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Abstract Probabilistic models have become increasingly widespread in theoretical linguistics
in recent years, including formal semantics and pragmatics. This article begins by outlining the
semantics of probability and Bayesian update, explaining how they follow as a simple upgrade of the
familiar possible-worlds model of meaning and discourse dynamics. It then turns to survey the large
but scattered literature on formal models and experimental investigations of epistemic vocabulary
and conditionals that have been informed by probabilistic thinking, with attention to contributions
from linguistics, logic, philosophy of language, epistemology, computer science, and experimental
psychology.
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There may be circumstances in which it is not unwise to cling to illusions, but in
science we need a very different attitude, the inductive attitude. This attitude aims at
adapting our beliefs to our experience as efficiently as possible. ... It requires a ready
ascent from observations to generalizations, and a ready descent from the highest
generalizations to the most concrete observations. It requires saying “maybe” and
“perhaps” in a thousand different shades.

— Pólya (1954: 7)

1 Introduction

Research in formal semantics and pragmatics has historically been oriented toward deterministic
logics, but in recent years there has been a surge of interest in integrating quantitative models of
uncertainty into the traditional toolkit. This trend has been due to many factors, including but not
limited to: the rise of probabilistic models in all areas of computational linguistics; a surge of
interest among researchers interested in meaning in psycholinguistic methods and theory, which also
make extensive use of probabilistic models; and increased theoretical engagement with quantitative
models of uncertainty and decision-making as they are used in other areas of cognitive science,
including language processing, reasoning, learning, attention, memory, perception, motor control,
and many other domains.

* Thanks to Luis Alonso Ovalle, three anonymous reviewers, and Boram Kim for helpful comments and discussion.
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This action been enabled to a considerable extent by the rise of Bayesian methods of analysis.
Bayesianism has been around for a long time, with a hard core of advocates in statistics, decision
theory, philosophy of science, and epistemology. However, its widespread adoption in psychology
and linguistics was hindered for many decades by the computational complexity of Bayesian
inference, which made it difficult to determine the predictions even of many simple models. With fast
modern computers and new methods of simulation and approximation, this issue is less problematic,
and Bayesian models have been widely employed in recent cognitive science. One insight that
has emerged clearly from this work is that the traditional opposition between structured/logical vs.
statistical/probabilistic models is misguided (e.g., Tenenbaum, Kemp, Griffiths & Goodman 2011).
Logical and probabilistic methods are not in competition: they can be combined productively in
many ways, and indeed probability is best viewed as an extension of classical logic rather than a
competitor.

For research in formal semantics and pragmatics, there are several points of interface with
Bayesian models in other areas. For example, probabilistic models of syntactic and semantic
processing drawn from computational psycholinguistics (e.g., Jurafsky 2003; Chater & Manning
2006; Crocker 2010) and from cognitive architectures (Anderson 2009) have considerable relevance
to semantic and pragmatic theory (e.g., Brasoveanu & Dotlacil To appear). Bayesian theories of
human learning (Perfors, Tenenbaum, Griffiths & Xu 2011; Perfors 2012), including language
learning (Chater & Manning 2006) provide another important point of theoretical contact. A third
connection involves the use of computational models that integrate Bayesian reasoning into a
game-theoretic perspective on formal pragmatics (Frank & Goodman 2012; Goodman & Lassiter
2015; Franke & Jäger 2016).

This article focuses on a different interface: the potential for Bayesian models of knowledge
representation, reasoning, and decision-making to inform the representation of information, the
lexical semantics of modal language, and reasoning processes that involve modal language. I will
survey some of the ideas about knowledge representation and modal semantics/reasoning that have
recently emerged from this perspective, starting with a brief primer on Bayesian reasoning. To
begin, we’ll review the semantics of probability and see how it might be used to illuminate what
Pólya (1954) called “‘maybe’ and ‘perhaps’ in a thousand different shades”.

2 The “inductive attitude”: Probability and Bayesian inference

The most common way of representing information in semantic and pragmatic research is the
“sets-of-worlds” conception, derived from work in modal logic and semantics. Sets-of-worlds
models essentially treat the distinction between things that have been excluded from consideration
and things that are still relevant to reasoning. For example, the set of “epistemically possible” (or
“accessible”) worlds E is a set of possibilities that are not excluded by what is currently known.
If some proposition A is known, then E entails A — E ⊆ A — and E excludes A’s complement —
E ∩ Ā = ∅. Any set of worlds (proposition) that is entailed by E is a necessity relative to E . A set of
worlds B that is not excluded by E—where E ∩B ≠ ∅—is a possibility relative to E . (These notions
can equally be used for non-epistemic concepts, such as teleological or deontic possibility and
necessity, but this is not our focus at the moment.)
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Generalizing a bit, it is often useful to reason about “sets-of-X” for more complicated objects X.
If our uncertainty involves something with a bit more structure—say, worlds w paired with a center
c, as in centered-worlds theories of the de se (Lewis 1979)—we can model uncertainty using a set
of ⟨w,c⟩ pairs, each consisting of a world and a center. This idea is easily generalized to uncertainty
about structured objects of greater complexity—e.g., those used in QUD theory (Roberts 2004) or
Inquisitive Semantics (Ciardelli, Groenendijk & Roelofsen 2013).

Sets-of-X models are naturally associated with a simple treatment of learning: learning involves
modifying the set to exclude things that are incompatible with what has been learned, without
changing anything else. (This is sometimes called “Stalnakerian update”, after Stalnaker (1978).)
Formally, this means that update is an intersection operation. For example, suppose that the
epistemically possible worlds at time t1 are E1, and then at t2 we learn that it is snowing (snow), and
nothing else. The proposition that it is snowing is represented by the set of possible worlds where it
is snowing, snow. So, at t2 our information is represented by E2 = E1∩ snow (Figure 1, left column).
This is the most conservative update of our information: from the set of worlds representing what
we knew at t1, we exclude any world where it is not snowing, and do not change anything else.

