ability to create value from jobs, the relative value loss may

asymptotically approach 100% as the number of providers grows large. We further demonstrate

that the variation in the intrinsic values associated with the jobs impacts the value loss: in general,

higher variation in these values induces larger worst-case losses. Finally, we show that an imbalance

between supply (providers) and demand (jobs) may lead to reduced value losses.

Using both real-world data of taxi trips in New York City (where providers could be viewed

as approximately homogeneous with respect to their ability to generate value from jobs) and

synthetically generated data, we study numerically the effects of the aforementioned drivers of loss

on the relative value loss associated with implementing provider guarantees that correspond to

fairness considerations. This confirms the robustness of our earlier results concerning relationships

between the relative value loss and the variation in the intrinsic values of jobs, as well as the

imbalance between providers and jobs. We observe, in particular, that in the instances generated
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from the real-world data, the relative value loss that corresponds with fairness considerations remains

below 4%. Together with the rest of our numerical findings, this suggests that in particular cases of

practical interest, the relative value losses associated with implementing provider guarantees may

be low relative to the worst-case value loss bounds characterized here.

1.2 Related Literature

Relative Efficiency Loss. Our work is related to a stream of literature that studies efficiency

loss when some feasible outcomes are restricted. Bertsimas et al. (2011, 2012) consider continuous

resource allocation problems where a centralized decision maker balances efficiency (i.e., social

welfare) with fairness and equity considerations. They define the price of fairness as the relative loss

in efficiency under such fairness considerations, and provide bounds on this measure that depend

on the number of agents and on the fairness criterion. In contrast, our study focuses on discrete

allocation problems where constraints are imposed directly on the feasible allocations rather than on

the possible utility outcomes. The class of restrictions we consider is thus broader and includes the

fairness criteria in Bertsimas et al. (2011, 2012) as special cases. Additionally, while the worst-case

efficiency loss in Bertsimas et al. (2011, 2012) can be arbitrarily large (i.e., approaching 100%

asymptotically), the loss in our setting is always bounded for any fixed provider heterogeneity level.

We elaborate more on the root causes for this discrepancy in §3.

More broadly our paper relates to a rich literature studying the Price of Anarchy – a measure

introduced by Papadimitriou (2001) and Roughgarden and Tardos (2002) that quantifies the efficiency

loss of Nash equilibrium outcomes relative to an optimal centralized solution. It is known that the

Price of Anarchy can be bounded in particular settings (see, e.g., Roughgarden 2003, Johari and

Tsitsiklis 2004, Correa et al. 2004, Perakis and Roels 2007), but it can also be arbitrarily large (see,

e.g., Awerbuch et al. 2006, Chawla and Roughgarden 2008, Koutsoupias and Papadimitriou 2009).

Our study considers efficiency losses generated when a central organizer restricts the outcomes,

rather than losses resulting from the actions of selfish agents.

Allocation of Indivisible Jobs. Several approximation algorithms have been proposed to

obtain envy-free and Max-Min fair allocations for indivisible goods (see, e.g., Lipton et al. 2004,

Golovin 2005, and Asadpour and Saberi 2010). This line of work is aimed at determining the

allocations themselves; in contrast, our paper is focused on quantifying the inefficiency associated
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with such allocations, and studying the key drivers of this inefficiency.

Efficiency of Contracts. Our work is also related to a body of literature studying the efficiency

losses that may arise in various principal-agent interactions, such as between a firm’s shareholders,

debtholders and managers (see, e.g., Jensen and Meckling 1976), between firms and their sales

associates (see, e.g., Farley 1964), between buyers and their suppliers (see, e.g., Cachon and Lariviere

2005), among other examples. Several papers in this literature also seek to quantify the associated

efficiency losses; see, e.g., Besbes et al. 2017 for more discussion and additional references. Our

work is not concerned with specific agency considerations, but instead focuses on quantifying

relative efficiency loss associated with restricting allocations to satisfy certain attributes that may

be desirable to providers.

2 Problem Formulation

For the sake of clarity, we first provide a basic description of our setup, and then discuss some

concrete examples in §2.1. A discussion of the modeling assumptions is deferred to §2.2.

Consider a centralized planning system that allocates a given set of jobs D to a set of n service

providers denoted by N = {1, . . . , n}. Each job possesses a certain intrinsic value, which we capture

through a function v : D → R, so that v(d) denotes the intrinsic value for job d ∈ D. For any subset

of jobs S ⊆ D we denote by v(S)
def
=
∑

d∈S v(d) the total value of all the jobs in S. Not all allocations

of jobs to providers are possible, and we let F denote the set of feasible allocations of jobs in D. If

A = (A1, . . . , An) ∈ F denotes a feasible allocation, then Ai denotes the jobs allocated to provider

i ∈ N , and A−i
def
= (A1, . . . , Ai−1, Ai+1, . . . , An) denotes the allocation to all other providers.

When provider i is assigned a set of jobs Ai ⊆ D, the value that is generated is γi v(Ai).

The parameter γi is pre-determined and fixed, and belongs to an interval [γmin, γmax], where

0 < γmin ≤ γmax
3. We let γ ∈ [γmin, γmax]n denote the heterogeneity profile of providers, and we

denote the degree of heterogeneity by

δ :=
γmax − γmin

γmax
.

3The same framework and analysis goes through when considering a stochastic heterogeneity parameter γi with
support [γmin, γmax] and a known distribution, if we measure relative losses in the expected total value.
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System considerations and value loss. In deciding the allocations, the system seeks to

generate as much value as possible. Given all the feasible allocations F, the allocation that would

maximize the total value generated would be given by the optimal solution to the problem

max
A∈F

n∑
i=1

γiv(Ai).

In order to guarantee certain conditions to its service providers, the system would also be interested

in restricting attention to a subset of allocations with guarantees FG ⊆ F. This could reduce the

total value generated, and we define the value loss under provider guarantees Lγ(F,FG) as the

relative loss in total value when the system considers only allocations from FG:

Lγ(F,FG) =

max
A∈F

n∑
i=1

γiv(Ai)− max
B∈FG

n∑
i=1

γiv(Bi)

max
A∈F

n∑
i=1

γiv(Ai)

. (1)

Throughout the paper, we restrict attention to cases where FG is non-empty. Our goal is to

understand the magnitude and the key drivers of this value loss. The general model setup allows

capturing many practical settings of interest, as we discuss next.

2.1 Examples

We next illustrate the interpretation of various model components using a series of practical examples.

Service platforms. Service platforms such as Uber and Lyft can be thought of as systems

that allocate demand for services (i.e., trips) to providers (i.e., drivers). The trips are indivisible,

and each trip has a certain intrinsic value v(d), with several possible interpretations. For instance,

v(d) may correspond to the revenue from completing trip d (given by the amount paid by the

customer), in which case the heterogeneity parameter γi can capture different notions of generated

value, including the following examples.

(i) Total revenue. Taking γi = 1 for all i, the objective
∑n

i=1 γiv(Ai) captures the total revenue

from the completed trips, a measure of economic efficiency in the absence of costs.

(ii) Revenue sharing. It is customary for service platforms such as Uber, Lyft or Grubhub to

retain a fraction of the revenue generated from the provided services. In this case, if γi represents
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the share of the revenue accruing to the platform when dealing with provider i, then
∑n

i=1 γiv(Ai)

would represent the total revenue collected by the platform.

(iii) Costs/profits. The spatial and temporal length of a trip are typically key drivers for both

the revenues as well as the costs from completing the trip. Thus, γiv(d) could capture the gross

profit when driver i completes the job, equal to the revenue v(d) net of provision costs (1− γi)v(d).

This allows modeling heterogeneity in the transportation costs, for example, due to the different fuel

economy of cars. The total value generated
∑n

i=1 γiv(Ai) would denote the total net profit from

trips, a measure of economic efficiency in the presence of costs.

In addition to these measures, if v(d) denotes the spatial or temporal length of a trip d, then

γiv(d) could also capture the quality of service experienced by the rider(s) when driver i completes

the trip. Under this interpretation, γi may capture idiosyncratic differences due to car cleanliness,

driver friendliness, or any other feature that influences the rider’s experience per unit of trip length.

The total generated value would then correspond to the total quality of service experienced by

riders from the allocations. The set of feasible allocations F could capture constraints on allocating

trips to providers; for instance, that each trip can be allocated to at most one provider, and that

two trips that overlap in time cannot be allocated together to the same driver. The allocations

with guarantees FG ⊆ F can capture, for example, a platform’s commitments for minimal providers’

income (see, for example, Uber Technologies Inc. 2018b). In this setting, the value loss would thus

be driven by two key factors: drivers’ heterogeneity in their ability to generate value (monetary

or non-monetary) from trips allocated to them, as well as potential demand loss, e.g., from the

inability to allocate all requests for trips.

Workforce Management. A closely related example arises when managing a workforce such as

a team of sales associates. In this case, the system could be a regional or store manager who designs

schedules for n sales associates. These schedules could be temporal (e.g., which hours or days to

work), spatial (e.g., which floors or departments to cover) or could consist of the assignments of

particular clients. With v(d) denoting the (expected) revenue from a particular sales opportunity d,

γiv(d) can capture the revenue generated when this opportunity is assigned to associate i (with

γi measuring the associate’s ability/performance), or it could capture the fraction of the revenue

accruing to the firm (with 1− γi denoting associate i’s commission). Similar to the service platform

example, the total value could also capture the quality of service experienced by clients or the
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gross profit when the associates incur variable costs; the set of feasible allocations F could capture

constraints on the schedules or assignments; and the subset of allocations FG ⊆ F could capture

guarantees in terms of income, bonuses or even spare time (all of which are known to be relevant to

effective workforce management, see, e.g., Tremblay et al. 2000, Cohen-Charash and Spector 2001).

Sourcing from a Heterogeneous Supply Base. A different example arises when the system

represents a firm that decides how to allocate pre-scheduled indivisible orders for inputs among

its n suppliers. Here, v(d) can capture the volume of a particular order d, and the coefficients γi

may capture supply yields (when suppliers are heterogeneous in their reliability or quality), gross

margins for the firm (when different prices are paid to different suppliers), or gross margins for the

entire supply chain (for example, when suppliers have different variable operating costs). The set of

allocations FG ⊆ F may capture guarantees for income or workload that could arise from a variety

of considerations, such as a long-term sourcing strategy that requires keeping multiple qualified

suppliers, implementing dual sourcing policies (Yu et al. 2009, Yang et al. 2012), or particular social

or environmental responsibility commitments (Patagonia 2018, Starbucks Corporation 2018).

2.2 Assumptions

The allocation problem we described so far is very general, but is also intractable in the absence of

additional structure. To that end, we next introduce some mild assumptions that still permit a

lot of generality in the allowable primitives of our model, and yet render tractability in settings

of practical interest. The first assumption concerns jobs and feasible allocations, and the second

concerns the provider guarantees that can be under consideration. Throughout, we use P(D) to

denote the collection of all subsets of D.