This kind of model encodes some useful properties of states of information and their dynamics.
For instance, snow is possible both before and after update, as is the proposition A which intersects
both E1 and snow. In addition, E2 is a subset of snow, and so snow is a necessity relative to E2.
However, note that we have not learned anything about A—at least, nothing that can be stated in the
language of possibility and necessity that we are using. A was possible before update with snow
and remains possible afterwards. For some choices of A this seems sensible—for instance, if A were
a proposition about the diameter of the earth, learning about the state of weather has no relevance
to it. But for many choices of A we humans seem to have subtler intuitions than this model can
capture. For example, if A were The temperature is between 20 and 30 degrees Fahrenheit, learning
that it is snowing would in many situations render A more likely, without yet making it a necessity.
To model such non-categorical effects, we need a model of information and its dynamics that can
represent the way that learning about one proposition can be informative about another—without
having to do anything as drastic as changing it from a possibility to a necessity, or from a possibility
to an impossibility.

The probabilistic model of this situation is strictly richer than the sets-of-worlds model. The key
components remain—possible worlds, propositions as sets of worlds, and update as exclusion—but
we also tag propositions with numerical values that serve to measure their probabilities. For finite
sets of possible worlds W—which we’ll focus on, just to keep the math simpler—the additional
constraints are:

i. P is a function from propositions (subsets of W ) to numbers between 0 and 1.

ii. Every proposition has a probability greater than or equal to 0.

iii. A tautology has the maximum possible probability — i.e., P(W) = 1.

iv. If propositions A and B are disjoint (A∩B = ∅), then the probability of their disjunction
(P(A∪B)) is equal to the sum of their probabilities (P(A)+P(B)).

In the right column of Figure 1 we see the probabilistic upgrade of the sets-of-worlds model. The
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Figure 1
Update in the intersective/Stalnakerian (left column) vs. Bayesian (right column)
models. Comparison from left to right reveals that the key features of the sets-
of-worlds model have been preserved in the Bayesian model, with the addition of
quantitative information. Comparison from top to bottom shows the closely related
learning dynamics of the models.

top right panel shows the state at t1, before we have learned that it’s snowing. E1 is divided into two
parts, one where it’s not snowing (probability a) and one where it is (probability b). The portion of
snow outside E1 has probability c, and the rest of logical space (W −E1− snow) has probability d.
By rule (ii) of probability theory we know that a,b,c,d ≥ 0. Since probabilities of disjoint sets add
up by rule (iv), the union of the four sets E1− snow, E1∩ snow, snow−E1, and W −E1− snow has
probability a+b+c+d. But since these sets cover logical space, their union is W . Since P(W) is
1 by rule (iii), we can infer that a+b+c+d = 1. So, the rules of probability theory already place
substantial constraints on the kinds of models we can entertain, even without knowing anything
about the values a, b, c, and d.

So far we have added nothing to the sets-of-worlds conception beyond the notion of a probability
measure and the associated constraints. One additional constraint that is helpful in bridging these
models of information is to stipulate that, at any time i, the value of Pi(Ei) is 1: the set of
epistemically accessible worlds always has probability 1. This implies that any B that is not possible
(does not overlap with E i) has probability 0, and any B that is necessary (is entailed by/a superset
of E i) has probability 1. This additional constraint ensures that we do not wind up with a strange
model where, for example, It is not snowing is considered impossible (excluded by the relevant E i)
but has a high probability of being true.
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The basic approach to update in a Bayesian model is to take in some new observation—here,
It’s snowing—and incorporate it into the model in the most conservative way possible. Here
again, “conservative” means that we ensure that we don’t change anything except as demanded
by our evidence, as Polya’s inductive attitude demands (“adapting our beliefs to our experience as
efficiently as possible”). The most common update rule for probabilistic models is conditioning,
also known under the moniker Bayesian update. Conditioning has a close connection to Stalnakerian
update, which starts with a contraction of the set of worlds initially considered possible, E1, to the
subset compatible with the observation snow—so, an update function that takes E1 and snow and
outputs E2 = E1∩ snow. When we apply this operation to a probabilistic model, some probability
will typically be lost: whatever was assigned under E1 to no snow. This portion of logical space
now has probability 0, and so we must somehow adjust the probabilities of propositions that overlap
E2 in order to ensure that the rule P(W) = 1 is satisfied. It turns out that conditioning is the most
conservative way to do this, in the sense that it is the only update operation that does not add any
information beyond the fact that the observation snow is true (Williams 1980).

Update by conditioning requires that if we learn snow at time t2, the updated probability measure
P2 will assign any proposition A a probability equal to

P1(A ∣ snow) = P1(A∩ snow)/P1(snow).

To see why this is necessary, note that—in order to ensure that we don’t redistribute probability in a
way that is not justified by our observation—P2(A) should be proportional to whatever value It’s
snowing and A is true had at t1, for every A.1 P2(A) is proportional to P1(A∩ snow), rather than
equal, because the only way to ensure that the updated probability measure meets condition (iii) is
to divide everything by the probability of snow. So, P1 and P2 are related by:

∀A ⊆W ∶ P2(A) = P1(A ∣ snow) = P1(A∩ snow)
P1(snow) (if this ratio is defined)

Since we are also requiring that Pi(Ei) = 1 at any time i, we can summarize Bayesian update on
snow as a three-step process. First, perform Stalnakerian update, contracting E1 to E2 = E1∩ snow.
Second, modify the probability measure by assigning probability 0 to any proposition excluded by
E2. Third, adjust the probabilities of every other proposition as conservatively as possible while
satisfying the requirement that P2(W) = 1. The result is that P2(A) must be equal to P1(A ∣ E2).