Assumption 1 The set of feasible allocations F satisfies the following properties:

i) (Indivisibility) In any feasible allocation, each job is assigned to at most one provider, i.e.,

F ⊆ {A = (A1, . . . , An) ∈ P(D)n | Ai ∩Aj = ∅ for all i, j ∈ N, i 6= j} .

ii) (Symmetry) If A is a feasible allocation, then any permutation of A is a feasible allocation.

iii) (Monotonicity) If (Ai, A−i) is feasible, then (B,A−i) is feasible, for any B ⊆ Ai and any

i ∈ N .
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iv) (Provider Independence) If (Ai, A−i), (Bi, B−i) ∈ F are such that Ai ∩ Bj = ∅ for all j 6= i,

then (B1, . . . , Bi−1, Ai, Bi+1, . . . , Bn) ∈ F.

Part (i) of Assumption 1 requires that jobs are indivisible, so that feasible allocations can assign

each job to at most one provider. This is reasonable in various settings, including (i) service

platforms such as Uber, Lyft, Grubhub or Upwork, where unique jobs must be allocated to service

providers operating independently; (ii) sales settings where a single lead cannot be divided across

multiple associates; and (iii) sourcing settings where a single unit cannot be divided among multiple

suppliers.

Part (ii) of the assumption implicitly requires providers to be homogeneous in their ability to

perform jobs: if a set of jobs can be fulfilled by one provider, it can be fulfilled by any other provider

as well. This is reasonable when the jobs do not require essential skills or technology that is available

only to a subset of suppliers or service providers. Thus, it would not hold in settings in which

providers’ specialization plays a prominent role in their ability to complete jobs. Nevertheless, it

is important to note that this requirement only pertains to feasibility, i.e., it does not imply that

different providers generate the same value when completing a particular job. For instance, different

Uber/Lyft drivers may all be able to complete a particular ride, but the value that is generated (e.g.,

the profit or the quality of service experienced by the rider) may differ, which could be captured by

the coefficients {γi}ni=1.

Part (iii) states that it is always possible to allocate fewer jobs. This always holds when jobs

can be carried out independently from one another. In addition, the requirement allows certain

dependencies between jobs: for instance, if a set of jobs must be completed together, i.e., by a

single provider, these could be grouped into a single aggregate job that should be allocated as an

indivisible object in our setup.

Finally, part (iv) states that feasible allocations can be obtained by concatenating feasible

allocations for subsets of providers, as long as no job is assigned more than once. This is essentially

a requirement of independence on the providers: as long as jobs are not duplicated, whether a

provider can fulfill a set of jobs is independent of what jobs the other providers are fulfilling. This

is reasonable in many settings where having one provider complete certain jobs carries essentially

no externalities on other providers.

Our last assumption concerns the set of allocations with guarantees FG.
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Assumption 2 (FG Closed under Pareto Dominance) If B ∈ FG and A ∈ F are such that

v(Ai) ≥ v(Bi) for all i ∈ N , then A ∈ FG.

Assumption 2 provides a connection between the value that is captured by completing a job, and

the allowable provider guarantees that could be considered. Broadly speaking, valid restrictions

correspond to provider guarantees that compensate for additional value: if a certain allocation

satisfies the required provider guarantees, then any feasible allocation in which each provider

generates more value should also satisfy these guarantees. As we demonstrate in the following

subsection, such an alignment between captured value and provider guarantees is natural in many

practical settings.

2.3 Discussion and Classes of Provider Guarantees

2.3.1 Income Guarantees under Monotonic Payment Functions.

An important class of provider guarantees satisfying Assumption 2 arises from ensuring a minimum

level of (total) income to providers when compensation to providers is increasing in the value they

capture by job completions. More precisely, suppose that a provider who completes a set of jobs

S ⊆ D is compensated with an amount p(S), where p : P(D)→ R denotes a payment function. For

a given real number τ , we define the set

FG(p, τ,N) := {A ∈ F | p(Ai) ≥ τ, ∀ i ∈ N}, (2)

that includes the allocations that ensure that each provider is compensated with at least an amount τ .

The set FG(p, τ,N) satisfies Assumption 2 if p satisfies the property:

v(S) ≥ v(T ) ⇒ p(S) ≥ p(T ), ∀S, T ∈ P(D). (3)

The latter requirement is a natural property for payment or compensation functions: it asks

that a job carrying more intrinsic value should also command a (weakly) higher compensation

when completed. An important family of payment functions that satisfy this property is the one of

proportional compensation functions of the form p(S) = θv(S) for some θ ∈ [0, 1]. Proportional

payment functions are widely used in practical revenue-sharing systems (including Lyft, Uber, and

Upwork, among many others) where service providers retain a constant fraction of the payment
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made by the consumer once the job is completed. Proportional payment functions also include

commission-based payment mechanisms that are used to compensate sales agents (see, e.g., Farley

1964, Eisenhardt 1988), as well as common bonus schemes used to incentivize employees (see, e.g.,

Gibbons 1998, Lazear 2000).

The class of minimal income guarantees could also be generalized by considering provider-specific

payments and guarantees, i.e., by taking pi or τi or by considering guarantees only for a subset

N̂ ⊆ N of the providers. A visual depiction of several such guarantees is shown in Figure 1, for the

revenue-sharing case, i.e. p(S) = θv(S) for θ = 1. The figure shows both uniform income guarantees

(with a unique τ for all providers), as well as non-uniform ones (with different τi for each provider).

A special case of uniform income guarantees is obtained when τ is the largest value that ensures FG

is nonempty; this corresponds to Max-Min fair allocations (see Kalai and Smorodinsky 1975 and

Mas-Colell et al. 1995), which we discuss briefly in §2.3.3.

To facilitate our subsequent analysis, we introduce a characterization of the set FG that is

equivalent to verifying Assumption 2.

Proposition 1 A subset FG ⊆ F satisfies Assumption 2 if and only if FG satisfies:

FG = arg max
A∈F

g(A),

for some g : F → R that satisfies g(B) ≥ g(A) for any A,B ∈ F with v(Bi) ≥ v(Ai) for all i ∈ N .

A proof can be found in Appendix A. The result establishes that valid restrictions correspond to

the allocations that would maximize some function g that preserves the same ordering as the value

function v. One could now observe that condition (3) guarantees that Assumption 2 is satisfied,

since the function g(A)
def
= 1{p(Ai) ≥ τi, ∀ i ∈ N} satisfies the condition in Proposition 1.

2.3.2 Unions and Intersections.

Consider any collection of sets {FkG}k∈K where each set FkG satisfies Assumption 2. Then, ∩k∈KFkG

and ∪k∈KFkG also satisfy Assumption 2. Considering intersections is useful for modeling restrictions

that certain targeted providers find desirable or acceptable. Namely, suppose each provider i ∈ N is

endowed with a utility function ui satisfying the co-monotonicity requirements in Proposition 1.4 In

4In particular, u(B) ≥ u(A) for any A,B ∈ F with v(Bi) ≥ v(Ai), ∀ i ∈ N .
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Figure 1: Examples of provider guarantees. Income guarantees FG(p, τ,N) for two providers (n = 2)
compensated according to revenue-sharing agreements with p(S) = θv(S) for θ = 1. Each circle denotes a
feasible allocation, with the two axes corresponding to the intrinsic values v(A1) and v(A2) for each provider.
The circles in the shaded area show the revenues achievable by allocations in each FG. (left) A uniform
income guarantee with τ = 3; (center) A non-uniform income guarantee with τ1 = 2, τ2 = 5; (right) The
union of two non-uniform income guarantees with (τ1, τ2) = (2, 5) and (τ1, τ2) = (4, 2), respectively.

addition, let

FiG := arg max
A∈F

ui(A),

be the allocations that maximize the provider’s utility. Then, the system could consider FG =

∩i∈N̂F
i
G as the restriction of allocations. Alternatively, we could also consider a “satisficing” model

(see Simon 1956) where FiG := {A ∈ F : ui(A) ≥ τi} are the allocations that provider i finds

“acceptable,” i.e., exceeding a minimum utility threshold, and the system considers only allocations

in ∩i∈N̂F
i
G that all providers find acceptable.

Unions of allocation sets may capture scenarios in which the system is choosing among several

possible restrictions. One such example is depicted in the right panel in Figure 1. In fact, it can be

shown that any provider guarantee satisfying Assumption 2 can actually be written as the union of

income guarantees under monotonic payment functions, as formalized in our next result.

Proposition 2 The set of allocations with guarantees FG satisfies Assumption 2 if and only if it

can be expressed as the union of income guarantees under monotonic payment functions. That is,

FG ⊆ F satisfies Assumption 2 if and only if there exist monotonic payment functions and income

guarantees {(pk,θk)}k∈K for some index set K such that FG = ∪k∈K FG(pk,θk, N).

This shows that the class of income guarantees under monotonic payment functions is in some

sense a universal generating family for all the restrictions that satisfy Assumption 2, as any such

restriction can be captured by considering several alternatives from the former generating family.
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2.3.3 Fairness

Assumption 2 is also satisfied by considerations related to fairness/equity in how the jobs are

allocated to providers – a common issue in settings of social justice and workforce compensation

(see, e.g., Tremblay et al. (2000) and Cohen-Charash and Spector (2001)). An important example

arises from the broad class of α-fairness notions, first introduced by Atkinson (1970). An allocation

is said to be α-fair if it maximizes the constant elasticity social welfare function:

Wα(A) =


n∑
i=1

v(Ai)
1−α

1− α
for α ≥ 0, α 6= 1

n∑
i=1

log(v(Ai)) for α = 1.

Because this welfare function is increasing in each component Ai, the associated restriction

FG = arg maxA∈FWα(A) satisfies Assumption 2 (this is an immediate corollary of Proposition 1).

A special case is Max-Min fairness, a concept inspired by the notion of Rawlsian justice (Rawls

1971). Max-Min fair allocations result from uniform income guarantees under monotonic payment

functions, when the guarantee τ is the largest possible value for which the restriction set FG is

non-empty. More formally, we define the Max-Min fair restriction under monotonic payments as

FmM
G (p,N) := FG(p, τmax, N), where τmax := max{τ | FG(p, τ,N) 6= ∅}. (4)

3 Bounding the Value Loss under Provider Guarantees

Our first result provides an upper bound on the relative value loss Lγ(F,FG) that holds for any

feasible allocations and restrictions satisfying our assumptions.

Theorem 1 (Upper bound on the value loss) The value loss under provider guarantees is

bounded above as follows:

sup
F,FG,γ

Lγ(F,FG) ≤ max

{
δ,

n− 1

n+ (1− δ)(n− 1)

}
, (5)

where the supremum is taken with respect to all γ ∈ [γmin, γmax]n and all sets F, FG satisfying

Assumptions 1 and 2.
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Theorem 1 provides a bound on the relative value loss that depends on the number of providers

n and the heterogeneity level δ. Note that the bound is fully characterized by these two parameters;

Figure 2 depicts the parametric regions where n−1
n+(1−δ)(n−1) exceeds δ (shaded area), which occurs

when many providers are present (n is large) and the heterogeneity level δ is not too high. Otherwise,

when the heterogeneity δ is high and/or there are only a few providers, the bound on the loss is

driven solely by the heterogeneity, and equals δ.

20 40 60 80
0.0

0.2

0.4

0.6

0.8

δ

n

Asymmetric worst case

Symmetric worst case

Figure 2: Different types of worst cases in different parametric regions. Shaded area denotes values
of (n, δ) such that δ ≤ n−1

n+(1−δ)(n−1) .

The dependency of the bound on n and δ is depicted in Figure 3. It can be seen from (5) that for

any fixed heterogeneity level δ, the maximum value loss is always strictly smaller than 1
2−δ . This

implies that as long as the heterogeneity is bounded, a system implementing any of the discussed

provider guarantees can only incur a limited value loss; and this loss never exceeds 1
2 when providers

are perfectly homogeneous (δ = 0). Importantly, and as emphasized in §1.2, this result distinguishes

our findings from many studies that document unbounded losses in contexts of price of fairness

(Bertsimas et al. 2011) or price of anarchy (Koutsoupias and Papadimitriou 2009).

Main ideas in the proof. We defer the complete proof of Theorem 1 to Appendix A, but we

briefly describe its main ideas here. First, we propose an LP relaxation of the problem of maximizing

Lγ(F,FG) over all sets F and FG, for a fixed vector γ. For this purpose, we provide a family of
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n

Figure 3: Worst-case loss as a function of the number of providers and the heterogeneity level.

Plot of max
{
δ, n−1
n+(1−δ)(n−1)

}
as a function of n for different values of δ.

inequalities that connect the maximum value over the set of feasible allocations F and over the

set of allocations with guarantees FG. By exploiting the quasi-convexity of the optimal value of

this relaxation as a function of γ, we can then maximize the loss by only considering extreme

heterogeneity profiles γ ∈ {γmin, γmax}n. Finally, we solve the LP relaxation for these values of γ to

obtain the desired upper bound.

The next result shows that the upper bound in Theorem 1 is in fact tight, by characterizing

instances and provider guarantees that achieve the worst-case loss.

Theorem 2 (Attainable value loss) The bound on value loss in Theorem 1 is tight. In particular,

for every δ, n and ε > 0, there exist F1,FG
1,γ1 and F2,FG

2,γ2 satisfying Assumptions 1-2 so that

Lγ1(F1,F1
G) = δ (6)

Lγ2(F2,F2
G) =

n− 1

n+ (1− δ)(n− 1)
− ε. (7)

Theorem 2 states that the worst-case relative losses characterized in Theorem 1 are tight. To

prove this result, we exhibit three classes of instances, where the first one achieves the loss in (6)

and the other two asymptotically achieve the loss in (7). To provide more intuition, we describe

these instances for the case with n = 2 here, and defer the general case to Appendix A.
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Instance 1 (High guarantees with high provider heterogeneity) Consider n = 2 providers

with γ1 = γmax and γ2 = γmin, a set of jobs D = {d1} with v(d1) = 1, a set of feasible allocations

F = {(D, ∅), (∅, D)}, and allocations with guarantees FG = {(∅, D)}. Then, Lγ(F,FG) =

γmax−γmin
γmax

= δ.

In Instance 1, the system has a single job to assign to two providers. The first provider generates

more value for the system (γ1 ≥ γ2), so the value-maximizing allocation would be (D, ∅), assigning

the job to that provider. However, the only allocation with guarantees is (∅, D), requiring the

job to be assigned to the second provider and thus generating a loss due to heterogeneity. It is

important to note that these guarantees are asymmetric: a particular provider must be allocated

all the jobs. In fact, if these guarantees had been “symmetrized,” e.g., by considering the union

of all permutations of which driver receives the full set of jobs, then we would have FG = F, and

the loss would vanish. So for heterogeneity to be a critical driving force, it must be accompanied

by asymmetric guarantees that are misaligned in order to force more jobs being assigned to less

effective providers.

Another distinctive property of Instance 1 is that all the jobs are allocated, and hence the loss is

only driven by the provider heterogeneity. This leads to worst-case losses when heterogeneity is high,

as depicted in Figure 2. This inefficiency can take a particularly prominent role in service platforms

that may favor new providers by guaranteeing them a higher workload, when such providers also

have less experience and thus generate less value, for example, in terms of productivity as well as

goodwill gain and customer satisfaction.5

The following instance achieves the bound on the relative loss that is given in (7).

Instance 2 (Max-Min fairness with monotonic payments) Consider n = 2 providers with

γ1 = γmax ≥ γ2 = γmin, and a set of jobs D = {d1, d2, d3} with v(d1) = v(d2) = 1 and v(d3) = 1− κ

for some κ > 0. The feasible allocations F are depicted in Figure 4: jobs can be assigned together

only if the corresponding segments are non-overlapping. The allocations with guarantees are given

by all Max-Min fair allocations FmM
G (p,N) under any strict monotonic payment function p, as

described in (4). Then, the value-maximizing allocation is
(
{d1, d2}, {d3}

)
, the value-maximizing

5To provide one concrete example, Uber provides guarantees to new drivers (see, e.g., Rideshare Central 2018),
that may perhaps be less productive than more experienced drivers (see, e.g., The Rideshare Guy 2016).
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allocation with guarantees is
(
{d1}, {d2}

)
,6 and the relative value loss is:

Lγ(F,FG) =
(2γmax + (1− κ)γmin)− (γmax + γmin)

2γmax + (1− κ)γmin
.

In particular, for any ε > 0 there exists a κ > 0 such that Lγ(F,FG) = 1
3−δ − ε, and thus

Lγ(F,FG) →
κ→0

1

3− δ
=

n− 1

n+ (1− δ)(n− 1)
.

d1

1

d2

1d3

1− κ d1

1

d2

1d3

1− κ
Prov. 1: γ1 Prov. 2: γ2

Value-maximizing allocation

d1

1

d2

1d3

1− κ
Prov. 1: γ1 Prov. 2: γ2

Max-Min fair allocation

Figure 4: Symmetric worst-case instance. The left panel depicts Instance 2 that consists of n = 2
providers and three jobs D = {d1, d2, d3} represented by segments. Jobs can be assigned together if the
corresponding segments are non-overlapping. The right panel depicts the value-maximizing allocation at the
top, and the Max-Min fair allocation at the bottom.

Instance 2 describes a situation where the system allocates jobs that have a certain time duration,

and where two jobs that overlap in time cannot be assigned to the same provider — a situation

that occurs routinely in ride-sharing platforms such as Uber or Lyft. A distinctive property of

Instance 2 is that the system can either assign all the high-value jobs d1, d2 to one provider while

assigning the low-value job d3 to the other provider, or it can distribute the two high-value jobs

among the providers and not allocate the low-value job. The value loss is thus created since the

guarantee imposes the latter allocation, which results in unassigned jobs; and this loss increases as

the unassigned job d3 is very close in value to each of the allocated jobs d1,2.

6The Max-Min fair allocations are FmM
G =

{(
{d1}, {d2}

)
,
(
{d2}, {d1}

)}
. All such allocations do not assign d3, since

doing so would mean that one provider would obtain mini p(Ai) = p({d3}) < p({d1}), where the last inequality follows
from the strict monotonicity of p and the fact that v(d3) = 1− κ < 1 = v(d1).
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Instance 2 thus showcases two new critical drivers for the value loss. First is the structure of

the set of feasible allocations F, which contains certain exclusion constraints that force job d to be

incompatible with both jobs d1 and d2. Note that if job d3 could be allocated together with either

of the two other jobs, then the loss Lγ(F,FG) would vanish. We revisit such exclusion constraints

in §4, where we analyze their impact on the value loss in more detail. Second is the heterogeneity

in the intrinsic value of jobs. Although the loss grows as jobs become more similar in value (i.e.,

as κ→ 0), some heterogeneity is in fact critical: if κ = 0, the loss Lγ(F,FG) would again vanish.

However, although this feature is important in the context of Instance 2, it is not necessary for

achieving a worst-case loss in general, as our next instance demonstrates.

Instance 3 (Max-Min fairness with monotonic payments and equal-valued jobs) Con-

sider n = 2 providers with γ1 = γmax ≥ γ2 = γmin, and a set of jobs D = {d1, d2, d3, d4, d5} with

v(di) = 1 for each i ∈ N . The feasible allocations are depicted in Figure 5: jobs can be assigned

together only if the corresponding segments are non-overlapping. The allocations with guarantees cor-

respond to the Max-Min fair allocations under any strict monotonic payment function, as described

in (4). Then, the value-maximizing allocation is
(
{d1, d2, d3, d4}, {d5}

)
, and a value-maximizing

allocation with guarantees is
(
{d1, d2}, {d3, d4}

)
.7 Therefore, Lγ(F,FG) = 4γmax+γmin−2(γmax+γmin)

(4γmax+γmin) .

d1

1

d2

1

d3

1

d4

1d5

1 d1

1

d2

1

d3

1

d4

1d5

1
Prov. 1: γ1 Prov. 2: γ2

Value-maximizing allocation

d1

1

d2

1

d3

1

d4

1d5

1
Prov. 1: γ1 Prov. 2: γ2

Max-Min fair allocation

Figure 5: Symmetric worst-case instance with equal-valued jobs. The left panel depicts Instance 3:
there are n = 2 providers and five jobs D = {d1, d2, d3, d4, d5} represented by segments. Jobs can be assigned
together if the corresponding segments are non-overlapping. The right panel depicts the value-maximizing
allocation at the top, and the value-maximizing Max-Min fair allocation at the bottom.

7As in Instance 2, the Max-Min fair allocations are all combinations of {d1, d2, d3, d4} into two sets of two jobs
each, and all such allocations do not utilize d5.
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Instance 3 can be generalized to any given number of providers n, by taking a set of (t+ 1)n+ t

jobs for any integer t > 0 and keeping the same structure of F (details on the construction are

provided in Instance 8 of Appendix A). This generalization yields a worst-case loss of:

Lγ(F,FG) =
(t+ 1)nγmax + t(n− 1)γmin − (t+ 1)(γmax + (n− 1)γmin)

(t+ 1)nγmax + t(n− 1)γmin

=
t(n− 1) + δ(n− 1)

t(n+ (n− 1)(1− δ)) + n
.