The probabilistic upgrade of the sets-of-worlds model still allows us to use the language of
possibility and necessity: things excluded by the relevant E i are impossible, those entailed by E i
are necessary, and so on. But we also have access to much more information about the relative
degrees of probability of various propositions. Importantly, the probabilistic model allows us to
make sense of the intuition that learning snow can be informative about a proposition A even when
A is compatible with both the original and the updated epistemic states. As we saw, the language of
(im)possibility and necessity is not rich enough to treat our intuitions here: snow can be informative

1 In a bit more detail: conservative update on snow means that, for any two propositions B and C, the ratio of the
probabilities-after-update P2(B)/P2(C) is (if defined) equal to the ratio of the probabilities-before-update P1(B∩
snow)/P1(C∩ snow). If you have only learned that it’s snowing, adjust the relative probabilities of B and C to the
extent that you previously thought they were probabilistically related to snow, and no more.
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about A without making it necessary or impossible. Bayesian update gives us an account of this
subtler kind of reasoning. Learning snow takes us from P1(A) to

P2(A) = P1(A ∣ snow) = P1(A∩ snow)/P1(snow)

For example, the relative probability of A and Ā changes from P1(A)
P1(Ā)

to P1(A∩snow)
P1(Ā∩snow) . There is no

reason why these ratios should be the same. If A is The temperature is between 25 and 30 degrees
Fahrenheit, then learning snow will tend to increase the probability of A, even if it is not yet a
necessity. This is because Bayesian update removes all of the probability mass from possible
worlds the temperature would be too warm for snow and redistributes it among the worlds where
the temperature is low enough. This is just one example of the usefulness of this more nuanced
representation of information.

It’s worth noting here that the rule for conditioning is often written in one of the following two
forms, both of which may get the title “Bayes’ rule”: either

P(A ∣ B) = P(B ∣ A)×P(A)
P(B)

or the even more complicated-looking

P(A ∣ B) = P(B ∣ A)×P(A)
∑
A′
P(B ∣ A′)×P(A′) ,

where the variable A′ ranges over all of the relevant alternatives to A (for example, “not-A”, or
the members of any other set of mutually exclusive and logically exhaustive propositions that
includes the target proposition A). These forms are frequently useful. For example, it’s common in
science and ordinary life to have information about the probability of an effect given some candidate
causes—e.g., P(symptom ∣ disease) and P(disease)—when the value you want is the “inverse”
probability that a particular disease is the cause of the symptoms—P(disease ∣ symptom). Under
certain conditions, the formulas above can be used to work out what this value must be, using
Bayesian inference.

However, these complicated and often more useful formulations of Bayesian update are equiv-
alent to the simple, semantically motivated version of the basic conditioning rule that that we
saw above—P(A ∣ B) = P(A∩B)/P(B). The numerator is the same because, by the definition of
conditional probability and some trivial algebra,

P(A∩B) = P(A∩B)
P(A) ×P(A) = P(B ∣ A)×P(A)

Given this equality, the denominator of the most complicated version—∑
A′
P(B ∣ A′)×P(A′)— is

simply a sum over P(B ∣A′)×P(A′) =P(B∩A′) for all of the various values of A′. A straightforward
consequence of the probability axioms (the “law of total probability”) is that, whenever the A′ are
exhaustive and disjoint, this sum must be equal to P(B). So, the denominator is just a different way
to package the value P(B), which was the denominator of the original conditioning rule.
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3 “Saying ‘maybe’ and ‘perhaps’ in a thousand different shades”

An enriched representation of information is also useful because many languages—including
English—have a rich vocabulary for talking about the informational status of propositions, with
much gradation and nuance. Here I will briefly review some of the ways that probability and
Bayesian conditioning have been put to use in analyzing the epistemic vocabulary of English. To
keep the discussion manageable, I will not survey alternative approaches or engage in detailed
theory comparison. Needless to say, none of the analyses discussed below are uncontroversial or
obviously correct, and competing accounts should be studied carefully as well.

3.1 Theoretical perspectives

Epistemic expressions deal with information—aspects of knowledge, belief, and (un)certainty.2

This description isn’t totally precise, but it is enough to get a sense of the rich vocabulary that many
languages, including English, have for expressing the nuance of our informational states. Some
clear cases in English are must, might, may, likely, probable, possible, certain, know, believe, and
doubt. Until recently most linguistically-oriented work on epistemic vocabulary concentrated on
modals that were at the “extremes”: auxiliaries like must and might, verbs like know, and adjectives
like possible. These items provide a nice domain of application for the sets-of-worlds model of
information, since they can plausibly be analyzed using “all” and “some”-quantifiers over sets of
epistemically accessible worlds. For example, It must/might be snowing can plausibly be glossed as
“In all/some epistemically accessible worlds, it is snowing”.

However, there are other epistemic items that can’t be treated in this way. Consider, for example,

(1) The Bills are more likely to win the Super Bowl than the Rams are.

It is not at all clear how to map the meaning of (1) onto a sets-of-worlds model, where our primary
tools for analysis are quantification using “all” and “some”, negation, and sub- or superset relations.
But the Bayesian upgrade makes available a plausible analysis: (1) is true just in case the condition
in (2) is satisfied.

(2) P(Bills win) > P(Rams win)
One nice feature of this analysis is that likely is a gradable adjective, and probabilities are a kind of
degrees. So, a compositional analysis of (1) is available that closely parallels a standard treatment of
the gradable adjective excited in sentences like (3), where we are comparing degrees of excitement
(von Stechow 1984; Kennedy 2007).

(3) The Bills are more excited than the Rams are.

Similarly we can analyze (1) as comparing degrees of probability provided by our probabilistic
model.

2 It would perhaps be more accurate to distinguish “epistemic” modals for knowledge and “doxastic” modals for belief,
but this distinction is not made consistently in the literature, and it is an open question whether and how it is relevant to
the epistemic system of English and other languages.
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On this analysis, the bare form The Bills are likely to win asserts that the Bills’ probability
of winning exceeds a contextually determined threshold θ—just as, in the degree semantics for
gradable adjectives, The Bills are excited indicates that the Bills’ degree of excitement exceeds a
contextually determined threshold. See Yalcin 2007; Portner 2009; Lassiter 2010, 2017a; Klecha
2014 for more on the position of epistemic adjectives such as likely within the theory of gradable
adjectives in general.