Therefore, for any ε > 0, there exists a t large enough such that Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε.

Instance 3 shares certain similarities with Instance 2. Both instances rely on the presence of

exclusion constraints in the set of feasible allocations F that prevent certain jobs from being allocated

together. Additionally, the worst-case guarantees in both instances correspond to symmetric (in

particular, Max-Min fairness) guarantees obtained under any strictly monotonic payment function.

This suggests that when the provider heterogeneity is not too large, symmetric guarantees (and

perhaps particularly fairness) can be critical drivers of loss when there are sufficiently many providers,

as depicted in Figure 2.

Instance 2 also exhibits two notable differences from Instance 3: it relies on jobs with identical

value, and it requires an arbitrarily large number of jobs to achieve the worst-case loss. We return

to discuss each of these key drivers — the heterogeneity in job values and the supply/demand

imbalance — and their relationship in more detail in §4. Lastly, it is worth emphasizing that

although both Instance 2 and Instance 3 involve some heterogeneity in the drivers’ value generation,

this heterogeneity is not a critical to the identification of these instances as worst-case instances; in

fact, both instances generate worst-case losses when providers are homogeneous (δ = 0).

4 Analysis of Key Loss Drivers

The previous section highlighted several potential drivers for value loss. Perhaps the most prominent

of these is provider heterogeneity: when providers are very different in their ability to generate

value (i.e., δ is large), this heterogeneity becomes the dominant loss driver. This is evidenced in

Instance 1, and by the presence of the single term δ in the worst-case loss expression in (5). To

isolate the effects, we thus focus our discussion henceforth on the case of homogeneous providers

(δ = 0). We explore several loss drivers: (i) the indivisibility of jobs; (ii) the structure of feasible
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allocations F; (iii) the variation in the intrinsic values of jobs; and (iv) the balance between supply

(number of providers) and demand (number of jobs).

4.1 Indivisibility of Jobs

The indivisibility of jobs turns out to be critical: when partial allocations of jobs are possible, the

loss vanishes for any uniform income guarantee FG. To formalize this, we first define the set of

fractional allocations Fc obtained by allowing an arbitrary mixing of allocations from F:

Fc =

({θj}kj=1, {Aj}kj=1

)
| 0 ≤ θj ≤ 1,

k∑
j=1

θj = 1,Aj ∈ F,∀j ∈ {1, . . . , k}, k ≥ 0

 . (8)

Each tuple of Fc represents a specific mixing of allocations from F, and can be interpreted as

allocating a fraction θj of the jobs from each allocation Aj . Hence, for C = ({θj}kj=1, {Aj}kj=1) ∈ Fc,

let us denote by Ci = ({θj}kj=1, {A
j
i}kj=1) the specific mixing allocated to provider i, and let us

extend our value functions such that

v(Ci) =

k∑
j=1

θjv(Aji ). (9)

The following result shows that the relative loss vanishes for any uniform income guarantees.

Proposition 3 Given any set of feasible allocations F, consider the set Fc defined in (8) and the

extension of v(C) defined in (9). Then, Lγ(Fc,Fc
G) = 0 for any set of uniform income guarantees

under monotonic payments Fc
G.

The intuition behind Proposition 3 is that when fractional allocations are possible, the system can

simply consider an allocation obtained by mixing with an equal proportion 1
n! all the permutations

of a particular value-maximizing allocation. This new allocation would still achieve the maximum

value, while also allowing each agent to generate exactly the same value, and thus remaining feasible

under any uniform income guarantee.

4.2 Structural Properties of the Set of Feasible Allocations

When heterogeneity is not the main loss driver, the structure of the set of feasible allocations

F can become crucial, as Instances 2 and 3 demonstrated. Recall that each of those instances
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involved certain exclusion constraints, whereby some jobs could not be allocated together to the

same provider. Our next example shows that these constraints are critical: when the set F only

includes constraints on how many jobs can be allocated together but without other explicit exclusion

constraints, the value loss vanishes.

Instance 4 Consider a case with homogeneous providers, γi = γ, ∀ i ∈ N . Let {ki}ni=1 be n positive

integers, and suppose that F = {(A1, . . . , An) | Ai ⊆ D, |Ai| ≤ ki, ∀i, and Ai ∩Aj = ∅, ∀i 6= j}.

Proposition 4 Instance 4 satisfies Lγ(F,FG) = 0 for any set of allocations with guarantees FG.

This result becomes even more striking when the structure of the feasible sets in Instances 2

and 3 is further broken down. In particular, note that the set of jobs in each of those instances

is composed from some jobs that can be allocated together (with no further constraints) and a

single job whose allocation precludes a provider from executing any other job. Our next instance

generalizes these structures.

Instance 5 Consider a set of jobs D = S ∪ C, and a set of feasible allocations of the form:

F = {(A1, . . . , An) | Ai ∩Aj = ∅, ∀ i 6= j and

for every i ∈ N, either Ai ∩ C = ∅ or |(Ai ∩ C)| = 1 and Ai ∩ S = ∅}.

The jobs described in Instance 5 can be divided into a set of unconstrained jobs S and a set of

jobs C, each of which cannot be allocated together with any other job in D. Each of these sets of

jobs considered in isolation would give rise to a set of feasible allocations that would conform to the

premises of Instance 4 (with capacity ki =∞ or ki = 1, respectively), and would thus induce zero

value loss. It is thus striking that by simply combining these two sets as done in Instance 5, one in

fact obtains an instance that could either have zero loss or a worst-case loss, as formalized in the

following result.

Proposition 5 Consider Instance 5, then:

(i). If v(d) = v, for all d ∈ D, and |S| < 2n, Lγ(F,FG) = 0 for any uniform income guarantee

FG.
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(ii). If v(d) = 1 − κ for all d ∈ C, v(d) = 1 for all d ∈ S, |C| = n − 1, and |S| = n, we recover

Instance 2 by taking FG as the Max-Min fair allocations under any strictly monotonic payment

function.

Proposition 5 implies that the feasible set structure can carry significant impact, but also that

this structure in isolation is not a good predictor of value loss: the same structure could generate

very large or very small losses, depending on other problem features such as the value of jobs or the

imbalance between supply (number of providers) and demand (number of jobs).

We conclude by noting that the symmetry of the set of feasible allocations F is also very important

for our results. If this assumption were relaxed (e.g., if providers had different abilities for completing

jobs), then we can actually achieve a worst-case loss that asymptotically approaches 100% as the

number of agents grows large (see Instance 9 of Appendix A). This instance is actually inspired by

— and matches — the upper-bound on the price of fairness proved by Bertsimas et al. (2011), and

shows that such asymmetries in the feasible sets of allocations can be a critical driver for the loss.

4.3 Variation in Intrinsic Job Values

Instance 3 showed that the difference in the intrinsic value of jobs can be a key driver of the loss.

To further explore the impact of this feature, we now consider a slight modification of Instance 2

where we introduce a random variation in the value of one of the jobs, and we consider the expected

loss as a function of this variation.

Example 1 Consider Instance 2 with γmin = γmax, and assume that κ is uniformly distributed

κ ∼ U [−∆
2 ,

∆
2 ], so that v(d3) ∼ U [1− ∆

2 , 1 + ∆
2 ]. By taking the expectation of the loss with respect

to this random variable, we get:

E[Lγ(F,FG)] =

∫ 1

max{0,1−∆
2
}

1

∆

(
s

2 + s

)
ds =

1

∆

(
1− 2 log(3)−max

{
0, 1− ∆

2

}
+ 2 log

(
2 + max

{
0,

∆

2

}))
.

Note that E[Lγ(F,FG)] is decreasing in ∆; and since the variance of v(d3) equals the variance of

κ which equals ∆2

12 , this implies that E[Lγ(F,FG)] is decreasing in the variance of v(d3): higher

variance implies lower expected loss.

Interestingly, this example suggests that a higher variation in values could actually reduce the

impact of implementing provider guarantees, and result in a lower loss. The example can be
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generalized to a case with n providers (see Example 2 in Appendix A), and we also confirm its

robustness in a more realistic setting as part of our numerical exercise in §5. However, it is also

worth noting that although these examples suggest that lower variation tends to lead to higher value

losses, the relationship may exhibit a sharp discontinuity when there is no variation at all. This is

already evident in Instance 2, where requiring all jobs to have the same identical value reduces the

relative loss under any uniform income guarantees to zero; this pattern continues to occur in many

of the data-driven instances we analyze in §5.

4.4 Supply-Demand Balance

Instance 3 suggested that the balance of supply (number of providers) and demand (number of

jobs) can also critically drive the value loss. To build some further intuition for this dependency, we

examine certain extreme cases that allow an analytical characterization. The next result shows that

when a single provider or a sufficiently large number of providers are present, the value loss vanishes.

Proposition 6 Assume that γmin = γmax, and consider any symmetric set of allocations with

guarantees FG. Then Lγ(F,FG) = 0 if either n = 1 or n ≥ |D|.

Additionally, if we restrict attention to uniform income guarantees and jobs with identical intrinsic

values, then the value loss would be zero for an even larger number of providers, as formalized by

the following result.

Proposition 7 Assume that γmin = γmax, and let n > |D|/2 and v(d) = v for all d ∈ D. Then,

Lγ(F,FG) = 0, for any uniform income guarantee FG.

The above results suggest that the value loss is likely small when the ratio of supply to demand

is either very low or very high. Although it is hard to analytically prove this more generally, we

confirm it in our numerical tests in §5, where we find that increasing the number of providers for a

fixed number of jobs initially increases and eventually decreases the value loss, on average.

5 Numerical Analysis of Real-world and Synthetic Data

To demonstrate the impact of our findings in a practical context, we next provide a numerical study

that is based on real and synthetic data.
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Basic setup. We design our study around the problem of allocating requests for transportation

(taxi rides) to drivers. The set of service providers consists of n drivers, where we consider values of

n ∈ {2, 3, . . . , 30}. We assume that drivers are homogeneous, and thus γmin = γmax = γ, which we

normalize without loss of generality to 1. The set of jobs D corresponds to trip requests that arrived

in a particular time window. Each job/trip is specified as a continuous time interval given by a

start time and a trip duration. Two trips can be allocated together to the same driver only if the

corresponding time intervals do not overlap. We therefore construct the set of feasible allocations F

by putting together all the allocations (A1, . . . , An) consisting of n mutually exclusive subsets of trips

(Ai ⊆ D,Ai ∩Aj = ∅, ∀ i 6= j) where each subset Ai contains only non-overlapping trips. The set of

allocations with guarantees FG is obtained by considering Max-Min fairness considerations under

revenue sharing, as discussed in §2.3.1. To obtain the relative value loss Lγ(F,FG), we compute

the value-maximizing allocation and the best restricted allocation by solving integer programming

problems when allocations are picked from F and FG, respectively. Further details on our setup are

provided in Appendix B.

Real data. We generate problem instances using a publicly available dataset containing all the

completed taxi trips in New York City (NYC Taxi and Limousine Commission 2016) for January

2016. The record for every completed trip includes the total fare paid, the starting and ending

location, the starting time, and the trip duration. Each set of jobs we considered consists of trip

requests originating and ending in a specific neighborhood of the city; we considered in separation

Midtown Manhattan, Upper West Side, or Upper East Side. Limiting the geographical area allows to

more consistently suit part (ii) of Assumption 1 concerning the standardized nature of jobs, in that

any provider in the area can perform any subset of (non-overlapping) trips. For each neighborhood,

we focus on the first week of January 2016; we consider, for each particular day in that week, all the

trips completed between 9am and 5pm, a time segment during which the number of trips-per-minute

was approximately constant. We partition the time horizon into intervals of w minutes each, where

we considered w ∈ {10, . . . , 20}. For each of these intervals, we sampled uniformly 30 trips to

generate a problem instance. We consider the value generated by each trip as the total trip fare

that was paid to the driver.

Synthetic data. To better control the impact of different parameters on the value loss, we

also construct synthetic instances. We obtain these by first considering a particular time window
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(0, x] ⊆ R for different values of x ∈ (1, 3). We then generate trips as subintervals of (0, x], with the

starting point of the trip sampled uniformly, and the trip length drawn from a truncated normal

distribution; we use a mean of 1 and several coefficients of variation cv ∈ (0, 0.6] for the duration.

We fix the value produced by each job as the length of the associated interval.

Results and Discussion. We next present a brief summary of the numerical findings (and we

direct the reader to Appendix B for a more complete analysis). Figures 6 and 7 depict specific

examples of feasible sets F generated by the data-driven instances, together with the optimal

allocations with and without the Max-Min fair guarantees. In these graphs each vertex represents

a trip and has a label that corresponds to the trip value; two trips are joined by an edge if they

overlap in time, and an allocation is a (possibly partial) coloring of the graph with n colors. In the

instance depicted in Figure 7, all values were taken to be equal. This structure resembles Instance 5,

in that there is a relatively large set of jobs that are mutually exclusive combined with a smaller

sets of jobs that can be allocated together.
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Figure 6: Graph representation of the set of feasible allocations F of an instance. Each node
represents a trip, labels represent the fare, and two nodes are connected by an edge when they cannot be
allocated together. (left) A value-maximizing allocation of the jobs to n = 3 providers, with the allocation
to each provider given by a different color. The total value allocated is $66.89, and the provider with the
smallest allocation is receiving $20.45. (right) A (value-maximizing) max-min fair allocation. The total
value allocated is $63.64, and the provider with the smallest allocation is receiving $20.46.

In all our instances, when all the job values are set equal – so that the variation in values

disappears – we obtain a loss of zero. This is consistent with the result in Proposition 5, and is

reasonable to expect precisely because many of our data-driven instances match Instance 5, which
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Figure 7: Graph representation of F for an instance where trips have identical intrinsic values.
Each node represents a trip and two nodes are connected by an edge when they cannot be allocated together.
A value-maximizing and Max-Min fair allocation with 2 providers is represented by the coloring. The
maximum amount of trips that can be allocated to two providers is 5, by allocating the only three trips that
can be completed together to one provider, and two other trips to the other provider.

is the premise for Proposition 5 (refer again to Figures 6 and 7 and our earlier discussion). This

implies that in the instances that we studied numerically, the variation in job values is a prominent

driver of loss.

In Figure 8 we provide a representative example of the results we obtain. Both panels depict the

relative value loss as a function of the number of providers. The left panel shows the average and

maximum loss in the instances generated from real-world data, and the right panel corresponds to

the average loss in the synthetic instances, for different coefficients of variation. In the taxi data

that we considered, the coefficient of variation in job values was 0.48, so that the magnitude of the

losses is consistent in the two examples. Moreover, that the maximum and the average loss are

relatively close in the left figure suggests that losses come from structural properties of the instances

rather than a low frequency occurrence of instances with high relative value loss.

Both charts confirm several of our earlier observations. The right panel in Figure 8 shows that the

maximum loss decreases with the variability in job values, which is consistent with our discussion in

Example 1. Additionally, the charts are consistent with the results in Proposition 6, and highlight

the same qualitative features. For example, the value loss has a unique peak that appears for a

ratio of supply to demand between 2
3 and 1

2 , and decreases to zero when the number of providers
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Figure 8: Relative value loss in particular instances. (left) Average and maximum values of the
relative value loss Lγ(F,FG) as a function of the number of providers, for instances with 30 jobs constructed
from the data, using a time window of w = 16 minutes. (right) Average value of the relative value loss
Lγ(F,FG) as a function of the number of providers for synthetic instances with different coefficients of
variation (cv), and using the parametric value x = 1.6.

becomes sufficiently high or sufficiently low.

In addition to confirming several of our analytical findings, these numerical results also imply

that the value loss associated with implementing provider guarantees in particular settings may

be significantly smaller than the worst-case value loss that was characterized in Theorem 1: the

relative loss did not exceed 10% in the instances generated synthetically, and did not exceed 4%

in the instances generated from real-world data. Together with the rest of our numerical findings,

this suggests that the exact (relative) losses may be significantly smaller in particular settings of

practical interest.

6 Avenues for Future Research

In this paper we established that the relative value loss due to a broad class of provider guarantees is

bounded. We further showed that the worst-case losses are primarily driven by fairness considerations

when a many providers are present, and by the heterogeneity in the providers’ ability to generate

value when fewer providers are present. We analyzed several additional loss drivers, finding that

both a high variation in the intrinsic values of the jobs as well as a very imbalanced (i.e., either very

high or very low) ratio of supply to demand would carry a nonintuitive impact, leading to smaller

28



losses. Finally, we confirmed several of the findings numerically using both real and synthetic data,

wherein we also documented that the value loss in a specific problem setting may be significantly

lower than the worst-case values we obtained.

These results motivate future work from both a theoretical and a practical perspective. Having

established that losses are bounded in a general setting and under a broad class of provider guarantees,

one could now aim to understand how the losses behave in more particular settings or for subclasses

of guarantees obtained as special cases of our framework. For instance, one could seek to establish a

parametrized upper-bound on the relative loss when guaranteeing a specific income level to providers,

or to quantify losses in specific operational settings such as ride sharing platforms for instance, which

would be closer in spirit to our numerical exercise in §5. Additionally, and from a more prescriptive

viewpoint, losses being low for many types of guarantees also opens the path to exploring policies

that could achieve these guarantees dynamically and in an online fashion under partial information,

when the streams of future jobs are unknown.
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Appendices

A Proofs and Examples

For ease of notation, let F* def
= arg max

A∈F

n∑
i=1

γiv(Ai), and F*
G

def
= arg max

B∈FG

n∑
i=1

γiv(Bi).

We begin by proving an optimality condition that any allocations A ∈ F*and B ∈ F*
G must

satisfy.

Lemma 1 For any fixed F and FG, let A ∈ F*, and B ∈ F*
G, then

v(Ai \ (B1 ∪ . . . ∪Bn)) ≤ v(Bj \Ai), ∀ i, j ∈ N (10)

Proof. Assume by contradiction that v(Ai \ (B1 ∪ . . .∪Bn)) > v(Bj \Ai), for some i, j. Thus, take

B′j = (Bj∩Ai)∪(Ai\(B1∪. . .∪Bn)). Then, v(B′j) = v((Bj∩Ai))+v((Ai\(B1∪. . .∪Bn))) > v((Bj∩

ai)) + v((Bj \Ai)) = v(Bj). Additionally, B′j ⊆ Ai, implying by Assumption 1-(iii) that (B′j , A−j) is

a feasible allocation, and by definition of B′j , we have as well that B′j ∩Bi = ∅, for any i 6= j, which

implies by Assumption 1-(iv) that (B1, . . . , B
′
j , . . . , Bn) ∈ F, where Bj is replaced by B′j . But then,

by Assumption 2 on FG, we must have that (B1, . . . , B
′
j , . . . , Bn) ∈ FG. This implies a contradiction,

because (B1, . . . , Bn) ∈ F*
G, but

∑n
i=1 γiv(Bi) <

∑j−1
i=1 γiv(Bi) + γjv(B′j) +

∑n
i=j+1 γiv(Bi).

Using Lemma 1, we now prove Theorem 1, that shows an upper bound of Lγ(F,FG).

Proof of Theorem 1. Given any F and FG, we know that any allocations (A1, . . . , An) ∈ F* and

(B1, . . . , Bn) ∈ F*
G must satisfy the conditions imposed by Lemma 1. Let us then consider the

following set of scalar variables:

xi = v(Ai \ ∪nk=1Bk), for i ∈ N

yi = v(Bi \ ∪nk=1Ak), for i ∈ N

wij = v(Ai ∩Bj) for i, j ∈ N

With these variables, we can rewrite the inequalities proven in Lemma 1 as:

xi + wij −
n∑
k=1

wkj − yj ≤ 0, for i, j ∈ N. (11)

Moreover, we can write the expression in (1) that defines Lγ(F,FG) using these same variables
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as:

n∑
i=1

γixi −
n∑
i=1

γiyi +
n∑
i=1

n∑
j=1

wij(γi − γj)

n∑
i=1

γixi +
n∑
i=1

n∑
j=1

wijγi

(12)

Notice that written in this way it is clear that Lγ(F,FG) is a Fractional Linear function of the

variable x, y, and w. Because for any F and FG, the inequalities of (11) must hold, then, we can

find an upper bound on Lγ(F,FG) for any F and FG, given γ, by solving the following Fractional

Linear Program:

Maximize

n∑
i=1

γixi −
n∑
i=1

γiyi +

n∑
i=1

n∑
j=1

wij(γi − γj)

n∑
i=1

γixi +
n∑
i=1

n∑
j=1

wijγi

subj. to xi + wij −
n∑
k=1

wkj − yj ≤ 0 for i, j ∈ N

xi ≥ 0 for i ∈ N

yi ≥ 0 for i ∈ N

wij ≥ 0 for i, j ∈ N

(13)

Given that the constraints in the maximization problem above are all homogeneous, we can

rewrite this problem, by scaling all the variables, into the following equivalent linear program:

Maximize
n∑
i=1

γixi −
n∑
i=1

γiyi +
n∑
i=1

n∑
j=1

wij(γi − γj)

subj. to
n∑
i=1

γixi +
n∑
i=1

n∑
j=1

wijγi = 1

xi + wij −
n∑
k=1

wkj − yj ≤ 0 for i, j ∈ N

xi ≥ 0 for i ∈ N

yi ≥ 0 for i ∈ N

wij ≥ 0 for i, j ∈ N.