Many other epistemic items could be analyzed in a similar way. For example, a Bills victory
could be more probable or more certain than a Rams victory. We might try to cash out the degrees
implicit in these comparisons as degrees of probability. The natural analysis of (e.g.) The Bills are
certain to win would then be that the Bills’ probability of winning is 1 or close to 1. Possible is a
controversial case, since English speakers seem to disagree about whether one thing can be more
possible than another; in any case, once we have a Bayesian model of uncertainty in hand we could
treat It is possible that the Bills will win as indicating that the probability of this event is greater
than 0.

Belief and doubt are attitudes that comes in degrees. We can believe one thing more strongly
than another, have more doubt regarding one matter than another, and so on. Given this, it is natural
to ask whether we can make sense of belief and doubt from a probabilistic perspective: for instance,
we might analyze I believe (doubt) that it will snow as saying that I assign a sufficiently high (resp.
low) probability to the proposition snow. This suggestion is extremely plausible on face, but it also
faces significant problems where belief is concerned. On the one hand, I can believe something
without being certain of it. (An example from a photo caption found on the web: “I believe this was
7th street but I’m not certain.”) So, if there is a probability threshold for belief it must be less than
1: belief is weak (Hawthorne, Rothschild & Spectre 2016). On the other hand, any particular choice
of “weak” threshold runs up against Kyburg’s (1961) famous Lottery paradox. If the threshold
for belief is high but less than 1, then I am committed, in a sufficiently large lottery, to believing
each member of a certain large set of propositions ({Ticket 1 won’t win, Ticket 2 won’t win, ...})
without believing the conjunction of those propositions (No ticket will win). This puzzle has
generated a large literature and a variety of solutions: see, for instance, Williamson 2000; Lin &
Kelly 2012; Leitgeb 2014. While there is obviously some connection between probability and
belief, it has turned out to be surprisingly difficult to spell it out in a foolproof way.

Going Bayesian doesn’t require us to analyze everything in terms of probabilities, of course.
For instance, we could still follow the long tradition in modal semantics of treating items like know
and must as universal quantifiers over the epistemically accessible worlds, and might, perhaps, and
maybe as existential quantifiers over the same set. If Pi(Ei) is required to be 1 at all times i, as
we assumed above, this analysis would have the effect of enforcing probabilistic entailments for
these items. Anything that I know at time ti must have probability 1, since it is true throughout E i.
Likewise, if my information verifies It must be snowing, I must assign probability 1 to snow; and if
Pi(snow) > 0, then it might snow according to E i. (However, see Lassiter 2016 for experimental
and corpus evidence that must is weaker, and might stronger, than this analysis would predict.)

Alternatively, we might attempt to define the meanings of these items partly in terms of
probabilities, in a direct way: for instance, it might be part of the meaning of must that It must
be snowing indicates that snow has high or even maximal probability. It is important to be clear
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here that any probabilistic entailments of these items do not, on either style of analysis, exhaust
the meanings of know and must. For example, knowledge seems to have entailments involving
justification, and must may be connected to indirectness of evidence. For discussion of some of
the thorny linguistic and philosophical issues at stake here, see for instance Williamson 2000;
Hawthorne 2004; von Fintel & Gillies 2010; Lassiter 2016.

There are many other items—for instance clear, evident, plausible, confident, and so-called
epistemic ought and should—whose meaning is clearly related to probability, but which seem to
have a richer semantic texture. If you ask me whether Mary made it home yet and I reply that
She should be there by now, I presumably judge that she is probably home. However, this does
not seem to be an entailment per se. There is nothing odd about the reply She should be there by
now, but she isn’t, yet the matched statement with probably—She is probably there by now, but
she isn’t—is bizarre (Copley 2004; Swanson 2015; Yalcin 2016). Similarly, I might judge that a
witness’ account of the events surrounding a crime is plausible, and yet know that it is false. (I was
actually the perpetrator, but covered my tracks well.) This would not make sense if The account is
plausible implied that the probability of the account is moderately high: this would contradict my
inside knowledge that the account’s probability of truth is 0. Assertions of clarity are interesting in a
different way. If I think it is clear that the Bills will win the Super Bowl, this certainly suggests that
I find a Bills victory highly probable. However, assertions of clarity have additional implications
involving the publicity of the information used to reach a conclusion: I cannot assert that It is clear
that I had eggs for breakfast simply because I happen to know that I did (Barker & Taranto 2003;
Barker 2009; Crone 2016).

Several central items in the epistemic vocabulary of English are difficult to treat within a sets-
of-worlds conception of information, but yield to a probabilistic analysis that fits well within our
broader understanding of the compositional semantics of English. In addition, there are numerous
other items whose relationship to probabilistic information is evident, but less direct.

3.2 Experimental and quantitative work

One useful feature of the Bayesian perspective on modal semantics is that it allows one to make
precise quantitative predictions and test them experimentally. In addition, probabilistic models make
available direct connections between modal reasoning and probabilistic models that are employed
in much work in psychology and artificial intelligence. These features make Bayesian thinking very
attractive by opening up new perspectives on modal semantics, new theoretical connections with
other fields, and new ways of testing and refining theories.

There is a small body of experimental work on the relationship between qualitative and quan-
titative expressions of uncertainty, starting from a probabilistic perspective on the language of
uncertainty. For instance, Wallsten, Budescu, Rapoport, Zwick & Forsyth (1986) asked participants
to assign expressions such as almost certain, probable, likely, good chance, possible, and doubtful
to areas on a spinner. They used psychometric methods to infer the ranges of probabilities that
participants considered to be appropriately described by the expressions. This method is interest-
ing, though somewhat limited for a number of reasons: it attempts to measure the meanings of
expressions outside of sentential and conversational context, and it cannot tease apart semantic
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and pragmatic factors. For instance, most participants did not appear to think that an event with
probability .9 was appropriately described as ‘possible’. This is presumably not because such an
event is not possible, but because it would be better described in another way—by likely or almost
certain, say.