(14)

The optimization problem in (14) is a linear program with variables x, y, and w, and an objective

function bounded above by 1. Thus, we know that strong duality must hold and we can find the
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desired upper bound by studying the dual linear program:

Minimize s

subj. to sγi +
n∑
j=1

λij ≥ γi for i ∈ N

γj − γk + sγk −
n∑
i=1
i 6=k

λij ≥ 0 for k, j ∈ N

γi ≥
n∑
j=1

λij for i ∈ N

λij ≥ 0 for i, j ∈ N.

(15)

Problem (15) in turn can be rewritten as:

Minimize max


1− 1

γi

n∑
j=1

λij


n

i=1

,

 1
γk

 n∑
i=1
i 6=k

λij + γk − γj



n

k,j=1


subj. to γi ≥

n∑
j=1

λij for i ∈ N

λij ≥ 0 for i, j ∈ N

(16)

Let us define f(γ) : [γmin, γmax]n → [0, 1], as the solution to the dual problem (16). Now we

can see that each term that appears in the objective of problem (16) is a quasiconvex function of

both γ and λ, thus, the objective itself is quasiconvex in these variables, because it is the finite

maximization of quasiconvex functions. Moreover, the feasible region of problem (16) is convex in γ

and λ, which means that the function f(γ) must be quasiconvex in γ, because it is the minimization

of a quasiconvex function over a convex set. But then, if we wish to find max
γ∈[γmin,γmax]n

f(γ), then we

need only to look at the extreme points of the hypercube [γmin, γmax]n (see Bertsekas et al. (2003)

for a proof of this result).

Now, as we prove in Lemma 2, if we take the instance where the first n0 values of γ are γmax,

and the rest are γmin, for n0 ∈ N , we can see that the optimal value is max
{
δ, n−1
n+n0+(1−δ)(n−n0)−1

}
.

But, notice that this is a decreasing function of n0, implying that the instance of γ that maximizes

the solution to problem (13) is when n0 = 1. In this case, we recover max
{
δ, n−1
n+(1−δ)(n−1)

}
. Which

proves the theorem.

Lemma 2 The optimal value of the linear program (14), when γi = γmax for all i ∈ {1, . . . , n0},
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and γi = γmin for all i ∈ {n0 + 1, . . . , n}, for all n0 ∈ {1, . . . , n} is

max

{
δ,

n− 1

n+ n0 + (1− δ)(n− n0)− 1

}
,

where δ = γmax−γmin
γmax

Proof. Notice that the linear program (15) is a dual of the linear program (14). Thus, we will

produce a primal and a dual feasible instance, both attaining the proposed optimal value, which will

show that it is indeed the optimal value. For ease of notation, we will define X = n−1
n+n0+(1−δ)(n−n0)−1 .

For this, we consider first the case where δ > X.

In this case, consider the following primal feasible point:

xi = 0 = yi, ∀i ∈ N, w1,n0+1 =
1

γmax
, wij = 0,∀(i, j) 6= (1, n0 + 1)

By simply replacing this values in problem (14), we can see that the objective of δ is achieved.

For the dual problem, let us consider the following feasible point:

s = δ, λij = 0 for j ∈ {(n0 + 1), . . . , n}

λij =
γmin

n0
for i, j ∈ {1, . . . , n0}, λij =

γ2
min

γmaxn0
for i ∈ {(n0 + 1), . . . , n} and j ∈ {1, . . . , n0}.

By evaluating the dual problem in this specific point, we can see that it achieves an objective

value of δ, and it is feasible only when δ ≥ X.

In the case when X ≥ δ, we take the following primal feasible solution:

x1 = 0, xi =
X

(n− 1)γmax
, ∀ i 6= 1, yi = 0,∀ i ∈ N

w1j =
X

(n− 1)γmax
,∀ j ∈ N, wij = 0,∀ i ∈ {2, . . . , n}, j ∈ N.

Simple algebra will show that this solution is primal feasible and achieves the objective value of

X.

Finally, we take the following dual solution:

s = X, λij =
γmax(X − δ)

(n− 1)
, ∀ j ∈ {(n0 + 1), . . . , n}, i ∈ N.
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λij =
γmax
n0

(
1− (n− n0)(X − δ)

(n− 1)
−X

)
,∀ i, j ∈ {1, . . . , n0}

λij =
1

n0

(
γmin(1−X)− γmax(n− n0)(X − δ)

(n− 1)

)
,∀ i ∈ {(n0 + 1), . . . , n}, j ∈ {1, . . . , n0}.

With some algebra, this solution can be seen to be dual feasible when X ≥ δ, and it clearly

achieves an objective values of X because s = X.

Hence, both when X ≥ δ, and when the converse occurs, we have produced dual and primal

feasible solutions that achieve the objective value of max{X, δ}, proving that this must indeed be

the optimal value.

Now that we have proved Theorem 1, we proceed to prove Theorem 2. For this, we need only to

show that we can asymptotically approximate the upper bound proven in Theorem 1.

Proof of Theorem 2 We need only to prove that there exists instances of F, FG, and γ such that

Lγ(F,FG) achieves the values in (6)-(7). For this, we will generalize Instances 1 and 2, for n agents.

We begin by considering an instance family that achieves Lγ(F,FG) = δ, for any n and δ.

Instance 6 Take D = {d1}, such that v(d1) = 1, any n, and γ1 = γmax, γi = γmin ≤ γmax for all

i ∈ {2, . . . , n}. Given this D with only one job, consider F = {A,B}, where A1 = {d1}, Ai = ∅

for all i ∈ {2, . . . , n}, and B1 = ∅, B2 = {d1}, and Bi = ∅ for all i ∈ {3, . . . , n}. Finally, if we

take FG = {B}, then the only efficient allocations would be A, that gives a value of γmax, while, by

definition, the only allocation in FG would be B, which implies that Lγ(F,FG) = γmax−γmin
γmax

= δ.

Now we present a family of instances that have Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε, for any ε > 0,

where FG = FmM
G is the restriction to only Max-Min fair allocations. In Instance 2 we presented an

instance for two agents given by three jobs that had the following properties: two of the jobs could

be fulfilled by any single provider, while one of the jobs overlapped with all the other jobs and thus

could only be assigned by itself to a provider. We will generalize these properties now to 2n− 1 jobs.

Instance 7 Given any n, let D = {d1, . . . , dn, . . . , d2n−1}, such that v(di) = 1, for all i ∈ N , and

v(dj) = 1− κ, for j ∈ {n+ 1, . . . , n}. Let as well γ1 = γmax ≥ γmin = γi, for all i ∈ {2, . . . , n}. A

subset A ⊆ D can be assigned to a single provider if either dj /∈ A, for all j ∈ {n+ 1, . . . , 2n− 1}, or

A = {di} for some i ∈ {n+ 1, . . . , 2n− 1}. Let F be formed by all possible disjoint combinations of

36



such subsets of D. Let p : P(D)→ R be a strict monotonic payment function satisfying both (3) and

v(S) > v(T )⇒ p(S) > p(T ), ∀S, T ∈ P(D).

Let FmM
G (p,N) be the associated Max-Min fair restriction, as described in (4).

Given this instance, the only efficient allocation would be A, such that A1 = {d1, . . . , dn},

Ai = {dn+i−1} for 2 ≤ i ≤ n. That is, we assign all the first job to one provider and distribute the

remaining jobs between the remaining providers. Moreover, the only allocation in FmM
G (modulo

symmetries) is given by B, such that Bi = {di}, for 1 ≤ i ≤ n. As in the n = 2 case, this is

due to smaller 1 − κ value generated by the last n − 1 jobs and the monotonicity of the payment

function p(). Hence, this instance generates a Lγ(F,FG) of (nγmax+γmin(n−1)(1−κ))−(γmax+(n−1)γmin)
nγmin+γmax(n−1)(1−κ) =

(n−1)γmax−κγmin

(nγmax+γmin(n−1)(1−κ) →κ→0

n−1
n+(1−δ)(n−1) . Therefore, for any ε > 0, there exists a κ small enough such

that Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε.

Instance 8 Given any n, and t, positive integers, let D = ∪tk=1C
k ∪ S, where Ck = {dk2, . . . , dkn},

and S = {ds1, . . . , dsn(t+1)}. Let as well γ1 = γmax ≥ γmin = γi, for all i ∈ {2, . . . , n}. A subset of

jobs A ⊂ D can be assigned to a single provider if either A ∩ ∪tk=1C
k = ∅, or |(A ∩ Ck)| ≤ 1, for

each k ∈ {1, . . . , t} and A ∩ S = ∅. Let F be formed by all possible disjoint combinations of such

subsets of D. Let, as well v(d) = 1, for all d ∈ D, and p : P(D)→ R be a strict monotonic payment

function satisfying both (3) and

v(S) > v(T )⇒ p(S) > p(T ), ∀S, T ∈ P(D).

Let FmM
G (p,N) be the associated Max-Min fair restriction, as described in (4).

Given this instance, the only efficient allocation (modulo symmetries) would be A, such that

A1 = S, Ai = {d1
i , d

2
i , . . . , d

t
i}, for all i ∈ {2, . . . , n}. That is, we assign all the jobs in the set S to the

provider that generates the highest value, and we assign one job of each Ck to the rest of the providers,

for a total of t jobs. Moreover, the only allocations in FmM
G are of the form B, such that Bi ⊆ S, and

|Bi| = t+ 1, for each i ∈ N . In other words, we divide the (t+ 1)n jobs of S among all the providers

equally. In the efficient allocation all providers, except for the first one, are being allocated exactly t

jobs, while in any Max-Min fair allocation, all providers are being allocated exactly t+ 1 jobs. Hence,

the loss generated by this instance, that comes from the fact that none of the jobs in ∪tk=1C
k are

allocated for any allocation in FmM
G , is (t+1)nγmax+t(n−1)γmin−(t+1)(γmax+(n−1)γmin)

(t+1)nγmax+t(n−1)γmin
= t(n−1)+δ(n−1)

t(n+(n−1)(1−δ))+n .
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Therefore, for any ε > 0, there exists a t large enough such that Lγ(F,FG) = n−1
n+(1−δ)(n−1) − ε.

1

1 1

1− κ 1− κ

1

1 1

1 1

1

1

1

1

1

Figure 9: Feasibility graphs for Instance 7 (left), when n is 3, and Instance 8 (right), when n is 3 and
t is 1.

To better visualize the structure of Instances 7 and 8, we can imagine a graph on the elements of

D, where a set of jobs can be assigned together only when there is no edge between any pair of the

corresponding vertices. Thus, in the case of Instance 7, there would be no edges between any pair

of the first n vertices, while every pair of the last n− 1 vertices would be joined by an edge. Finally,

every vertex of the last n−1 will be adjacent to all of the first n vertices. An example for 3 providers

of this graph can be seen in Figure 9. These types of graphs are known as complete split graphs (see

Le and Peng (2015)). Similarly, in the case of Instance 8, there would be no edges between any pair

of vertices in the set S, while each pair of vertices in the same Ck would be connected by an edge.

Moreover, every vertex in S would be connected to every vertex in each of the Ck. An example for

3 providers, and t = 1 can be seen in Figure 9. An allocation of the jobs can be seen as a covering

of this graph by independent sets (sets of vertices without any edge joining two vertices of the set).

The family of Instances 6, 7, and 8 prove that Lγ(F,FG) can be taken as close to max
{
δ, n−1
n+(1−δ)(n−1)

}
as desired. This concludes the proof of Theorem 2.

We now proof Proposition 1.

Proof of Proposition 1. If we have that FG = arg max
A∈F

g(A), then if A ∈ FG, and B ∈ F satisfy

that v(Bi) ≥ v(Ai), for each i, then we know by the statement of the Proposition that g(B) ≥ g(A),

38



which implies that B ∈ arg max
A∈F

g(A) = FG, proving that Assumption 2 holds. On the other hand,

if we assume that Assumption 2 holds for a certain FG, then let us consider the function g : F → R,

defined by g(A) = 1Fr(A), that takes the value 1 when A ∈ FG, and 0 otherwise. Thus, by

definition FG = arg max
A∈F

g(A). Moreover, if g(A) = 1, and B ∈ F is such that v(Bi) ≥ v(Ai), for all

1 ≤ i ≤ n, then, because FG satisfies Assumption 2, B ∈ FG, which implies that g(B) = 1 ≥ g(A).

Therefore, g() satisfies the condition of Proposition 1, which concludes the proof.

Proof of Proposition 2 It is clear that if we have a union of income guarantees, then Assumption 2

is satisfied, thus, we only need to prove that any FG that satisfies this assumption can be expressed

as such union. For this, take any FG that satisfies Assumption 2, and consider for each A ∈ FG,

the guarantee FG
A = {B ∈ F | v(Bi) ≥ v(Ai),∀ i ∈ N}. We claim than ∪A∈FG

FG
A = FG. Clearly

FG ⊆ ∪A∈FG
FG

A, because each A ∈ FG
A. Moreover, if C ∈ ∪A∈FG

FG
A, then there exists A ∈ FG,

such that v(Ci) ≥ v(Ai), ∀ i ∈ N , but then by Assumption 2, C ∈ FG, which concludes the proof.

We now present Instance 9, that shows how when we relax Assumption 1 (ii), we can achieve a

loss that grows asymptotically to 100% with the number of providers.

Instance 9 Consider n = 2k − 1, for any integer k > 0, D = {d1
1, . . . , d

1
k, . . . , d

k
1, . . . , d

k
k}, and

F = {A | Ai ⊆ {di1, . . . , dik}, for i ∈ {1, . . . , k}, Aj ⊆ {d1
j−k, . . . , d

k
j−k}, for j ∈ {k+ 1, . . . , 2k−1}}.

Let v(d) = 1
k , for d ∈ D, let γi = 1 for i ∈ {1, . . . , k}, and γj = 1

k for j ∈ {k+ 1, . . . , 2k− 1}, and

let pi(Ai) = γi
∑
d∈Ai

v(d). Then

Lγ(F,FmM
G (p,N)) = 1− 4n

(n+ 1)2
.

Where FmM
G is the allocations that satisfy Max-Min fairness, as defined in (4).

To see this, notice that the only Max-Min fair allocation, that would leave each provider with a

p(Bi) = 1
k , for i ∈ N , is (modulo permutations) B, such that Bi = {dik}, for i ∈ {1, . . . , k}, and

Bj = {d1
j−k, . . . , d

k
j−k}, for j ∈ {j + 1, . . . , 2k − 1}. This allocation would lead to a total value of

2k−1
k . On the other hand, the value-maximizing allocation would only allocate jobs to the first k

providers, by taking A such that Ai = {di1, . . . , dik}, for i ∈ {1, . . . , k}. This would lead to a total

value generated of exactly k, which would imply that
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Lγ(F,FmM
G (p,N)) =

k − 2k−1
k

k

= 1− 4n

(n+ 1)2
.

Notice finally that this instance does not satisfy Assumption 1 (ii), because the first k providers

can complete any subset of trips from {di1, . . . , dik}, for provider i ∈ {1, . . . , k}, but the last k − 1

providers can only perform subsets of {d1
j−k, . . . , d

k
j−k}, for provider j in {k,. . . , 2k-1}. Therefore,

almost any permutation of a feasible allocation would lead to an unfeasible allocation.

We will now prove Propositions 3 to 7 from §4.

Proof of Proposition 3. In order to prove this proposition, we will first formally define the set

of guarantees Fc
G, as any subset of Fc, that satisfies Assumption 2, replacing in the definition of

the assumption F by Fc, and using the generalized notion of v(Ci) for C ∈ Fc, described in §4. In

particular, we extend the notion of uniform income guarantees under monotonic payment functions:

given p(·), a monotonic payment function, we take Fc
G = {C ∈ Fc | p(Ci) ≥ τ, for i ∈ N}. As in

§2.3, it is easy to see that these guarantees satisfy the extended version of Assumption 2. Now, we

will prove that given any uniform income guarantee, Lγ(Fc,Fc
G) = 0.

Consider any allocation A ∈ F*. We know that any permutation Aσ of A is as well in F,

hence, take C ∈ Fc, such that C = ({θσ}σ∈Sn , {Aσ}σ∈Sn), where Sn is the symmetric group of

all permutations of N , θσ = 1
n! , and Aσ is a specific permutation of A. Hence, v(Ci) = v(Cj) =

n∑
i=1

1

n
v(Ai), for each i 6= j ∈ N . This implies that C must be in any non empty uniform income

guarantee. To see this, let us assume by contradiction that there is a nonempty Fc
G such that

C /∈ Fc
G. Without loss of generality, because they both induce the same ordering on the subsets

of D, we will assume that p(·) = v(·). Hence, C /∈ Fc
G implies that the corresponding income

guarantee, τ is greater than

n∑
i=1

1

n
v(Ai). But then there must exist at least one B ∈ Fc such that

v(Bi) ≥ τ >
n∑
i=1

1

n
v(Ai), for each Bi, which implies that

n∑
i=1

v(Ai) <
n∑
i=1

v(Bi) =
n∑
i=1

k∑
j=1

θjv(Bj
i ) =

k∑
j=1

θj

n∑
i=1

v(Bj
i ) ≤

k
max
j=1

n∑
i=1

v(Bj
i ). But then, there exists an allocation Bj ∈ F, that achieves a

higher total value than A ∈ F*, which leads to a contradiction and proves the proposition.

Proof of Proposition 4.
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Let k̂ =

n∑
i=1

ki, and let us assume that D = {d1, . . . , dm}, where jobs are ordered decreasingly in

v(di), then, for any allocation A ∈ F*,

n∑
i=1

v(Ai) =

k̂∑
j=1

v(dj).

To see this notice that the total amount of jobs that can be allocated is k̂, and thus, if the total

value generated in any A ∈ F* were less than γmax

k̂∑
j=1

v(dj), then take the job with smallest intrinsic

value being allocated, and replace it by the job with highest intrinsic value in {d1, . . . , dk̂}\ (∪ni=1Ai).

This replacement would generate a feasible allocation, and would improve the total value generated,

which leads to a contradiction because A ∈ F*.

Now to prove that Lγ(F,FG) = 0, we will proceed in two steps, first, we will show that any

allocation B ∈ F can be Pareto dominated, in the sense of Assumption 2, by an allocation A inF,

that uses only jobs in {d1, . . . , dk̂}, the second is that any allocation C ∈ A, that uses only jobs in

{d1, . . . , dk̂} can be Pareto dominated by an allocation C inF, that uses all jobs in {d1, . . . , dk̂}. By

transitivity of the Pareto dominance, this will imply that any allocation can be Pareto dominated by

an allocation that uses all elements in {d1, . . . , dk̂}, and therefore is in F*, which, by Assumption 2,

will imply that there is an element of F* in FG, therefore Lγ(F,FG) = 0.

Take any allocation B ∈ A, if (∪ni=1Bi) \ {d1, . . . , dk̂} = ∅, then B allocates only elements of

{d1, . . . , dk̂}. Otherwise, consider A such that we replace in B every job in (∪ni=1Bi) \ {d1, . . . , dk̂}

by an element in {d1, . . . , dk̂} \ (∪ni=1Ai). Because every job we replaced must have a lower intrinsic

value than any job in the first k̂, then we know that v(Bi) ≤ v(Ai), for each i ∈ N .

Now, assume we have a A ∈ F, such that only jobs in {d1, . . . , dk̂} are allocated, then if there are

any jobs in the first k̂ not allocated in C, this means that there is at least one provider i such that

|Ai| < ki. Consider then the allocation C ∈ F, such that we add jobs from {d1, . . . , dk̂} to A, until

all |Ai| = ki. This allocation C Pareto dominates allocation A, and uses exactly all elements in

{d1, . . . , dk̂}. Hence, as mentioned above, this proves that Lγ(F,FG) = 0, for any FG, satisfying

Assumption 2.

Proof of Proposition 5.

We begin by proving (i). Without loss of generality, we will normalize v(d) = 1, for all d ∈ D.

To show that we have zero loss under any uniform income guarantee FG, we will show that when

|D| < n, maxA∈F minni=1 v(Ai) = 0, and when |D| ≥ n, maxA∈F minni=1 v(Ai) = 1.

When |D| < n, any allocation A ∈ F will necessarily have an Ai = ∅, which implies that
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maxA∈F minni=1 v(Ai) = 0. On the other hand, if |D| ≥ n, then for any A ∈ F, each Ai is either

{dCj }, for some dCj ∈ C, or Ai ⊆ S. In the first case, v(Ai) = 1, in the second case, v(Ai) = |Ai|.

Thus, the only way of having minni=1 v(Ai) > 1, would be if each Ai ⊆ S, and |Ai| ≥ 2, for

all i ∈ N , but this implies that |S| ≥ 2n, which in turn contradicts our hypothesis. Therefore,

maxA∈F minni=1 v(Ai) = 1.

In both cases outlined above, F* will always contain an allocation A, such that minni=1 v(Ai) =

maxB∈F minni=1 v(Bi), which implies that Lγ(F,FG) = 0, for any uniform income guarantee under

monotonic payment functions, FG.

Now, to show (ii), we simply observe that Instance 5 is a generalized form of Instance 2, and that

by taking v(d) = 1− κ, for all d ∈ C, v(d) = 1, for all d ∈ S, and |C| = n− 1, |S| = n, we obtain

exactly Instance 2, when n = 2, and Instance 7 when n ≥ 2.