In another example, Ülkümen, Fox & Malle (2015) examined the use of English epistemic
expressions in light of a theoretical distinction between different kinds of probability that is widely
employed in statistics, economics, and philosophy (Romeijn 2017) and sometimes in psychology
(Kahneman & Tversky 1982; Lagnado & Sloman 2004; Fox & Ülkümen 2011). They showed
evidence from ordinary language (or, at least, from the New York Times) that people distinguish
between epistemic probability—uncertainty as a psychological feature of people—and “aleatory”
probability, i.e., objective chance as a feature of an indeterministic world. Their corpus investigation
found a number of patterns suggesting that some items (likely, probability, chance) were generally
used to express objective chance, while others (certain, sure, confident) were primarily used to
express epistemic probability. Ülkümen et al.’s (2015) interpretation makes no explicit contact
with formal semantics, but the questions that they are asking are a natural extension of the general
probabilistic perspective on epistemic language described above: given that probability is implicated,
what kind of probability is involved? Their conclusions, while broadly consonant with the Bayesian
perspective that we have elaborated here, suggest that what we usually call “epistemic” language
may also encompass a variety of non-epistemic uses related to worldly indeterminacy (objective
chance; see Lassiter 2018 for discussion).

Combining elements of the theoretical orientations of the last two papers discussed, Løhre &
Teigen (2015) compared Norwegian students’ production and interpretation of numerical proba-
bilities with the two kinds of probability expressions. In their third experiment, two items were
associated with objective factors (Det er % sikkert “It is n% certain” and Det er % sannsynlig
“There is an n% probability”), and one item was associated with subjective judgments (Jeg er %
sikker “I am n% certain”). They found that participants’ assignments of numbers were about 10%
higher in the subjective frame than in either of the objective frames, which were indistinguishable.
This pattern mainly reveals features of the psychological differences between the two kinds of
probability judgment (cf. Lagnado & Sloman 2004). However, it could in principle be useful for
linguists: if the effect holds generally, purported differences in subjective vs. objective interpreta-
tions of epistemic language should be associated with differences in confidence and assignments of
numerical probabilities.

The psychology of reasoning provides another example of productive theoretical exchange made
available by the probabilistic perspective on epistemic language. Rotello & Heit (2009); Heit &
Rotello (2010) considered the effect of the epistemic items plausible and necessary on experimental
participants’ willingness to endorse logically valid syllogisms like (6) and logically contingent
syllogisms like (5).

(4) Logically valid:
a. Horses have property X.
b. Cats have property X.
c. So, horses have property X.

(5) Logically contingent:
a. Dogs have property X.
b. Cats have property X.
c. So, horses have property X.
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For each kind of argument, they asked participants either to judge whether the conclusion was
“necessary” given that the premises are true, or (in another group of participants) whether the
conclusion was “plausible” if the premises are true. Heit and Rotello found that the group judging
plausibility tended to endorse both kinds of arguments, with only a small advantage for logically
valid arguments. However, the “necessary” group tended to endorse most logically valid arguments
while rejecting most contingent arguments. They interpreted this pattern in light of a theoretical
account of the experimental task that treats it as a signal detection problem (Macmillan & Creelman
2005). Their key finding was that a psychological theory of the task on which the strength of
arguments varies only along one dimension—say, the conditional probability of the conclusion
given the premises—-could not, from a signal detection perspective, account for the difference
among groups. A two-dimensional signal detection model gave a better account, a result which
they interpreted as support for dual-process theories of reasoning that distinguish fast associative
reasoning from slow deliberative thinking (Sloman 1996; Evans 2008; Kahneman 2011).

In response, Lassiter & Goodman (2017) argued that careful attention to linguistic semantics
and pragmatics is necessary to understand the way that syllogistic reasoning is affected by the
presence of an epistemic expression in the conclusion. In their experiment, participants were asked
to “accept” or “reject” arguments like (6) with epistemic items in the conclusion. Each participant
saw arguments with a variety of epistemic items.

(6) a. Dogs have sesamoid bones.
b. Cats have sesamoid bones.
c. So, it is possible/likely/necessary/... that horses have sesamoid bones.

The properties used in the arguments were always obscure biological or pseudo-biological features.
By varying the animals in the premises and their relation to the animal in the conclusion, Lassiter &
Goodman produced argument skeletons with a wide range of intuitive plausibility, from very low
(e.g, “Seals ... dolphins ... So, horses ...”) to very high (e.g., “Mammals ... So, horses ...). They
then examined how the acceptance rates of a fixed argument skeleton was affected by the presence
and identity of an epistemic expression, chosen from {possible, plausible, likely, probable, certain,
necessary}.

Comparing quantitative response patterns across modals and argument skeletons allowed Lassiter
& Goodman to verify a number of qualitative and quantitative predictions of their “Probability
Threshold Model”, which incorporates a number of ideas from formal semantics and pragmatics
while associating argument strength with a one-dimensional scale—the conditional probability of
the conclusion given the premises (Heit 1998; Oaksford & Chater 2007). They argued that this
model was able to account for the phenomena noted by Heit and Rotello without assuming that
the choice of modal item induced participants to engage in different modes of reasoning. If so,
the effects of the choice between “plausible” and “necessary” in reasoning experiments do not
provide compelling support for a two-dimensional (dual-process) theory of reasoning over a simpler
one-dimensional theory based on conditional probability.

The results were broadly consistent with their “Probability Threshold Model”, which combines
three main components from semantic, pragmatic, and psychological theory: (i) a probabilistic
theory of epistemic language as sketched above, (ii) a probabilistic theory of vagueness (e.g.,
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Edgington 1997; Frazee & Beaver 2010; Lassiter 2011; Lassiter & Goodman 2017; Sutton 2017),
and (iii) a Bayesian perspective on reasoning that identifies argument strength with the conditional
probability of the conclusion given the premises (Heit 1998; Oaksford & Chater 2007). In this
account, logically valid arguments are an extreme case where the probability of the conclusion
given the premises is 1 since the premises jointly entail the conclusion.

These are just a few illustrations of the potential for productive theoretical exchange between
formal semantics/pragmatics and other areas of cognitive science facilitated by the adoption of
probabilistic methods in the study of epistemic language.

4 Conditionals

4.1 Theoretical perspectives

Historically, the first serious attempts to analyze English modal vocabulary in terms of probability
theory involved the item if. Starting with Adams’ (1966; 1975) investigations into the connection
between conditional probability and assertibility, this connection has been discussed and debated
in a huge body of work (see the excellent surveys in Edgington 1995; Bennett 2003). The key
problematic in this literature is to make sense of the intuitive connection between the probabilities of
indicative conditionals and conditional probabilities, as defined in section 2 above. As van Fraassen
(1976: 273) puts it:

The English statement of a conditional probability sounds exactly like that of the
probability of a conditional. What is the probability that I throw a six if I throw an
even number, if not the probability that: if I throw an even number it will be a six?

This connection is sometimes called “Stalnaker’s Thesis” after Stalnaker 1970, who first framed it
as a semantic proposal:

P(if A then B) = P(B ∣ A).
According to this suggestion, whatever proposition an indicative conditional denotes, it should have
a probability equal to the conditional probability that its consequent would have on the supposition
that its antecedent is true. (Note that Stalnaker’s thesis is logically independent of the pragmatic
claim that If A, B is acceptable only if P(B ∣ A) is high, as suggested by Adams (1975); Oaksford &
Chater (2007) and others.)

Stalnaker’s suggestion held up the hope that one could use this intuitively obvious connection,
together with what is known about probability theory, to make progress on the difficult question
of what kinds of propositions conditionals denote. However, Lewis (1976) tempered these hopes
considerably by proving—on fairly light assumptions—that no conditional connective could validate
Stalnaker’s Thesis except in extremely trivial models.3 So, one of the assumptions must be wrong.
A number of candidate solutions have been discussed.

An option that would likely be popular among linguists is to deny that if is a sentential
connective—a two-place operator on propositions, like and and or. The most popular theory of con-

3 See Egré & Cozic 2011 for an enlightening presentation of Lewis’ proof, which reveals a surprising connection to limits
on first-order definability of generalized quantifiers.
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ditionals in linguistic semantics is the “restrictor” theory, on which if is not a connective, but instead
combines with a proposition to restrict the domain of quantification of a modal operator (Kratzer
1991a,b). For instance, If it’s snowing, it’s cold would be analyzed roughly as MUST[snow][cold],
where snow restricts a silent epistemic must. However, the prospects for validating Stalnaker’s
thesis within the restrictor theory are dim (Charlow 2016). Advocates of the restrictor theory can,
however, deny the data, arguing that the connection highlighted in van Fraassen’s quote is a sort
of linguistic illusion (cf. Kratzer 1991a). This move is quite plausible within the context of the
restrictor theory, but see Edgington 2014 for arguments that it does not fully solve the problem.

A second option is to deny that conditionals denote propositions. Adams’ (1966; 1975) influen-
tial theory is of this type: on his account, the ‘P’ on the left side of Stalnaker’s Thesis should be
interpreted not as a true probability but as a measure of assertibility. (See also Edgington 1995;
Schulz 2017 for a “suppositional” account with connections both to Adams’ approach and to the
restrictor theory.) Adams develops a detailed account of how we can reason probabilistically with
a mix of conditional and non-conditional premises and conclusions, validating many intuitive
patterns of inference as characterizations of rational states of probabilistic belief—all while treating
conditionals as imposing constraints on probabilistic belief states, rather than mere propositions.
However, Adams’ theory is limited in that there is no way to interpret nested conditionals like those
in (7) compositionally.

(7) a. If Al agrees to the bet, then I will win a lot if the Bills win the Super Bowl. (right-nested)
b. If Al will agree to the bet if Mary does, then I need to convince Mary to bet. (left-nested)

Simply put, “P(I win if the Bills win ∣ Al agrees)” makes no sense on Adams’ theory. Conditional
probability is a function that requires two propositions as arguments. It yields a value only when
there are propositions on both sides of the “∣”. Since I win if the Bills win does not denote a
proposition on Adams’ theory, the conditional probability that we are being asked to compute is
undefined. But nested conditionals are in many cases quite natural—witness (7)—and as a result
this restriction severely limits the usefulness of Adams’ approach for linguistic analysis.

A third possibility is to suppose that conditionals have context-dependent meanings that depend
on the information in the probability measure itself. As van Fraassen (1976) showed, it is possible
to vindicate Stalnaker’s Thesis in this way (see also Douven & Verbrugge 2013 for discussion and
relevant experimental evidence). The specific semantic proposal of van Fraassen has been developed
in detail by Stalnaker & Jeffrey (1994); Kaufmann (2005). A nice feature of this approach is that it
can be extended to allow for unlimited left- and right-nesting of conditionals (Kaufmann 2009).
Some potential downsides are that the denotational semantics associated with this approach is quite
complex, and that the theory requires us to allow sentences to take on an infinity of values in [0,1]
where the classical truth-values 0 and 1 are merely extreme cases, and only conditional sentences
make use of the middle range (0,1).

Much less attention has been paid to the probabilities of counterfactual conditionals, but the
intuitive argument is just as clear. Modifying van Fraassen’s quote along the following lines makes
it no less compelling:

What is the probability that I would have thrown a six if I had thrown an even
number, if not the probability that: if I had thrown an even number it would have
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been a six?

Shouldn’t we then have a variant of Stalnaker’s Thesis for counterfactuals?

P(if were A, would B) = PCF(B ∣ A).