We now describe Example 2, that shows how the dependency of the loss on the variance of the

values described in Example 1 extends to the n provider case.

Example 2 Consider a variant of Instance 7, where the κ term is taken to be a random variable,

κ ∼ U [−∆
2 ,

∆
2 ], and γmin = γmax = 1. Thus, the value vi = v(di) = 1 − κ ∼ U [1 − ∆

2 , 1 + ∆
2 ], for

each i ∈ {n+ 1, . . . , 2n− 1}. Hence, if we take the expectation of the loss, with respect to the error

κ, we get

Eκ(Lγ(F,FG)) =

∫ min{1,∆
2
}

0

1

∆

(n− 1)(1− κ)

n+ (n− 1)(1− κ)
dκ

=
1

∆

(
n

n− 1
log((n− 1) min{1, ∆

2
} − (2n− 1)) + min{1, ∆

2
} − n

n− 1
log(2n− 1)

)
:= g(∆).

As in Example 1, it can be seen that g(∆) is decreasing in ∆, which implies that it is decreasing in

the variance of the values, for higher variance, there is a lower expected loss.

Proof of Proposition 6. We will first prove statement (i), namely, that if n = 1, and γmin = γmax,

then Lγ(F,FG) = 0, for any symmetric set of allocations with guarantees, FG. To show this, we

simply observe that due to Assumption 2, any A ∈ F*, must also satisfy A ∈ FG, because clearly

for any B ∈ FG, v(B1) ≤ v(A1).

Now, we will show that (ii) holds. For this, we will show that the loss is zero when n ≥ |D|,

for any set of allocations with guarantees. For this, we assume without loss of generality that it
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is always feasible to allocate at least one job any specific provider (if not, then there is a job that

cannot be completed by any provider, and we could then simply ignore it). Hence, we claim that

maxA∈F
∑
i

v(Ai) =
∑
d∈D

v(d). This is because when n ≥ |D|, we can always allocate all jobs by

allocating one job per provider to the first |D| providers.

Now, we claim that in F*
G there exists an allocation B, such that D ⊆ ∪iBi. To see why this

is, assume to the contrary that no such allocation exists. Then, take any A ∈ F*
G, there exists

thus d ∈ D such that d /∈ ∪iAi. Moreover, because |D| ≤ n, then there exists a provider i, such

that Ai = ∅. Hence, simply take A′ such that A′j = Aj , for j 6 i, and A′i = {d}. This leads to

a contradiction, because by Assumption 2, A′ ∈ FG, and
∑
i∈N

v(A′i) >
∑
i∈N

v(Ai), but A ∈ F*
G.

Therefore, there exists an allocation B ∈ F*
G, such that D ⊆ ∪iBi, and thus

∑
i∈N

v(Bi) =
∑
d∈D

v(d),

which implies that Lγ(F,FG) = 0, for any set of allocations with guarantees FG.

Proof of Proposition 7. Without loss of generality, we can assume that all intrinsic values are 1,

that is, v(d) = 1, for each d ∈ D. Now, because m < 2n, and because we can always allocate only

one job to any provider, then maxA∈F mini∈N v(Ai) = 1. Hence, any uniform income-guarantee can

at most guarantee the payment produced by exactly one job. Therefore, because there always exists

an allocation in F* that allocates at least one job to each provider, we conclude that Lγ(F,FG) = 0,

under any uniform income-guarantee under monotonic payment functions.

B Numerical Analysis of Synthetic and Real-world Data

In this section we provide the details of the numerical analysis we discuss in §5. The objective of

this analysis is to demonstrate both the magnitude of the relative loss and the different drivers of

this loss in a particular setting covered by our general theoretical analysis.

Instances generated with real-world data. We used the publicly available dataset provided

by NYC Taxis and Limousine Commission. This dataset includes, for each yellow-taxi ride, the

total fare, the starting and ending location as well as total time of the ride. We considered several

dates (from January 4 to January 8, 2016). For each of these dates we looked at the trips that

started between 9 am and 5 pm, in order to restrict our attention to a time horizon with a relatively

constant rate of trips per time. Moreover, for each date, we filtered the trips that started and ended

in a limited region of Manhattan (we took Midtown, Upper West Side and Upper East Side). By
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considering this small geographical region, we limit the effect of spacial considerations, and better

conform to Assumption 1(ii), that any feasible set of jobs could be performed by any provider. In

Figure 10 we can see the empirical distribution of the total trip duration and total fare payed, for

Midtown Manhattan, on January 8, 2016. In particular, for this specific date we can see that the

mean in total duration for this region is of 7.41, while the variance is 13.48. At the same time the

mean of the total fares is $8.68, and the variance is $5.63. Finally, we also cleaned the data by

removing the trips in the top 0.1% of both total time elapsed and total fare, this removed several

outliers that were clearly due to corrupted data (trips of almost 24 hours or more than $1000).
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Figure 10: (left) Empirical distribution of the duration of trips. (right) Empirical distribution of the total
fare trips.

In order to compute the average relative loss when considering only Max-Min fair solutions, we

generated demand instances using this data. We partitioned the time horizon into intervals of w

minutes, and from each of these intervals we sampled 30 trips uniformly at random. We considered

different values of w, from 10 to 20 minutes. We defined feasible allocations to satisfy that no trips

that intersected in time would be allocated to the same provider. Then, we solved for both the

total value-maximizing solution and for the value-maximizing solution among the Max-Min fair

solutions, for a varying number of providers. For this, we used a Integer Programming formulation

of the allocation problems. In order to obtain the Max-Min fair allocations, we first solved for the

Max-Min objective and then constrained the allocations to ensure that all providers received at least

that amount of total fare. We limited ourselves to 30 jobs, because of computational considerations

(solving for the Max-Min solution is NP-hard in general). Once obtained the two value-maximizing
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solutions, we computed the total relative loss across the whole time horizon by taking the relative

difference of total value with and without the Max-Min fair restriction. We sampled the instances

100 times, and computed for each number of providers the average value loss across these 100

samples.

In Figures 11-12 we can see the relative value loss as a function of the number of providers, for

different combinations of dates, regions, and size of interval, w. We show here a representative set

of our results, the complete set of results is available upon request.

We can see in Figure 11 that there doesn’t seem to be much difference from region to region. We

observed similar results across the three regions for all the combinations of dates and values of w

we tested. In Figure 12 we see that for the same region but different dates the relative losses do not

appear to change much. Nevertheless, by comparing Figure 11 to Figure 12 we observe that the

losses do seem to increase when w is decreased. This is consistent with the fact that we are taking

the same number of jobs in both, resulting in a higher density of trips per time when we decrease w.

In both Figures 12 and 11 we observed the same pattern mentioned in §5 regarding the effect

of the providers to job ratio on the loss, namely, for extreme values of this ratio the loss collapses

to zero, and the loss achieves it’s maximum value at an intermediate value. Moreover, for every

day and region we analyzed we observe that the curves of maximum losses and average losses are

relatively close together, implying that the low average losses are due to frequent low losses, as

opposed to infrequent high losses.

0 5 10 15 20 25
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Midtown, January 8, 2016

average loss

maximum loss

0 5 10 15 20 25
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Upper East Side, January 8, 2016

average loss

maximum loss

0 5 10 15 20 25
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Upper West Side, January 8, 2016

average loss

maximum loss

Figure 11: Relative value loss for different regions. Average and maximum Lγ(F,FG) as a function
of the number of providers, for instances with 30 jobs constructed from the data, using w = 20 and three
different regions of NYC.

Synthetically generated Instances. In order to analyze the dependency between the variation

of values and the relative value loss we mention in §4, we generate synthetic instances where we can
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Figure 12: Relative value loss for different dates. Average and maximum Lγ(F,FG) as a function
of the number of providers, for instances with 30 jobs constructed from the data, using w = 15 and three
different dates of the first week of 2016.

control this variation. In particular, for each instance we sample uniformly 30 starting points in

the interval (0, x] ⊆ R, for different x in the interval (1, 3), and for each point we sample from a

truncated normal distribution the length of the interval. We take this truncated normal distribution

with mean 1 and a coefficient of variation cv varying from 0.001 to 0.5. Each interval represents

a specific job (similarly to the trips in the TLC data). We consider the value of the each job to

be exactly the length of the interval. As was the case with the trips, we will assume that two jobs

cannot be allocated together if their intervals overlap. Therefore, we can measure the average loss

for different values of the coefficient of variation of the intervals lengths. We take the average loss

over 100 samples for each coefficient of variation. The results for a representative subset of values

of x can be seen in Figure 13. We observe that the main characteristics of the relative loss as a

function of the ratio of providers to jobs is maintained for different values of x, with the difference

that for lower x we observe higher maximum values of relative loss. As occurred with the instances

generated with the TLC data when lowering w, this may be due to the fact that we take instances

of 30 jobs for all the values of x, which implies that the probability that two jobs are incompatible

is lower for larger x.

We can see in Figure 13, as we mentioned in §5, that the maximum loss in decreasing in the

coefficient of variation of the values, consistent with the remarks of §4 on the variation of values

as a driver of loss. Nevertheless, in the instances we generated for Figure 13, the variation of the

values is intrinsically connected to the variation in the sizes of the intervals we took to generate the

feasibility restrictions. Hence, in order to isolate the effect of the variation of values, we took the

same instances, but where we fixed the length of each interval (representing a job) to be exactly 1,

for feasibility purposes. We then plotted the average losses as before in Figure 14. By comparing
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Figure 13 and 14, we can see that the effect of the variation in values on the loss remains, although

we do observe slightly higher losses, in particular for the cases with large coefficients of variation.

As a second robustness test on this effect we computed the loss for each instance when we

completely remove the variation in values. For this, we simply take all instances we generated

(both from the data and the synthetically generated) and we fix all values to be 1. The resulting

losses, under Max-Min fair guarantees, are always zero, for all instances. This once again affirms

the importance of the variation in values as a main driver of loss in these instances, so much so that

when we remove it the losses disappear.

This numerical analysis shows that the average loss may be small in particular instances that are

included in our general theoretical analysis. And moreover it demonstrates the effect of many of the

main drivers of loss we analyzed in §4.

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.3

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.4

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.5

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.6

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.7

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

5 10 15 20 25 30
Number of Providers

0

2

4

6

8

R
el

at
iv

e
L

os
s

(%
)

Synthetic instances with x= 1.8

CV: 0.500

CV: 0.400

CV: 0.300

CV: 0.200

CV: 0.100

CV: 0.001

Figure 13: Synthetic instances for x varying from 1.3 to 1.8.
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Figure 14: Synthetic instances with fixed interval length for x varying from 1.3 to 1.8.
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