I’m intending “PCF(B ∣ A)” as a kind of “counterfactual probability”—the probability that B would
have had if A were the case. A possible reason why this connection has not been explored in anything
like the depth of the indicative case is that is that there is no standard definition of counterfactual
probability. One possibility is that we find the probability that I would have thrown a six, if I had
thrown even, by considering a “retrospective” conditional probability: the value that P(six ∣ even)
had at some time before the throw happened (e.g., Edgington 1995; Leitgeb 2012). This would
give us the right result for the die-throwing example, and it is an ordinary conditional probability.
However, there are some clear counter-examples to this analysis involving events that occurred after
the antecedent time, but which remain fixed in the counterfactual scenario (Barker 1998; Edgington
2003). For example, suppose I bet “Heads” on the flip of a fair coin and then the coin is flipped and
comes up tails. Since the coin flip happened after the bet, the retrospective theory does not take
into account the outcome of the coin flip: thus it predicts that both sentences in (8) should have
probability .5.

(8) a. If I’d bet “heads”, I’d have won.
b. If I’d bet “tails”, I’d have won.

But this is clearly incorrect: since the coin came up tails, the probability that I’d have won if I’d
bet heads is 0, and the probability that I’d have won if I’d bet tails is 1. (Examples of this type are
sometimes called “Morgenbesser cases” after Sidney Morgenbesser, who Slote (1978) credits with
an example that can be used to make the point.)

While the empirical picture is very complex, it appears that the choice of which facts to hold
fixed and which to ignore in counterfactual reasoning is primarily sensitive to causal relevance rather
than temporal order (Barker 1998; Kaufmann 2001; Edgington 2003, 2008). This means that a
robust theory of causality may be a prerequisite for developing an adequate theory of counterfactual
probability, and indeed counterfactual reasoning in general. Causal Bayesian Networks, as developed
in a substantial body of work in computer science, philosophy, and psychology, are an obvious
starting point for developing a formally explicit and empirically adequate theory of counterfactual
probability (Meek & Glymour 1994; Pearl 2000; Sloman 2005; Lucas & Kemp 2015; see Schulz
2011; Kaufmann 2013; Lassiter 2017b for relevant discussion from a linguistic perspective). See also
Schulz 2017 for a recent and highly recommended account of the probabilities of counterfactuals.

Another consideration relevant to the theoretical dialectic here is the interpretation of proba-
bilistic language that occurs within conditionals. For instance, consider the following intuitively
true statements about a scenario where we know that a fair die has been rolled, but do not know
how it came up.

(9) a. There’s a 1/6 chance that the die came up 6.
b. If the die came up even, there’s a 1/3 chance that it came up 6.

Obviously, we would not be licensed in concluding from these premises that
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(10) The die didn’t come up even.

But then, as Yalcin (2012b) points out, we have a counter-example to the logical principle of Modus
Tollens, according to which If A then B and not-B should together imply not-A . Let A be The die
came up even and B be There is a 1/3 chance that the die came up 6. Since (9a) entails that B
is false—there is not a 1/3 chance that the die came up 6—we should be able to infer by Modus
Tollens that A is false—the die did not come up even. But this is clearly not an appropriate inference
when we have no idea at all how the die came up!

This kind of example can be used to motivate a different connection between conditionals and
Bayesian inference: when a probabilistic expression like 1/3 chance occurs in the consequent of a
conditional, its interpretation is tied to a certain conditional probability—the probability generated
by conditioning on the truth of the antecedent. On this account, the premises of (9) are interpreted
as

(11) a. P(die comes up 6) = 1/6
b. P(die comes up 6 ∣ die comes up even) = 1/3

Clearly, nothing follows about whether or not the die came up even from these premises. In effect,
the consequent of (9b) is interpreted not as There’s a 1/3 chance ..., but as There’s a 1/3 chanceeven,
where the interpretation of chance has been modified to exclude the possibility that the die did not
come up even. This explains the sense that the premises in (9) are talking about different things:
one instance of chance takes into account both even and odd possibilities, while the other excludes
the odd.

This kind of interaction between conditionals and probabilistic language is expected on either
a restrictor (Kratzer 1991a,b; Yalcin 2012a; Lassiter 2017b) or a suppositional (Edgington 1995;
Schulz 2017) theory of conditionals, both of which indicate in various ways that a conditional is
evaluated by temporarily adding the information that the antecedent is true. This result can also be
encoded within the traditional style of syntactic and semantic analysis of conditionals where if is a
binary function on propositions (a connective), but doing so may require these theories to take on
aspects of the restrictor and/or suppositional theories.

4.2 Experimental and quantitative work

There is much more experimental work on the probabilistic analysis of conditionals than on epis-
temic items like certain and might. The question of how people reason with indicative conditionals
has been treated in an extensive body of work in experimental psychology, some of which engages
deeply with probabilistic analyses drawn from the philosophical literature (e.g., Evans & Over
2004).

Much work on indicative conditionals has assumed the material conditional analysis of indicative
conditionals, where If A then B is true whenever A is false or A and B are both true. On this analysis,
P(If A then B) should be equal to P(Ā) +P(A∩B). In many cases, this value will be greater
than the value P(B ∣ A) that we expect by Stalnaker’s thesis. Recycling an earlier example, the
probability that I throw a 6 if I throw an even number is obviously 1/3. But the material conditional
analysis suggests the value 2/3—the sum of P(even) = 1/2 and P(even∩ six) = 1/6. While it may
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be possible in some cases to mount a pragmatic defense of this odd prediction (cf. Lewis 1976),
many philosophers and psychologists have taken this and similar discrepancies to tell decisively
against the material conditional analysis.

Moving beyond intuition, Evans, Handley & Over (2003) and Oberauer & Wilhelm (2003)
(working independently) pitted Stalnaker’s thesis against the predictions of the material conditional
analysis in a series of experiments, using problems structurally similar to the die-throwing example
just discussed. Both sets of researchers found results that tell decisively against the predictions of
the material conditional analysis, and both found an interesting pattern of individual differences. For
instance, in one of Evans et al.’s (2003) experiments, half of participants conformed with Stalnaker’s
thesis, but nearly as many (43%) appeared to use the probability of the conjunction of antecedent
and consequent! In our die-throwing example, this would correspond to judging the probability
of If the die is even it is 6 to be equal to The die is even and 6, which is equivalent to The die is
6—probability 1/6. In a follow-up experiment, Evans, Handley, Neilens & Over (2007) investigated
the source of these differences. They found that participants who scored poorly on a test of general
intelligence were more likely to use the conjunctive interpretation. This suggests that the striking
pattern of conjunctive responses may not reflect genuine linguistic variation, but may rather be an
artifact of the experimental method due to some participants’ poor understanding of the questions
or background scenarios (though see Girotto & Johnson-Laird 2004; Oberauer, Geiger, Fischer &
Weidenfeld 2007 for interpretations in terms of reasoning strategies cashed out in Johnson-Laird’s
(1983) Mental Models framework).

A variety of further experiments support Stalnaker’s Thesis: in many cases, people will judge the
probability of an indicative conditional to be equal to the corresponding conditional probability (e.g.,
Over & Evans 2003; Over, Hadjichristidis, Evans, Handley & Sloman 2007). Evans & Over (2004)
survey the relevant experimental findings up to 2004 and use them to argue for the suppositional
theory of conditionals advocated by Edgington (1995). On this account, we evaluate the probability
of a conditional by temporarily assuming that the antecedent is true and considering the probability
of the consequent in this light. Note that this sort of account focuses on the reasoning potential of
conditionals rather than issues of truth and falsity; indeed Edgington (1995) argues extensively in
favor of a non-propositional theory of conditionals. While the experimental evidence in favor of
Stalnaker’s thesis is quite strong, there are several problem cases in the semantic literature that have
not yet been subject to experimental investigation: see Kaufmann 2004; Khoo 2016; Moss 2018.

Now consider an intuitively plausible generalization of Stalnaker’s thesis involving right-nested
conditionals. On face, it would seem that a sentence of the form If A then (C if B) should be
equivalent to one of the form If A and B then C, and that they should have the same probabilities.
For instance, the probability of If the die is even, then it’s a 2 if it’s not a 4 seems to be 1/2, since
an even die that isn’t a 2 is either a 4 or a 6, with equal probabilities. Similar reasoning yields the
value 1/2 for If the die is even and it’s not a 4, it’s a 2. This suggests a generalization of Stalnaker’s
thesis:

P(If A, then C if B) = P(If A and B, then C)
The generalized principle makes sense, given that—in the probability calculus—conditioning
sequentially on A and B is equivalent to conditioning on their conjunction. However, Douven &
Verbrugge (2013) provide experimental evidence that may problematize the generalized thesis.

16



Participants were asked to repond on a 1-to-7 scale, from “highly improbable” to “highly probable”,
to prompts with this form (but slightly more complex):

(12) a. Suppose it rains tomorrow. How probable is the following outcome? “My boots will
get muddy if I go outside.” [“probability of conditional”]

b. Suppose it rains tomorrow and I go outside. How probable is the following outcome?
“My boots will get muddy.” [“conditional probability”]

They found that the “conditional probability” condition was associated with a small, but highly
statistically significant, increase in probability ratings (4.94 vs. 4.56). While replication with
different and more diverse materials is needed, it is puzzling for advocates of Stalnaker’s thesis.
One possibility, suggested by Douven & Verbrugge (2013), is that the meaning of a conditional is
sensitive to a belief state, as in van Fraassen’s (1976) theory mentioned above. If so, we might expect
the denotation of the conditional to be affected by whether it is embedded or not: for instance, the
probability measure relevant to its interpretation would be conditional on the truth of the antecedent.
If so, the usual assumption that If A, then C if B is always equivalent to If A and B, then C is not
correct. (See also Khoo & Mandelkern to appear for further arguments against this assumption.)

A different, deflationary interpretation of Douven & Verbrugge’s (2013) results might invoke
their use of Suppose A ... in place of If A, ... in the experimental prompts, assuming that their
effects are equivalent. Perhaps there are subtle differences between these items that could explain
the differences. In any case, their findings are in need of explanation, and point again both to the
importance of experimental work and to the potential for data involving nested conditionals to help
us choose among theories.

There is a large body of experimental work on counterfactual reasoning, much of it from social
psychology. This field of study largely explores the relationship between counterfactual reasoning
and socially important concepts such as explanation, causation, responsibility, blame, and regret,
including much pragmatically interesting work about when and why people generate counterfactual
explanations. In addition, there is important work in this area on the psychological processes
involved in counterfactual reasoning and what biases these processes might induce: see Roese 1997;
Byrne 2007; Epstude & Roese 2008 for surveys. This body of research seems to offer many insights
for semantics and pragmatics that remain mostly unexplored to date, but is largely beyond the scope
of this article since it does not focus on probabilistic topics.

5 Conclusion

The quantitative turn in linguistics and many neighboring fields, and the accompanying attention
to phenomena involving uncertainty and gradation, have caused many to wonder whether the
logical methods of formal linguistics are really the right kind of tools for the analysis of language.
But probability theory is built on classical logic, and it allows us to accommodate gradation
and uncertainty without abandoning the highly structured, logically well-behaved models that
have proved so productive in the past. The enriched representation of information associated
with probabilistic models may also shed new light on the many areas in which uncertainty and
informational dynamics are crucially implicated in natural language semantics and pragmatics.
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This article began by outlining the semantics of probability and conditional probability, em-
phasizing the continuity of these ideas with familiar models of information and belief update as
well as empirical motivations for the enriched representation that probability theory provides.
We then surveyed some applications of probabilistic ideas to two areas of lexical semantics and
pragmatics—epistemic vocabulary and if —with attention to both theoretical and experimental
work that has been inspired by this perspective. The probabilistic perspective on the language of
uncertainty has already generated many new theoretical and empirical insights, and it promises
many more as we explore new interdisciplinary connections with psychology, philosophy, and
beyond.
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